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Chapter 1

Introduction

1.1 Preface

Embedded devices hold secrets that are, unsurprisingly, coveted, and many
malicious attackers are preparing to extract them illegitimately. Typical attacks
involve measuring the device’s power consumption or radiated electromagnetic
(EM) field. These measurements are noisy sources of information that are, in
one way or another, correlated with secrets. Consequently, analyzing these leaks
enables us to recover the secrets.

The aim of this book is to formalize, characterize and quantify the actual
threat level to these targets, drawing on the best mathematical tools for quan-
tifying information leakage and characterizing leakage-based attacks. Two ap-
proaches are possible: either an optimal attack strategy can be derived (in
specific contexts), or generic limits can be derived.

The tone of this book is resolutely mathematical. It aims at establishing
formal foundations for techniques that are otherwise used as engineering recipes
in industrial laboratories, or empirical intuitions for deriving safety levels from
practical implementations. In this respect, this book is a systematization of
knowledge and a compilation of relevant tools relating to the practice of side-
channel analysis on embedded systems.

The contents of this book results from one decade (2014–2024) of efforts to
formalize the field of side-channel analysis. This project has been initiated by
Sylvain Guilley and Olivier Rioul in 2014. Along the way, we have associated
PhD students, interns and colleagues to this journey. They helped to investigate
eclectic aspects, which resulted in several original contributions, some of them
discussed already within our community, on the occasion of annual workshops
and conferences. In 2018, Wei Cheng 1 joined us to standardize and collate
existing materials and new results in one single volume (i.e., the present work).

Obviously, we are indebted to our PhD students (in alphabetical order:

1The recent work of Wei Cheng is partially supported by National Key R&D Program of
China (No. 2022YFB3103800).

1



2 CHAPTER 1. INTRODUCTION

Julien Béguinot, Nicolas Bruneau, Wei Cheng, Éloi de Chérisey, Annelie Heuser,
Yi Liu, Houssem Maghrebi, and Damien Marion), one visiting researcher (Dar-
shana Jayasinghe), and our colleagues (in alphabetical order: Claude Car-
let, Jean-Luc Danger, Sihem Mesnager, Pablo Piantanida, Emmanuel Prouff,
François-Xavier Standaert, and Ming Tang). Interaction with them has been
very fruitful and we wish here to sincerely thank them for their individual con-
tributions.

Some chapters of the present book are based on scientific articles presented
at various venues in the 2014–2024 timeframe. Still, they have been properly
integrated into a consistent narrative thread, and rewritten in parts to match
with the uniformed notations we employed across the book. In addition, most
material has been deeply reworked to make it more didactic, and more focused
on the important takeaways rather than on the technicalities. We paid great
care to cross-reference the different contributions in order to highlight the syn-
ergies between the book sections. The outcome is a self-contained monograph
that consists in a systematization of knowledge about mathematical theory of
practical side-channel analysis. It should make mathematical foundations for
side-channel analysis of cryptographic systems accessible to:

• students in the field of embedded cybersecurity;

• professionals in secure devices design;

• governmental agencies aiming at defining optimal (normative) defense
strategies.

The diversity of this audience reflects the fact that embedded cybersecurity
is an issue embraced by an ecosystem. We hope our book will bring clarity to
this technical subject, which has implications for the security of our daily lives
in our digital society.

Book keywords: Embedded systems; Electronic devices; Cryptographic Soft-
ware; Cryptographic Hardware; Side-channel analysis; Information leakage; For-
malization; Mathematical analysis; Optimal distinguishers; Information theory;
Statistics; Coding theory; Security bounds; Security metrics; Security crypti-
graphic implementations; Systematization of Knowledge.

1.2 Cryptography & Cybersecurity

Nowadays, abundant electronic devices are proliferating in our daily life, such
as SIM cards, cell-phones, bank cards, edge appliances, etc. Eurosmart’s sur-
vey2 tells us that there are about 9.54 billion shipped units of secure elements.
In particular, the telecommunication market closed 2020 with around 5,1 bil-
lion units (smartcards) shipped, including 309 million units shipped for eSIM
and a 4,8 billion units for SIM, which saw a significant increase. Those secure

2Eurosmart, https://www.eurosmart.com/2019-shipments-and-2020-outlook/

https://www.eurosmart.com/2019-shipments-and-2020-outlook/


1.3. THE ROOT OF SECURITY & THE CHAIN OF SECURITY 3

elements are widely deployed in telecom, financial services, device manufactur-
ers, gouvernmental infrastructure, etc. However, such secure elements usually
handle some sensitive information, which is highly exposed during computa-
tions when loaded, manipulated and stored. This leads to massive scales of
vulnerabilities and attacks in practice. Therefore, improving their security has
become an absolute priority. In addition, new regulations (such as the Euro-
pean Cyber-Resiliency Act) require security by design before deployment and
security management after deployment.

