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Abstract—We establish the sample complexity of Approximate
Hypothesis Testing (AHT) where—unlike in classical hypothesis
testing—we need only approximate the hypothesis governing the
observed samples rather than recover it exactly.

We show that the AHT sample complexity scales inversely with
the multivariate Bhatthacharyya distance evaluated on a “maxi-
mally confusable” subset of hypotheses that is characterized by
the chosen distance measure and approximation accuracy.

Index terms—hypothesis testing, sample complexity, learning,
Bhattacharyya distance, Hellinger distance.

I. Introduction

In Approximate Hypothesis Testing, we seek to estimate an
unknown distribution (hypothesis) based on observed samples.
Unlike in classical hypothesis testing, the estimate need not be
exact, but merely “close” to the distribution that generates the
observed samples.

Concretely, we are given 𝑛 samples 𝑿 = (𝑋1, …, 𝑋𝑛) that
are independent and identically distributed (IID) according to
some 𝑃  residing in a predefined finite hypothesis class ℋ ⊆
𝒫(𝒳), where 𝒫(𝒳) denotes the set of probability distributions
on 𝒳. Based on the observed samples 𝑿, we seek an estimate 
𝑃  that is 𝜀-close to 𝑃  as measured by a distance¹

¹A distance 𝑑(⋅, ⋅) is a pseudometric [1, p. 119] that need not satisfy the
triangle inequality, i.e., 𝑑(𝑃 , 𝑄) = 𝑑(𝑄, 𝑃) ≥ 0 with equality if 𝑃 = 𝑄.

𝑑 : 𝒫(𝒳) × 𝒫(𝒳) → ℝ≥0. (1)
We consider a minimax setting where, for any sample-generat-
ing distribution 𝑃 , some 𝑃  that is 𝜀-close must be found with
probability at least 1 − 𝛿. Our goal is to find the smallest 𝑛—
i.e., the smallest number of samples—permitting us to do so.
We refer to this 𝑛 as the AHT sample complexity and denote
it 𝑛AHT

𝜀,𝛿 (ℋ, 𝑑). To determine the AHT sample complexity, we
proceed in two steps:

Step 1 We state AHT in terms of yet another hypothesis test-
ing problem: Clustered Hypothesis Testing (CHT). Here,
each hypothesis 𝑃 ∈ ℋ is assigned to at least one cluster
𝒞 ∈ ℭ, with ℭ ⊆ 2ℋ. Based on the observed samples 𝑿,
we seek to find a cluster 𝒞 containing the data-generating
distribution 𝑃 . We refer to the smallest number of samples

permitting us to succeed with probability at least 1 − 𝛿 as
the CHT sample complexity, denoted 𝑛CHT

𝛿 (ℋ, ℭ). By a
judicious construction of the cluster family ℭ—based on
the distance 𝑑(⋅, ⋅) and desired accuracy 𝜀—we show that

𝑛AHT
𝜀,𝛿 (ℋ, 𝑑) = 𝑛CHT

𝛿 (ℋ, ℭ). (2)

Step 2 We solve the CHT problem by meticulously rejecting
distributions that did not generate the observed samples.
We show that it is a worst-case instance in the Rejection
Hypothesis Testing (RHT) problem—corresponding to a
“maximally confusable” subset of hypotheses 𝒟 ⊆ ℋ—
that characterizes 𝑛CHT

𝛿 (ℋ, ℭ) (and so 𝑛AHT
𝜀,𝛿 (ℋ, 𝑑)).

Step 1 and Step 2 are presented in Section III and Section IV,
respectively. Together, they yield our main result.

Theorem 1. When the hypothesis classes ℋ is finite, the AHT
sample complexity 𝑛AHT

𝜀,𝛿 (ℋ, 𝑑) can be bounded as follows:

𝑛AHT
𝜀,𝛿 (ℋ, 𝑑) ≥

ln(1/𝛿) − ln|ℭ| − 1
|ℭ| ⋅ min

𝒟∈𝔇
𝐷B(𝒟)

, (3.a)

𝑛AHT
𝜀,𝛿 (ℋ, 𝑑) ≤

ln(1/𝛿) + ln|ℋ|
min
𝒟∈𝔇

𝐷B(𝒟)
. (3.b)

Here, ℭ denotes the family of clusters pertaining to the CHT
problem (Definition 1); 𝔇 ⊆ 2ℋ is the family of “confusable”
hypotheses pertaining to the RHT problem (Definition 2); and

𝐷B : 2𝒫(𝒳) → ℝ≥0 ∪ {∞}

𝒫 ↦ − ln(∫
𝑥∈𝒳

|𝒫|√ ∏
𝑃∈𝒫

d𝑃(𝑥))
(4)

denotes the multivariate Bhatthacharyya distance of which we
list some properties following (11) ahead.

