Workshop 9

March 22, 2014

Topics: Arc lengths, ODEs, Sequences

Practice exercises:

1. Arc Length

- (a) Calculate the length of $y = 2(x-1)^{\frac{3}{2}}$ for $1 \le x \le 5$
- (b) Calculate the length of $y = \frac{2}{3}(x^2 + 1)^{\frac{3}{2}}$ for $1 \le x \le 4$
- (c) Calculate the length of $y = \ln(\cos(x))$ for $0 \le x \le \frac{\pi}{4}$
- (d) Calculate the length of $y = \frac{x^3}{6} + \frac{1}{2x}$ for $1 \le x \le 3$

Solution:

- (a) $\int_{1}^{5} (9x-8)^{\frac{1}{2}} = \frac{2}{27} (37\sqrt{37}-1)$
- (b) $\int_{1}^{4} 2x^2 + 1dx = 45$

(c)
$$\int_0^{\frac{\pi}{4}} \sec x \, dx = \ln(\sqrt{2} + 1)$$

(d)
$$\frac{1}{2} \int_{1}^{3} x^{2} + x^{-2} dx = \frac{14}{3}$$

2. Seperable ODEs

(a)
$$\frac{dy}{dx} = x^2 y^2 + x^2$$

- (b) $\frac{dy}{dx} = 6y^2x$ with $y(1) = \frac{1}{25}$
- (c) $\frac{dy}{dx} = \frac{3x^2 + 4x 4}{2y 4}$ with y(1) = 3
- (d) $\frac{dy}{dx} = e^{-y}(2x-4)$ with y(5) = 0

Solution:

(a)
$$y = \tan(\frac{1}{3}x^3 + C)$$

(b) $y = \frac{1}{28-3x^2}$
(c) $y = 2 + \sqrt{x^3 + 2x^2 - 4x + 2}$

(d)
$$y = \ln(x^2 - 4x - 4)$$

3. Sequences Determine if the following sequences diverge or converge as $n \to \infty$. If they converge, give the limit (with proof!). If they diverge, prove that they diverge!

By proof I mean make sure you know which theorems you are using, or use an epsilon or two!

- (a) $a_n = \frac{3n^2 1}{10n + 5n^2}$
- (b) $(-1)^n$
- (c) $\frac{(-1)^n}{n}$
- (d) $\frac{n^n}{n!}$
- (e) $\frac{2^n}{n!}$
- (f) $\frac{n!}{\sqrt{2+2\pi}}$

(1)
$$\sqrt{n^2+3r}$$

(g)
$$\sqrt{n+47} - \sqrt{n}$$

Solution:

- (a) Converges to 3/5
- (b) Diverges by choosing $\epsilon = 1$
- (c) Converges to 0
- (d) Tends to ∞
- (e) Converges to 0
- (f) Tends to 1 (I believe)
- (g) Converges to 0