In this respect, modern cryptography is the cornerstone for building the
chain of trust and security. It plays a fundamental and pivotal role in estab-
lishing secure connectivity in this emerging digital age. In other words, cryp-
tography enables secure communications between different parties, and evolves
with computing and communication technologies. Basically, cryptography pro-
vides five primary functionalities: confidentiality, integrity, authentication, non-
repudiation and key exchange. Those functionalities are well-established on the
basis of various mathematical concepts such as information-theoretic security,
computational complexity theory, number theory, coding theory, probability
theory, etc.

Based on mathematical tools, it is possible to design and build theoreti-
cally secure cryptographic algorithms and protocols. In the field of symmetric
key cryptography, the Data Encryption Standard (DES) [NIS99] and its suc-
cessor, the Advanced Encryption Standard (AES) [NIS01], are one of the most
important algorithms that have been published two decades ago by the Na-
tional Institute of Standards and Technology (NIST). In the field of public key
cryptography, Rivest-Shamir-Adleman (RSA) [RSA78] and Elliptic Curve Cryp-
tography (ECC) [Mil85, Kob87] are two well-known instances that are based on
the intractability of the corresponding mathematical problems.

1.3 The Root of Security & the Chain of Security

The Kerckhoffs principle, which dates back to the 19th century, is a basic rule
and common consensus in modern cryptography. It stipulates that a cryp-
tographic system must be secure, even if all the elements of the system are
accessible to adversaries, with the exception of the key [Ker83a, Ker83b]. It
was followed and reformulated by Claude E. Shannon in 1949, now known as
Shannon’s maxim: “one ought to design (crypto) systems under the assumption
that the enemy will immediately gain full familiarity with them” [Sha49]. The
keys present in a cryptosystem form the basis of the root of trust that is es-
sential to the system. Theoretically, the above constructions (e.g., DES, AES,
RSA, ECC, etc.) are computationally secure in this regard under the black-box
assumption, in which an adversary can only access the inputs and outputs of
the cryptosystem.

However, in practical applications, keys are not static, but dynamically ma-
nipulated in the digital world. Indeed, each stage of manipulation (computation)
exposes these keys, leading to the need for a security chain to guarantee security
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in the real world.
In fact, any digital device leaks physically observable information [MR04]

about internal states during executions. Although mathematical proofs of se-
curity for cryptographic algorithms are fundamental and indispensable, they
usually cannot guarantee the practical security of the corresponding crypto-
graphic implementations. In reality, those cryptographic algorithms must be
run in some physical devices. Consequently, these physical observations gener-
ally violate the black-box setting assumption, according to which an adversary
can only access the inputs and outputs of a cryptographic algorithm.

Since knowledge of certain observable information about the algorithms’ in-
ternal variables is advantageous to the adversary, the black-box model is lifted
to a gray-box setting by taking into account any (abstract) form of observ-
able leakages that exists in practice. Accordingly, the attacks exploiting those
physically observable leakages are called physical attacks.

1.4 Side-Channel Analysis

Side-channel analysis (SCA) is among the most powerful physical attacks against
cryptographic implementations. Since the seminal works [Koc96, KJJ99], a very
large amount of SCAs have been proposed by exploiting various observable phys-
ical leakages. Those physical leakages include (but are not limited to) running
time [Koc96, DKL+98], power consumption [KJJ99, CCD00], electro-magnetic
emanations [GMO01, QS01], acoustic emission [GST14, CPM+18], and pho-
tonic emission [FH08, KNSS13, CSW17]. More exploitable leakages emerge
as technology improves (e.g., static leakage in nanotechnology [Mor14], spying
in the context of multi-tenant FPGAs [SGMT18, RPD+18]) and in-depth un-
derstanding of behaviors of elementary circuits, like micro-architectural data
leakages [GYCH18, LSG+18, KGG+18, MPW22]. Essentially, any measurable
secret-dependent information or behaviors of the underlying cryptographic de-
vices can be exploited to launch a successful side-channel attack.