Our result highlights the principal dependancy of 𝑛AHT
𝜀,𝛿 (ℋ, 𝑑)

on min𝒟∈𝔇 𝐷B(𝒟), i.e., on a subset of hypotheses that can be
easily confused with one another, and so require many samples
to be told apart reliably.

Due to their intricate dependence on the hypothesis class ℋ,
the distance 𝑑(⋅, ⋅), and the approximation accuracy 𝜀, further
assumptions are needed to simplify the bounds in (3). We refer
to Section V for an edifying example.
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II. Problem Statement

Let 𝑿 = (𝑋1, …, 𝑋𝑛) be a sequence of samples that are IID
according to a distribution 𝑃  only known to reside in some fi-
nite hypothesis class ℋ ⊆ 𝒫(𝒳). Our aim is to determine the
smallest number of samples 𝑛 required to produce, given the
samples 𝑿, an approximation 𝑃  of 𝑃  satisfying

𝑑(𝑃 , 𝑃) ≤ 𝜀 (5)

for some distance 𝑑(⋅, ⋅) as specified in (1). Since we consider
a minimax problem setting, we need enough samples such that
an approximation 𝑃  satisfying (5) exist for every 𝑃 ∈ ℋ. The
(minimax) AHT sample complexity 𝑛AHT

𝜀,𝛿 (ℋ, 𝑑) is therefore
formally defined as

𝑛AHT
𝜀,𝛿 (ℋ, 𝑑)

≔ inf
𝑛

{inf
�̂�

max
𝑃∈ℋ

ℙ
𝑿∼ IID 𝑃

[𝑑(𝑃(𝑿), 𝑃) > 𝜀] ≤ 𝛿},
(6)

where the inner infimum is over estimators 𝑃 : 𝒳𝑛 → 𝒫(𝒳),
and where we assume that the problem parameters ℋ, 𝑑(⋅, ⋅),
and 𝜀 guarantee the existence of 𝑛AHT

𝜀,𝛿 (ℋ, 𝑑).
Rather than studying AHT directly (6), we shall consider the

following surrogate problem.

III. Clustered Hypothesis Testing

In the Clustered Hypothesis Testing (CHT) problem, each
𝑃 ∈ ℋ is assigned to at least one cluster 𝒞 ∈ ℭ ⊆ 2ℋ, with
2ℋ denoting the power set of ℋ. The aim of the problem is
to find, based on the observed samples 𝑿, any one cluster 𝒞
containing the sample-generating distribution 𝑃 . The smallest
number of samples 𝑛 whereby we succeed with probability at
least 1 − 𝛿 is referred to as the CHT sample complexity and
denoted 𝑛CHT

𝛿 (ℋ, ℭ),
𝑛CHT

𝛿 (ℋ, ℭ)

≔ inf
𝑛

{inf̂
𝐶

max
𝑃∈ℋ

ℙ
𝑿∼ IID 𝑃

[𝑃 ∉ 𝐶(𝑿)] ≤ 𝛿},
(7)

where the inner infimum is over estimators 𝒞 : 𝒳𝑛 → ℭ, and
where the problem parameters are yet again assumed to guar-
antee the existence of 𝑛CHT

𝛿 (ℋ, ℭ).

Example 1. Depicted in Fig. 1 are a hypothesis class ℋ and
cluster family ℭ. Note that ℭ does not partition ℋ, as 𝑃1, 𝑃2,
and 𝑃3 are each assigned to two clusters.

Remark 1. Composite Hypothesis Testing [2, Chapter 16.4] is
a well-known instance of CHT where ℋ is partitioned into two
disjoint clusters; we derive its sample complexity as a straight-
forward collorary of Theorem 1 in Section V.

The role of CHT as a surrogate for AHT can be motivated by a
cluster family ℭ𝜀 comprising all 𝜀-balls ℬ𝜀(𝑄) on ℋ,

𝒞III

𝒞II
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𝒞IV
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𝑃3
𝑃4

𝑃5

Fig. 1:  Hypothesis class ℋ = {𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5}
and cluster family ℭ = {𝒞I, 𝒞II, 𝒞III, 𝒞IV}.

