Workshop 10

March 31, 2014

Topics: Sequences and Series

- 1. Explicit Sequences Determine if the following sequences diverge or converge as $n \to \infty$. If they converge, give the limit (with proof!). If they diverge, prove that they diverge.
 - (a) $a_n = \frac{3n^2 1}{10n + 5n^2}$
 - (b) $(-1)^n$
 - (c) $\frac{(-1)^n}{n}$
 - (d) $\frac{n^n}{n!}$

 - (e) $\frac{2^n}{n!}$
 - (f) $\frac{n+47}{\sqrt{n^2+3n}}$
 - (g) $\sqrt{n+47} \sqrt{n}$
- 2. Recursive Sequences. Use the "Bounded Monotic Theorem" to prove convergence. You will need to use mathematical induction to do this.
 - (a) $a_1 = 1$ and $a_{n+1} = 3 1/a_n$ for $n \ge 1$. Prove that $1 \le a_n < 3$ for all n and that the sequence is increasing. Find $\lim_{n\to\infty} a_n$.
 - (b) $a_1 = \sqrt{2}$ and $a_n = \sqrt{2 + a_{n-1}}$. Prove that $a_n \leq 3$, that it is increasing and converges. Find $\lim_{n\to\infty} a_n$.
- 3. Series. Using basic properties, sum of geometric series and comparison test, see if the series converges of diverges.

Geometric Series:
$$\sum_{n=0}^{\infty} \frac{1}{r^n} = \frac{1}{1-1/r}.$$

(a) $\sum_{n=1}^{\infty} 1/2$

Calculate the following Geometric Series:

- (b) $\sum_{n=0}^{\infty} e^{1-2n}$. Calculate the limit sum.
- (c) $\sum_{n=1}^{\infty} \frac{2^{n-1}}{3^{2n+1}}$. Calculate the limit sum. Use comparison
- (d) $\sum_{n=1}^{\infty} \frac{2+n}{n^3}$
- (e) $\sum_{n=1}^{\infty} \frac{2}{n^2+1}$
- (f) $\sum_{n=1}^{\infty} \frac{1+n}{n+n^{3/2}}$

- (g) $\sum_{n=1}^{\infty} \frac{1+n}{3^n}$. (h) $\sum_{n=1}^{\infty} 1/\ln(2+2n)$

- 4. Series. Using basic properties, alternating series, comparison, ratio tests, see if it converges or diverges
 - Alternating Test: If $\sum_{n=1}^{\infty} (-1)^n a_n$ is such that $\lim_{n\to\infty} a_n = 0$ and $0 \le a_{n+1} \le a_n$ then $\sum_{n=1}^{\infty} (-1)^n a_n$ converges.
 - Ratio test: If $\sum_{n=1}^{\infty} a_n$ is such that

$$\lim_{\infty} \frac{a_{n+1}}{a_n} = L$$

The ratio test states that:

if L < 1 then the series converges absolutely;

if L > 1 then the series does not converge;

if L = 1 or the limit fails to exist, then the test is inconclusive, because there exist both convergent and divergent series that satisfy this case.

• Root test: If $\sum_{n=1}^{\infty} a_n$ is such that

$$\lim_{\infty} \sqrt[n]{a_n} = C$$

The ratio test states that:

if C < 1 then the series converges absolutely;

if C > 1 then the series does not converge;

if C = 1 or the limit fails to exist, then the test is inconclusive, because there exist both convergent and divergent series that satisfy this case.

- (a) Apply Alternating test: $\sum_{n=1}^{\infty} \frac{(-1)^n}{\ln(2n)}$
- (b) Apply Alternating test or Comparison? $\sum_{n=1}^{\infty} \frac{(-1)^{2n+1}}{n}$
- (c) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{1/10}}$
- (d) Apply the Ratio Test: $\sum_{n=1}^{\infty} \frac{2^{n-1}}{3^{2n+1}}$. (Was the Ratio test necessary here?)
- (e) $\sum_{n=1}^{\infty} \frac{2^n}{n!}$
- (f) $\sum_{n=1}^{\infty} \frac{n^4}{(2n)!}$
- (g) $\sum_{n=1}^{\infty} \frac{3^{n^3}}{n!}$
- (h) **Try Root Test:** $\sum \frac{(-3n)^n}{(2n\sqrt{n+2})^n}$
- (i) $\sum_{n=1}^{\infty} (1+1/n)^n$. **TIP:** $\lim_{n\to\infty} (1+1/n)^n = e$.
- (j) $\sum_{n=1}^{\infty} (1+1/n)^{n^2}$