In principle, side-channel analysis consists of extracting the sensitive infor-
mation from noisy measurements. In many cases, the attacker can additionally
purchase a blank device of the same series and learn about their leakage, in
particular how it relates to the secrets. Such information can also improve
the hardware attacks deployed on another device. Obviously, attacks operated
in this context benefit from an advantage; it is qualified by the factor “Open
samples/Samples with known secrets” in the Joint Interpretation Library (JIL)
interpretation [Joi20] of the Common Evaluation Methodology (CEM).

Therefore, side-channel analysis is commonly divided into two categories,
depending on the ability of the adversary and the corresponding setting:

• Non-profiling attacks — An adversary attempts to extract the sensi-
tive information by correlating side-channel measurements and hypothet-
ical leakages. Well-known attacks include simple power analysis (SPA,
[Koc96]), differential power analysis (DPA, [KJJ99]), correlation power



1.5. SIDE-CHANNEL PROTECTIONS 5

analysis (CPA, [BCO04]), and mutual information analysis (MIA, [GBTP08,
VS09]).

• Profiling attacks are two-phrase attacks. An adversary is assumed to
possess an identical device to build some exact profiles on the leakage be-
haviors and then apply these profiles during the attack phrase. Some well-
known instances are template attack [CRR02], stochastic attack [SLP05],
etc. In particular, the template attack is known as the most powerful
side-channel attack if the leakage model is known perfectly.

Additionally, machine learning (including deep learning) techniques have
been adapted into side-channel analysis in both non-profiling [Tim18, RAD20,
PCBP21] and profiling settings [CDP17, ZBHV20, BPS+20, MDP20, WAGP20].
In essence, side-channel classifies different key hypotheses relying on observa-
tions, in which learning-based techniques shall amplify those attacks dramati-
cally. However, those learning-based attacks tolerate a loss of interpretability
on results, even in some restricted scenarios.

1.5 Side-Channel Protections

In order to protect cryptographic chips (implementations) against SCA, nu-
merous countermeasures have been proposed, the three main ones being mask-
ing, shuffling and hiding. Masking schemes [CJRR99, ISW03, CPR07, MOP06,
RP10] randomize the dependency between sensitive data and leakages by divid-
ing each sensitive variable into several random shares to thwart SCA. Shuffling
schemes [HOM06, RPD09, CS21a] randomize the order of operations during the
executions. Quite differently, hiding-based countermeasures [CCD00, MOP06,
RGN13] attempt to make the leakages uniformly independent to the data pro-
cessed by circuit-level alteration, yet it is difficult to have any guarantee [ISU17].
Of course, these three types of protection can be constructively combined. Nev-
ertheless, of these three categories of protection, masking is the most attrac-
tive and frequently used technique against SCA, as it offers formally provable
security and can be implemented at algorithmic level without any hardware al-
teration. (Some simplifications must be disabled during compilation, however,
otherwise the masking countermeasure can be modified or even removed).

1.5.1 Masking Schemes
Characterized by favorable provable security, masking has triggered a series
of fruitful works, ranging from the theoretical construction of secure compo-
nents (usually called gadgets) to the practical evaluation of resilience through
side-channel attacks. Typically, the key parameter of a masking scheme is the
security order t under the probing model [ISW03], which indicates the mini-
mum order (t + 1) that a successful attack must have. In a t-th order secure
masking, each sensitive variable is split into at least t + 1 shares. The rationale
is that the complexity of the attack increases exponentially with the number of
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shares [CJRR99, PR13] given a sufficient amount of noise, while the implementa-
tion cost increases only polynomially (quadratically or cubically in higher-order
glitch-free implementations [GSF13]).