ℬ𝜀(𝑄) ≔ {𝑃 ∈ ℋ : 𝑑(𝑃 , 𝑄) ≤ 𝜀}, (8.a)
ℭ𝜀 ≔ {ℬ𝜀(𝑄) : 𝑄 ∈ 𝒫(𝒳)}. (8.b)

Note that ℭ𝜀 may contain clusters 𝒞 and 𝒞′ such that 𝒞 ⊂ 𝒞′.
Therefore, rather than considering ℭ𝜀 directly, we shall find it
more convenient to consider only its ⊆-maximal elements.

Definition 1 ((𝑑, 𝜀)-Canonical Clustering). A cluster family ℭ
on ℋ is (𝑑, 𝜀)-canonical if it contains all 𝒞 ∈ ℭ𝜀 (8.b) that are
maximal w.r.t. to the ⊆-preorder² and no other 𝒞 ∈ ℭ𝜀.

²𝜔 ∈ Ω is maximal w.r.t. to a preorder ≤ if for no other 𝜔′ ∈ Ω, 𝜔 ≤ 𝜔′;
cf. [3, p. 121].

With Definition 1 at hand, we may now state the raison d’être
of the CHT problem.

Theorem 2. Let ℭ be a (𝑑, 𝜀)-canonical cluster family. Then,
𝑛AHT

𝜀,𝛿 (ℋ, 𝑑) = 𝑛CHT
𝛿 (ℋ, ℭ). (9)

Proof (Sketch). We establish Theorem 2 by reducing AHT to
CHT and vice-versa. For the former direction, consider the ball
ℬ𝜀(𝑃), where 𝑃  is the output of an algorithm solving the AHT
problem. By (8) and Definition 1, 𝑃  identifies a cluster 𝒞 ∈ ℭ
guaranteed to contain the sample-generating distribution 𝑃  if
(5) is satisfied. For the latter direction (reducing AHT to CHT)
consider a cluster 𝒞 as the output of an algorithm solving the
CHT problem. Reversing the preceding argument, 𝒞 identifies
some 𝑃  satisfying (5) if the sample-generating distribution 𝑃
lies in 𝒞. ∎

To solve the CHT problem and characterize 𝑛CHT
𝛿 (ℋ, ℭ) (and,

by Theorem 2, 𝑛AHT
𝜀,𝛿 (ℋ, 𝑑)) we shall take one last detour.

IV. Rejection Hypothesis Testing

The aim in Rejection Hypothesis Testing (RHT) is to find,
based on the observed samples 𝑿, some 𝑃 ∈ ℋ that did not
generate 𝑿.

To motivate RHT in the context of CHT, we shall focus for
a moment on hypotheses {𝑃1, 𝑃2, 𝑃3} of Example 1. Suppose
that 𝑃 = 𝑃1: by rejecting 𝑃2, we assert that 𝑃 ∈ 𝒞III, whereas,
by rejecting 𝑃3, we assert that 𝑃 ∈ 𝒞I. In either case, we have
identified a cluster containing 𝑃 .



We generalize this observation by introducing the notion of
delta sets, which capture the equivalence between rejecting a
hypothesis and identifying a cluster.

Definition 2 (Delta Sets). The delta sets 𝔇 (defined for a clus-
ter family ℭ on ℋ) consist of all 𝒟 ∈ 2ℋ∖ℭ𝜀 that are minimal
w.r.t. the ⊆-preorder.

Continuing Example 1, we list the delta sets 𝔇 corresponding
to the cluster family ℭ in Table I below; 𝐷1, 𝐷2, 𝐷3 ∈ 𝔇 are
additionally highlighted in Fig. 2. Note that removing any 𝑃
from 𝒟 ∈ 𝔇 identifies a cluster 𝒞 ∈ ℭ, as desired.

Table I: Delta sets 𝔇 corresponding to
the cluster family ℭ of Example 1.

𝑖 I II III IV V VI VII

𝒟𝒾
𝑃1

𝑃2, 𝑃3

𝑃2

𝑃5

𝑃3

𝑃4

𝑃2

𝑃4

𝑃3

𝑃5

𝑃1

𝑃4

𝑃1

𝑃5

𝑃1

𝑃2

𝑃3

𝑃4

𝑃5

𝒟I
𝒟III

𝒟II

Fig. 2: Highlighted delta sets {𝒟I, 𝒟II, 𝒟III} ⊂ 𝔇.

We formally link RHT and CHT in the theorem below.

Theorem 3. Assume that the sample-generating distribution 𝑃
lies in a delta set 𝐷 ∈ 𝔇. Then, CHT and RHT are reducible to
one another.

Proof (Sketch). Reducing RHT to CHT: Consider 𝒞, the output
of an algorithm for the CHT problem. By Definition 2, 𝒟 ∖ 𝒞
contains a 𝑃  that did not generate 𝑿 if 𝑃 ∈ 𝒞.

