Workshop 7

March 7, 2014

Topics: polynomial division, partial fractions, trigonometric substitution, integration review

Practice exercises:

1. Polynomial Division and Partial Fractions We use these techniques to integrate ratios of polynomials

$$\frac{f(x)}{g(x)} = \frac{f_n x^n + f_{n-1} x^{n-1} + \dots + f_0}{g_m x^m + g_{m-1} x^{m-1} + \dots + g_0}$$

Firstly we check if we need to use long division by asking is $\deg(f) \geq \deg(g)$, if it is we must use long division, if not we can skip straight to partial fractions.

Integrate the following using these techniques.

(a)
$$\frac{x+7}{x^2-x-6}$$
.

(b)
$$\frac{x^3+4x^2+3}{x^2+2x+1}$$
.

$$(f) \ \frac{1}{x^2-4}$$

(c)
$$\frac{x^2+2x+1}{x^2+2x+1}$$

(g)
$$\frac{x^4 - x^3 - x - 1}{x^3 - x^2}$$

$$(d) \frac{x}{x^2 - 4x - 1}$$

(f)
$$\frac{x^2+2x+1}{x^2-4}$$

(g) $\frac{x^4-x^3-x-1}{x^3-x^2}$
(h) $\frac{2x^3-4x-8}{(x^2-x)(x^2+4)}$

- (a) $\frac{x+7}{x^2-x-6} = \frac{2}{x-3} \frac{1}{x+2}$ so answer is $2\ln(x-3) \ln(x+2) + C$
- (b) Long division gives us that $\frac{x^3+4x^2+3}{x^2+2x+1}=x+2+\frac{-5x+1}{x^2+2x+1}=x+2+\frac{-5}{x+1}+\frac{6}{(x+1)^2}$ which integrates to $x^2/2+2x-5\ln(x+1)-6/(x+1)$
- (c) partial fraction decomp = 2/(x+2) 1/(x-3) which integrates to $2\ln(x+2) \ln(x-3)$
- (d) partial fraction decomp = $\frac{5}{6(x-5)} + \frac{1}{6(x+1)}$ which integrates to $5/6\ln(x-5) + 1/6\ln(x+1)$
- (e) partial fraction decomp = $2/(x+1) 1/(x-1)^2$ which integrates to $2\ln(x+1) + 1/(x-1)$
- (f) partial fraction decomp = $1/4(\frac{1}{x-1} \frac{1}{x+2})$ which integrates to $1/4 \ln |\frac{x-2}{x+2}|$
- (g) long division = $x \frac{x+1}{x^2(x-1)}$ partial fraction decomp = $x + 2/x + 1/x^2 2/(x-1)$ which integrates to $x^2/2 + 2ln|x| 1/x 2\ln|x-1| + C$
- (h) partial fraction decomp = $2/x 2/(x-1) + (2x+4)/(x^2+4)$ which integrates to $2\ln(x)$ $2\ln(x-1) + \ln(x^2+4) + 2\arctan(x/2)$
- 2. Trigonometric substitution There is no trick here, it just takes lot's of practice! Integrate the following using trigonometric substitution.

1

(a)
$$\frac{1}{\sqrt{9-x^2}}$$
.

(b)
$$\frac{1}{x^2+25}$$

(c)
$$\frac{1}{x^2-4}$$

(d)
$$\frac{\sqrt{25x^2-4}}{x}$$

(e)
$$\frac{1}{x^4\sqrt{9-x^2}}$$

$$(f) \frac{x}{\sqrt{2x^2 - 4x - 7}}$$

(g)
$$e^{4x}\sqrt{1+e^{2x}}$$

(h)
$$\int_0^{1/6} \frac{x^5}{(36x^2+1)^{3/2}}$$

Solution:

(a)
$$x = 3\sin(u)$$
 give $\arcsin(x/3) + C$

(b)
$$x = 5 \tan(u)$$
 gives $1/5 \arctan(x/5) + C$

(c)
$$x = 2\sec(u)$$
 gives $\int (\sec^3(u) - \sec(u)) du$ Then integrating \sec^3 is example 8 section 6.2

(d)
$$x = 2/5 \sec(u)$$
 gives $\sqrt{25x^2 - 4} - 2 \arccos(2/5x)$

(e)
$$x = 3\sin(u)$$
, then after some simplifying we need to use $v = \cot(u)$ which gives us $\frac{(9-x^2)^{3/2}}{243x^3} - \frac{\sqrt{9-x^2}^{3/2}}{81x}$

(f) Complete the square to get the root looking like $\sqrt{2(x-1)^2-9}$ then $x=1+(3/\sqrt{2})\sec(u)$ gives us what we want:

$$1/\sqrt{2}\ln|\frac{\sqrt{2}(x-1)}{3} + \frac{\sqrt{2x^2 - 4x - 7}}{3}| + \frac{\sqrt{2x^2 - 4x - 7}}{2}$$

(g) This is a strange one! $e^x = \tan(u)$ gives us $1/5(1+e^{2x})^{5/2} - 1/3(1+e^{2x})^{3/2}$

(h)
$$x = 1/6\tan(u)$$
 and then $v = \cos(u)$ gives us $1/17496 - \frac{11\sqrt{2}}{279936}$

3. General Integration Techniques Just integrate, using any appropriate technique.

(a)
$$\int_0^{\pi} \sin^2(\theta) d\theta$$
.

(b)
$$\int_{1}^{3} \frac{\ln(2x)}{x^{2}} dx$$
.
(c) $\int e^{-2t} \cos t dt$

(c)
$$\int e^{-2t} \cos t \, dt$$

(d)
$$\int \frac{3x^3 - 17x^2 + 36x - 35}{x^2 - 4x + 4} dx$$

(e)
$$\int \tan^4(s) \sec^4(s) ds$$

(f)
$$\int \arcsin(x-1) dx$$

(g)
$$\int \sqrt{9 - 4x^2} \, dx$$

(h)
$$\int \frac{2x-1}{x^2-2x+10} \, dx$$

Solution:

- (a) Standard use of $\sin^2(u) = 1/2(1 \cos(2u))$ gives $\pi/2$
- (b) By parts $u = \ln(2x)$, $dv = 1/x^2$ gives $-\ln(6)/3 + \ln(2) 1/3 + 1$
- (c) Do by parts twice with $u = e^{-2t}$, $dv = \cos(t)$, and then the same except sin for cos, then we get a recursion which solves to give an answer of $1/5(e^{-2t}\sin(t) - 2e^{-2t}\cos(t))$
- (d) After division and partial fractionation $3x 5 + 4/(x 2) + 7/(x 2)^2$ integrates to $3/2x^2 4/(x 2) + 7/(x 2)^2$ $5x + 4 \ln |x - 2| + 7/(x - 2)$
- (e) $u = \tan(s)$ and using some trig identities gives you $\tan^5(s)/5 + \tan^7(s)/7$
- (f) This is a classic integration by parts (after the obvious substitution of u = x 1) to give $(x-1)\arcsin(x-1) + \sqrt{1-(x-1)^2}$
- (g) Trig substitution $x = 3/2\sin(u)$ gives the integral as $9/4\arcsin(2/3x) + 1/2x\sqrt{9-4x^2}$

(h) Complete the square on the bottom, then rewrite the top as 2(x-1)+1, this gives an answer of $\ln(x^2-2x+10)+1/3\arctan((x-1)/3)$