Various masking schemes have been proposed since 1999, and an overview of
representative schemes is shown in Fig. 1.1. Typically instances include Boolean
masking [CJRR99], inner product masking (IPM) [BFG15, BFG+17], leakage
squeezing (LS) [CDG+14, CG18] and direct sum masking (DSM) [BCC+14a,
PGS+17]. The proposals marked in blue are the first proposals of the corre-
sponding schemes3. To the best of our knowledge, the generalized code-based
masking (GCBM) [WMCS20, CGC+21a] is the most generic scheme in this re-
spect4. In particular, polynomial masking [GM11, PR11] is also a special case
of GCBM, which is built upon Shamir’s secret sharing (SSS) scheme [Sha79].

1999 2022201820142012 2016 2020

BM

GCBM

LS

IPM

[CJRR99]

[BFGV12] [BFG15] [BFG+17]

[CGM19]

[CDG+14]

[CG18]

[WSY+16]

[WMCS20]

[CGC+21a]

[CGC+21b]

PM

DSM
[PGS+17]

[MGD11]

[PR11]

Generalized code-based masking

[CGG+19]

[GM11] [CMP18]

[Car13]
[CDGM12]

Polynomial masking

Direct sum masking

Leakage squeezing

Inner product masking

[BCC+14]

Generalized code-based masking

Polynomial masking

Direct sum masking

Leakage squeezing

[CS21]

[ISW03] [PR13]

[PRR14]

[CPR12]

[RP10]

Figure 1.1: Various proposals of masking schemes with corresponding construc-
tions, security assessment, and some variants.

Two questions arise naturally: (1) how to measure information leakage in
different schemes? and (2) how to choose optimal codes (or parameters) for
each scheme?

1.5.2 Generalizing to Code-based Masking

Code-based masking follows the generalization trend and unifies many schemes
by focusing on the shared encodings. Two linear codes are involved, namely
C and D. The only requirement is that there is no nonzero codeword in their
intersections [WMCS20, CGC+21a]. Consequently, the resistance of code-based
masking to side-channel analysis is highly dependent on the two linear codes,

3Notice that the original publication on IPM [BFGV12] is not included in this figure,
because it features some first-order information leakages. Those are later fixed in the improved
proposal [BFG15], that we show in the figure instead.

4For simplicity in the sequel, we consider the code-based masking in the most general
scenario.



1.5. SIDE-CHANNEL PROTECTIONS 7

whose coding-theoretical properties are related to algebraic complexity from the
point of view of a (pseudo) Boolean function.

The first representative scheme is IPM, in which the encoding is similar to
the simplest Boolean masking except that each share is equipped with a linear
function (multiplied over a finite field by a public constant). It consumes n
parameters in an n-share setting and enjoys the simple structure that can be
implemented quite efficiently [BFG+17]. As a special instance of non-redundant
code-based masking, the two linear codes in IPM are complementary, resulting
in a great simplification when evaluating its side-channel resistance. In fact, we
show that the side-channel security of IPM only depends on the properties of the
code D [CGC+21b]. More generally, only code D matters in any non-redundant
code-based masking like DSM.

Another typical example is the polynomial masking that is based on the SSS
scheme. It also employs n public parameters in an n-share setting, but forms
an entirely different encoding. Essentially, the encoding in SSS-based masking
can be reformulated and connected to the Reed-Solomon (RS) codes [MS77,
CMP18]. Considering an (n, t)-SSS based sharing as depicted in Fig. 1.2, it
forms n shares while provides a t-th order privacy (side-channel resistance)
rather than n · t parameters in a random setting. From a coding-theoretic
perspective, the RS code is optimal in a given finite field in the sense that it
achieves the Singleton bound [Sin64]. However, as shown in [CMP18], distinct
public points play a role in the resilience and the efficiency of the protection.
Therefore, the questions above still remain.

Figure 1.2: Illustration of an instance of redundant masking. In an (n, t)-SSS
based polynomial masking, the sensitive variable X = f(0) is encoded into n
shares with a security order t.

In this book, we detail the general case of “code-based masking” which en-
compass most of previously proposed masking schemes. In particular, we show
how to quantify the information leakage under various models on the one hand,
and present evaluations of the exploitation of the information leakage on the
other hand by providing attack-based results.
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1.6 Getting Acquainted with the Topics

Side-channel analysis has gotten maturity over time. Table 1.1 retraces the
history of key milestones. The infancy of the field was all about practical attacks.