Reducing CHT to RHT: Consider 𝑃 ∈ 𝒟, a distribution re-
jected by an algorithm for the RHT problem. By Definition 2, 
𝒟 ∖ {𝑃} ⊆ 𝒞 for some cluster 𝒞 ∈ ℭ which is guaranteed to
contain the distribution 𝑃  that generated 𝑿 if 𝑃  did not. ∎

The main consequence of Theorem 3, which we state without
proof for brevity, is a characterization of 𝑛CHT

𝛿 (ℋ, ℭ) via the
multivariate Bhatthacharyya distance when ℋ is restricted to
a delta set 𝒟 ∈ 𝔇,

Lemma 1. When the samples 𝑿 are generated according to a
distribution 𝑃  from a delta set 𝒟 (defined w.r.t. (ℋ, ℭ)),

𝑛CHT
𝛿 (ℋ, ℭ) ∝

ln(1/𝛿)
𝐷𝐵(𝒟)

. (10)

Theorem 1 follows from Lemma 1 by invoking Theorem 2 and
showing that it is the sample complexity on a worst-case delta
set that characterizes 𝑛CHT

𝛿 (ℋ, ℭ) and, in turn, 𝑛AHT
𝜀,𝛿 (ℋ, 𝑑).

To understand the principal dependence of 𝑛AHT
𝜀,𝛿 (ℋ, 𝑑) on

the (inverse) multivariate Bhatthacharyya distance 𝐷B(𝒫), we
shall briefly expand on the latter. To that end, we first express
𝐷B(𝒫) as − ln(𝐵(𝒫)), with

𝐵 : 2𝒫(𝒳) → ℝ≥0

𝒫 ↦ ∫
𝑥∈Ω

|𝒫|√ ∏
𝑃∈𝒫

d𝑃(𝑥) (11)

denoting the multivariate Bhatthacharyya coefficient. We note
that 𝐵(𝒫) satisfies various properties [4] that make it a good
similarity measure for distributions: 1. lies between zero and
one; 2. equals zero iff some 𝑃 , 𝑃 ′ ∈ 𝒫 have disjoint support;
3. equals one iff all 𝑃 ∈ 𝒫 are equal; 4. anti-monotonic in 𝒫,
𝒫 ⊆ 𝒫′ ⇒ 𝐵(𝒫) ≥ 𝐵(𝒫′).

To the best of our knowledge and search efforts, this work
presents the first operational interpretation of the multivariate
Bhatthacharyya coefficient.

V. Composite Hypothesis Testing
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𝒟IV𝒟I
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Fig. 3: Disjoint clusters 𝒞I = {𝑃1, 𝑃2} and 𝒞II = {𝑃3, 𝑃4}
along with their delta sets 𝒟1, 𝒟2, 𝒟3, and 𝒟4.

When ℭ consists of two disjoint clusters 𝒞1 and 𝒞2, the CHT
problem becomes the Composite Hypothesis Testing problem
as introduced in Remark 1. The setup is exemplified in Fig. 3
above. We show how to derive the sample complexity of this
problem by means of Theorem 1.

With 𝑑(𝑃 , 𝑃 ′) = 0 when {𝑃 , 𝑃 ′} = {𝑃1, 𝑃2} or {𝑃3, 𝑃4},
and ∞ otherwise, we see that irrespective of 𝜀 > 0, Theorem 1
asserts that 𝑛AHT

𝜀,𝛿 (ℋ, 𝑑) scales inversely with
min

𝑃∈{𝑃1,𝑃2},𝑃 ′∈{𝑃3,𝑃4}
𝐷B({𝑃 , 𝑃 ′}), (12)

where the minimization encompasses all delta sets. Observing
that the squared Hellinger distance ℎ2(𝑃 , 𝑃 ′) can be expressed
as 1 − 𝐵(𝑃 , 𝑃 ′), we have for ℎ2(𝑃 , 𝑃 ′) ≤ 1

2  (cf. [2] and [5]),
1
2
ℎ2(𝑃 , 𝑃 ′) ≤ 𝐷B({𝑃 , 𝑃 ′}) ≤ ℎ2(𝑃 , 𝑃 ′). (13)

Theorem 1 thus recovers the sample complexity of Composite
Hypothesis Testing [2, Chapter 32.2.1]:

𝑛Composite HT ∝
ln(1/𝛿)

min
𝑃∈𝒞1,𝑃 ′∈𝒞2

ℎ2(𝑃 , 𝑃 ′)
. (14)
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