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In this session we will start with a review of the Quotient rule for derivatives. Then we move on to solving
some finite limits, check the existence of limits, limits of quocients of functions and finally applications of
the squeeze theorem for solving limits.

The quotient rule: Given two differentiable functions f(x) and g(x),

d

dx

[
f(x)

g(x)

]
=
f ′(x)g(x)− f(x)g′(x)

g(x)2
. (1)

Practice exercises:

1. Quotient rule. Find the derivatives of the following functions using the Quotient rule (1)

(a) F (x) = x/(1 + x).

(b) F (x) = x/ ln(x).

(c) F (x) = ex/x2.

(d) F (x) = tan(x).

(e) F (t) = t sin(t)/ log7(t).

(f) See if you can use the chain-rule and product rule to repeat the demonstration of the Quotient Rule
shown at the beginning of the tutorial.

2. Limit Laws. Solve the following limits using the Limit Laws of p.35 of the book.

(a) limx→2(x2 + 5)

(b) limx→0 3

(c) limx→0(tan(x)− sin(x))

(d) limx→0 x cos(x)

(e) limx→1
x2−5
x+3

(f) limx→π(x− π) sin(x/10) log(πx)

3. Existence of limits. For the following questions, if the limit exists, calculate it. If it doesn’t exist,
justify why not. Remember: A limit limx→a f(x) is said to exist if the left and right limits are the same
limx→a+ f(x) = L = limx→a− f(x) and they are not infinite.

(a) limx→∞(x− 3)

(b) limx→∞(x−x). Remember you CANNOT use the Limit Laws when the individual limits
do not exist.

(c) limx→∞ 10
Let

f(x) =


x if 0 ≤ x ≤ 1

1 if 1 < x ≤ 2

1− x if 2 < x.

1



(d) limx→1 f(x)

(e) limx→2 f(x)

(f) limx→∞ ex

(g) limx→0bxc+ x

(h) limx→1
x

|x|

4. Limits of Quotient of Functions.

lim
x→a

(
f(x)

g(x)

)
. (3)

We know from the Limit Laws that when the individual limits limx→a f(x) and limx→a g(x) exist, we
can divide one by the other to get (3). But what do we do when the quotient of their limits doesn’t
exist? Such as “0

0”? What to do when the individual limits do not exist? Let us figure this out through
examples

(a) limx→2
x2 − x− 2

x− 2
.

(b) limt→0
(−5 + t)2 − 25

t
.

(c) limx→2
x3 − x2 − 2x

x− 2
.

(d) limx→∞
5x

3x
.

(e) limx→∞
5x+ 1

3x− 1
.

(f) limx→∞
5x2 − 2x+ 1

3x2 − 3
.

(g) limx→0

√
9 + 2h− 3

h
.

5. The Squeeze Theorem. If `(x) ≤ f(x) ≤ u(x) when x is near a (except possibly at a) and

lim
x→a

`(x) = L = lim
x→a

u(x),

then
lim
x→a

`(x) ≤ lim
x→a

f(x) ≤ lim
x→a

u(x),

and the limit of f(x) is squeezed
L ≤ lim

x→a
f(x) ≤ L,

thus limx→a f(x) = L. Now try and apply this theorem to following problems, indicating the lower
function `(x) and the upper function u(x).

(a) limx→0 x sin 1
2x .

(b) limx→∞ 1/x sin(3πx).

(c) limx→0 x
1/3 (3− sin(3π/x)) .

(d) limx→8(x1/3 − 2) (x− bxc) .

(e) limx→0 sin(x) |x|x .

(f) limx→∞ e−x cos 3
πx .
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