Table 1.1: Maturity in Side-Channel Analysis
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Attack 1999 4 Paul C. Kocher et al.,
Differential Power Analysis,
CRYPTO 1999 [KJJ99]

2016 4 Houssem Maghrebi et al.,
Breaking Cryptographic Imple-mentations
Using Deep Learning Techniques,
SPACE 2016 [MPP16]

Distinguisher 2000 4 Jean-Sébastien Coron et al.,
Statistics and Secret Leakage,
FC 2000 [CKN00]

2004 4 Éric Brier et al.,

Correlation Power Analysis
with a Leakage Model,
CHES 2004 [BCO04]

Detection 2011 4 Gilbert Goodwill et al.,
A testing methodology for
side-channel resistance validation,
NIST NIAT Workshop, 2011 [GJJR11]

Prediction 2014 4 Victor Lomné et al.,
How to Estimate the Success Rate of
Higher-Order Side-Channel Attacks,
CHES 2014 [LPR+14]

Bounds 2015 4 Alexandre Duc et al.,
Making Masking Security Proofs Concrete,
EUROCRYPT 2015 [DFS15]

Information contents 2018 4 Ishmael Belghazi et al.,
Mutual Information Neural Estimation,
ICML 2018 [BBR+18].

Their theorization as distinguishers came next, where various distinguishers
have different merits. Consequently, the “leakage detection” approach has been
proposed to provide a security evaluation methodology, which is irrespective of
distinguishers (this approach is the one followed in the International Standard
ISO/IEC 17825). However, leakage detection does not allow to relate easily
to a quantitative effort regarding the number of traces to exploit side-channel
traces. Some works have been trying to predict the number of traces for given
distinguishers, but again, such approach is specific to the given distinguishers.
Therefore, the modern approach is to rely on bounds, which is an ongoing effort:
We follow this approach in this book. The evaluation of bounds relies on the
estimation of leakage metrics.
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1.6.1 The Practice of Side-Channel Analysis
Side-channel analysis provides confidential information when being used, since
it occurs during the use of a secret. Natural targets are therefore cryptographic
in nature:

• operations on secret or private keys, such as key generation or diversifica-
tion;

• encryption or decryption and message authentication codes, leveraging a
secret key used in conjunction with a block cipher or a hash function;

• asymmetric encryption, key decapsulation mechanisms, digital signature
generation, leveraging a private key, as part of a public/private key pair.

Side-channel analysis is, therefore, a real threat that can compromise the secu-
rity of embedded systems. This threat can be viewed from two angles:

Offensive: devices which actually get hacked by side-channel analysis. Those
can be tracked, for instance, leveraging some common vulnerabilities and
exposures (CVEs), such as TPM-fail [MSEH20] (CVE-2019-11090), Min-
erva [JSSS20] (including CVE-2019-15809, CVE-2019-13627, CVE-2019-
13627, CVE-2019-13629, CVE-2019-14318), CacheOut [vSMK+21] (CVE-
2020-0549), Platypus [LKO+21] (CVE-2020-8694, CVE-2020-8695), or so-
called Hertzbleed [WPH+22] (CVE-2022-23823). Note that these CVEs
concern mostly attacks which require little or no laboratory equipments.
Indeed, attacks which assume too much on the execution environment are
not considered as eligible under CVE collection rules; thus the list of CVEs
above concern only attacks that can be perpetrated from the remote or
leveraging measurement apparati already embedded in computers (such
as timers, voltage/power control equipment, etc.)

Defensive: inclusion of side-channel analysis within security referentials. This
includes common weakness enumerations (CWEs) (e.g., CWE-1300 [MIT21])
and common criteria [Con13] for instance, where the threat is listed in a
generic manner as T.Leakage_Inherent (line 82 page 25 of BSI-CC-PP-
0084-2014 [Eur14]) and then further refined in some application docu-
ments, such as JIL [Joi20, §5.5].

Attackers may have multiple objectives:

• use of a device without paying for the subscription normally required to
operate it;

• modify a device to implement more or different functionalities – or worse,
to conceal stealthy backdoors;

• performing a step towards obtaining illegitimate access to debarked data
(e.g. user lists, biometric data, credit card numbers, etc.).
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From the defender’s perspective, the goal is to rate as precisely as possible
the threat. This allows, from the security prescriber standpoint, to decide the
amount of efforts that will be required from the implementor. This entails some
security verification schemes, such as:

• private methods, that are aimed at confidentially (pen)testing the devices
security;

• public methods, such as certification approach. In such case, standard
evaluation methods are defined and applied. One emblematic example is
the so-called “Common Criteria” (CC [Con13]), which are based on an
international standard (namely ISO/IEC 15408:2022). The goal of a CC
evaluation is to determine the assurance level of the security of a given
product. This book aims at providing sound metrics that yield practical
measurement of a product security.

1.6.2 Security Evaluations
From the attacker’s perspective, the goal is to devise the best attack, that
optimizes the success rate or the guessing entropy (metrics defined in [SMY09]).
There are different contexts, namely supervised and unsupervised. The attacks
also depend on the scale of measurement, and of the apriori knowledge on the
Target Of Evaluation (TOE).

However, from the defender’s perspective, the natural question is about nor-
mative “vulnerability assessment”. Security quotations can be expressed in terms
of various factors:

• elapsed time;

• expertise;

• knowledge of target of evaluation (TOE);

• window of opportunity (which include the use of open devices or devices
with known secrets);

• equipment.

1.6.3 Notations and Terminologies
Throughout this book, we use the following notations.

Calligraphic letters such as X denote sets or linear codes; uppercase letters
such as X denote random variables taking values in the corresponding set; low-
ercase letters such as x denote realizations of the random variable. If necessary,
vectors or matrices are written in bold characters while in plain if there is no
ambiguity from the context.

We write K = Fp` as the finite field of order p` for prime number p and
positive integer `. The case p = 2 is for bit-oriented symmetrical algorithms,
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while p > 2 is more amenable to asymmetric cryptography, which leverages
prime fields as underlying structures. In the rest of this book, we shall, without
loss of generality, focus on binary fields where p = 2. Then ` represents the
bit-length of the corresponding variable in the field F2` .

In the context of side-channel analysis, we let X 2 K be the sensitive variable
that depends on a certain secret key chunk (a.k.a. subkey) K 2 K and let T 2 K
be the correspoding known text chunk (either plaintext or ciphertext). For
instance, X =  f (T + K) can be the output of some cryptographic operation
 f in a block cipher where + denote bitwise exclusive or (XOR) or modulo
2 addition. In the case of the AES, we may put  f = S where S denotes a
substitution box (Sbox).

We let Y 2 R denote the noisy leakage under a leakage function �f (·) and
with certain noise5 Z 2 R. Taking the commonly assumed additive white Gaus-
sian noise (AWGN) as an example, one has Y = f(K+T )+Z where f = �f � f

and where Z ⇠ N (0,�2) is Gaussian with standard deviation �.
The adversary employs a side-channel distinguisher � to guess the subkey

used in the cryptographic implementation by exploiting the noisy leakage Y and
the known-text T . The “best” key guess, denoted as bK 2 K, is the candidate
with the maximum distinguishing score. The above setting can be viewed as a
communication channel as shown in Fig. 1.3, which is adapted from [HRG14b].
For multiple side-channel measures (a.k.a. traces) are acquired, the above no-

Crypto Channel Attack
K X Y bK

T Z T

Figure 1.3: Side-channel analysis seen as a communication channel.

tations are updated accordingly in bold face.
The above communication channel view of side-channel analysis can be ex-

tended in the presence of side-channel countermeasures like masking schemes.
Masking splits the sensitive variable into multiple shares, and then perform op-
erations share by share. We let M 2 Km denote the random masks and X 2 Kn

denote the masked sharing with n shares. The essential parameter of a masking
scheme is its security order t, which means that an adversary cannot obtain any
information about the sensitive variable with side-channel leaks from at most t
shares. Considering additive masking as an example, the sensitive variable X
is split into n shares Xi such that X = X1 ? X2 ? · · · ? Xn, where the group
(field) operator ? can be initialized as the exclusive OR (a.k.a. XOR) or the
modular addition. In this case, the security order is t  m = n � 1. In this
situation, we usually let X2, . . . , Xn denote random masks that are generated
uniformly over K, and let X1 be the masked variable computed from the for-
mula X1 = X ?X2 ? · · · ?Xn. The extended communication channel viewpoint

5In this book, we use the letter Z (which looks like a transposed N) to denote noise.
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is depicted in Fig. 1.4 (adapted from [CLGR22a]).

Crypto Masking Channel Attack
K X X Y bK

T M Z T

Figure 1.4: Side-channel analysis seen as a communication channel in the pres-
ence of masking countermeasure.

We mention that other side-channel countermeasures like shuffling [CS21a]
can be encompassed straightforwardly in Fig. 1.4. Furthermore, the scope of
analyses captured in Fig. 1.3 and 1.4 can be extended beyond physical side-
channel analyses (e.g., web search engine [SSH+14] or timing attacks [dCGRJ16]).

We shall specify the other notations needed in the course of this book, to
avoid tedious enumeration in this section.

1.7 Side-Channel Analyses Performance Criteria

The side-channels can be exploited by leveraging different key extraction strate-
gies. For instance, the key can be recovered bit by bit, or by chunks (say ` bits
by ` bits). The global key is eventually restored by divide-and-conquer.

The performances of the key ranking carried out by the adversary can be
measured via three classical figures of merits:

1. the success rate (SR) or success probability Ps,

2. the success rate of order o (SRo, success rate in o-trials) Ps,o [SMY09],
and

3. the guessing entropy (GE) [Mas94].

We follow the framework set up in [SMY09] and [IUH22, § 2.3] and express
these metrics in terms of the a posteriori rank of the key hypothesis given the
side-information.

1.8 Overview of the Content

At a high level, the contents of this book are divided into two parts: attacks and
evaluations, with the exception of a few preliminaries summarized in Chap. 2.
In Part I, we detail various attacks in Chap. 3 and 4 against unprotected and
protected cryptographic implementations, respectively. In Part II, we start with
the information-theoretic evaluations in Chap. 5, then move to the combination
with coding theory to provide a full spectrum analysis on code-based masking
in Chap. 6, and at last, we bridge the evaluations with attacks by presenting
bounds on the probability to success in the worst-case scenarios in Chap. 7.
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The main content of each chapter are summarized as follows.
In Chap. 3, we present attacks with various side-channel distinguishers against

unprotected devices. The representative attacks are the optimal distinguisher
based on the maximum-likelihood (ML) principle, correlation power analysis
(CPA), mutual information analysis (MIA), and Kolmogorov-Smirnov analysis
(KSA). In particular, we exemplify the scenarios in which CPA or MIA can be
optimal under different noise assumptions. Moreover, we also present how to ap-
ply ML-based attacks with high dimension measurements, or in the multivariate
context.

In Chap. 4, we continue the investigation of attacks against protected crypto-
graphic implementations, especially in the presence of masking. The first one is
the expectation-maximization (EM) based attack in the context of non-profiling
attacks, especially in comparison with the second-order CPA (2O-CPA). Next,
we present formally the higher-order optimal distinguisher (HOOD), which is
again an ML-based approach. At last, we provide a Taylor expansion of ML at-
tacks in order to deal with many masks in cryptographic implementations with
higher-order masking.

In Chap. 5, we focus on the information-theoretic evaluations by presenting
the interclass information analysis (IIA) in comparison with MIA. Next, we
aim to bridge the distribution-based analyses and statistical moments-based
analyses, the main idea lies in the cumulant expansion of mutual information
(MI) at higher orders. We also apply this theoretical link in the analysis of
higher-order maskings. At last, we introduce the ↵-information theory and show
how it can be applied for upper bounding the success rate of any side-channel
attacks.

In Chap. 6, we present a coding-theoretic formalization of various masking
schemes, and essentially unifies the representation of these schemes under the
so-called code-based masking (CBM) paradigm. On the basis of this unified
formalization, we then propose a framework for quantifying the information
leakage of CBM by using mutual information and signal-to-noise (SNR) as the
leakage metrics. Interestingly, we build a formal connection between these two
metrics with coding-theoretic properties of the underlying linear codes in CBM.
As an important output, we define the optimal linear code for CBM and demon-
strate the positive impacts on enhancing inner product masking and SSS-based
polynomial masking schemes.

In Chap. 7, we aim to build a formal connection between various attacks
and information-theoretic metrics. The main output is to provide some generic
information-theoretic bounds that apply to any side-channel attacks. In particu-
lar, we present generic bounds based on mutual information and ↵-information
for both unprotected and protected cryptographic devices. At last, we com-
plete the information leakage quantification of CBM by providing attack-based
evaluation results.
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