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General Information

Today

JCMB 1501, 09:30-12:30

Mathematics revision class: A revision class on fundamental
Mathematics skills

JCMB 1501, 13:30-14:30

Mathematics assessment test I: A test of fundamental
Mathematics skills to identify students who should attend the
revision course and tutorials

Weeks 1 and 2

JCMB 1501
Revision course tutorials (MRev)

Wednesday 23/9 15:00-17:00
Thursday 24/9 16:00-18:00
Wednesday 30/9 15:00-17:00
Thursday 1/10 16:00-18:00

Mathematics assessment test II
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Functions



Functions: Logarithms

The logarithm logb(x) for a base b and a number x is the answer
to: What power should we raise b so that the result is x? That is

x = by ⇔ y = logb(x).

The logarithm logb(x) is the inverse of taking b to the power of x .
This means that y = logb(by ) and y = b(logb y)

Multiplication and division identities include

logb(xy) = logb x + logb y bx+y = bxby

logb(x/y) = logb x − logb y bx−y = bx/by

logb x
n = n logb x (bx)n = bxn

Natural logarithms are where the base b = e, where we
define loge x := ln x

Exercise

Simplify ln(y) = 4 ln(2)− 1
2 ln(25),

y = 16/5

.
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Functions: Linear, Quadratic and Roots

Linear functions are in the form f (x) = mx + c , where m
and c are constants. Example: f (x) = 3x − 2.
Quadratic functions take the form f (x) = ax2 + bx + c ,
where a 6= 0, b and c are constants. Ex: f (x) = 5x2 − 2x + 1.
The roots are the solutions to f (x) = 0.
Three techniques are commonly used:

Factorize into two brackets by inspection, e.g.,
x2 − 2αx + α2 = (x − α)(x − α).

Find the roots using x =
−b ±

√
b2 − 4ac

2a

Complete the square, so f (x) = a

(
x +

b

2a

)2

+
4ac − b2

4a2

Exercises

Find the roots of x2 + 7x − 8 = 0.

(x − 1)(x + 8) = 0.

Find the solution set for x2 − 3x − 4 ≥ 0.

(x − 4)(x + 1) ≥ 0, x ∈ (−∞,−1] ∪ [4,∞)
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Calculus
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Calculus: Derivatives

Derivative

A function f (x) is said to have derivative at x , written f ′(x), if the

limit of
f (x + h)− f (x)

h
exists as h→ 0. f ′(x) is defined as

f ′(x) = lim
h→0

f (x + h)− f (x)

h

Derivatives of common functions

f (x) a x xn ex ax ln x sin x cos x

f ′(x) 0 1 nxn−1 ex ax ln a 1/x cos x − sin x
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Calculus: Derivative rules

Constant Factor Rule: If f (x) = cu(x), where c constant, then

f ′(x) = cu′(x)

Sum rule: If f (x) = u(x) + v(x), then

f ′(x) = u′(x) + v ′(x)

Product rule: If f (x) = u(x)v(x), then

f ′(x) = u′(x)v(x) + u(x)v ′(x)

Quotient rule: If f (x) =
u(x)

v(x)
, then

f ′(x) =
u′(x)v(x)− u(x)v ′(x)

[v(x)]2

Chain rule: If f (x) = g(u(x)), then

f ′(x) = g ′ (u(x)) · u′(x)
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Calculus: Derivatives

Exercises

Find f ′(x):

f (x) = cos(x) ln(cos x).

f ′(x) = −(1 + log(cos(x))) sin(x)

f (x) = 1 +
2x

x2
.

f ′(x) =
2x

x2
(ln(2)− 2)

Application

Given a curve defined by y = f (x), the tangent line of the curve at
point (a, f (a)) is

y − f (a) = f ′(a)(x − a)

Exercise

Find the tangent line of f (x) = x3 − x2 + 1 at points x = 1 and
x = 0.

f ′(x) = 3x2 − 2x . At x = 1, y − 1 = (x − 1).
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Calculus: Higher Order Derivatives

Higher order derivatives

Since f ′(x) is a function, we can find its derivative: the second
derivative of f (x), written as f ′′(x) Similarly, third, fourth, higher
derivatives are written f ′′′(x), f (4)(x), . . . , f (n)(x)

Taylor Series

An approximation of a function, local to a point a is

f (x) = f (a)+f ′(a)(x−a)+
f ′′(a)

2!
(x−a)2 +

f (3)(a)

3!
(x−a)3 +· · ·+

f (n)(a)

n!
(x−a)n+. . .

First p + 1 terms are the Taylor polynomial of degree p

If a = 0 the expansion is called a Maclaurin series

Exercise

Determine the degree 3 polynomial for f (x) = e2x about x = 0.

f (x) ≈ 1 + 2x + 2x2
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Calculus: Application

A point a is a critical point if f ′(a) = 0

A point a is called a (local) maximizer of function f (x) if
f (x) ≤ f (a) for all x near a
A point a is called a (local) minimizer of function f (x) if
f (x) ≥ f (a) for all x near a
Necessary condition: If a is a maximizer (or minimizer) of
function f (x) then a is a critical point. If f (x) has derivative
at a, then f ′(a) = 0
Sufficient condition: Suppose a is a critical point
If f ′′(a) < 0 then a is a maximizer
If f ′′(a) > 0 then a is a minimizer
If f ′′(a) = 0 then no conclusion can be drawn

Exercise

Find the critical points of f (x) = 4x3 − 21x2 + 18x + 6. Discuss
their nature

f ′(x) = 6(2x2 − 7x + 3) = 0⇒ x = 1
2 , 3.

f ′′(x) = 6(4x − 7), thus f ′′(1/2) = −30 < 0 and f ′′(3) = 30 > 0
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Calculus: Partial Derivatives

First partial derivatives

Let z = f (x , y) be a function of x and y . Partial derivatives of z
wrt x and y , respectively, are defined as

fx(x , y) =
∂z

∂x
= lim

h→0

f (x + h, y)− f (x , y)

h

fy (x , y) =
∂z

∂y
= lim

k→0

f (x , y + k)− f (x , y)

k
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Calculus: Partial Derivatives

Second partial derivatives

Second-order partial derivatives can also be written in either
notation:

fxx(x , y) =
∂2z

∂x2
=

∂

∂x

(
∂z

∂x

)
fxy (x , y) =

∂2z

∂x∂y
=

∂

∂x

(
∂z

∂y

)

Exercise

Find fxx , fyy , fxy , fyx given that f (x , y) = x3 + 2xy − y2.

[
fxx fxy
fyx fyy

]
=

[
6x 2
2 −2

]
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)
Exercise

Find fxx , fyy , fxy , fyx given that f (x , y) = x3 + 2xy − y2.[
fxx fxy
fyx fyy

]
=

[
6x 2
2 −2

]
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Calculus: Hessian matrix

Hessian matrix

The Hessian H is a square matrix containing all the second partial
derivatives. Note that for smooth functions, fxy = fyx , so the
matrix is symmetric. In this example with two variables,

H =

[
fxx fxy
fyx fyy

]
The Hessian can be used to test the nature of critical points
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Calculus: Integrals

Integrals

Consider two functions f (x) and F (x)

If F ′(x) = f (x) then F (x) is the indefinite integral of f (x)

This is written as

F (x) =

∫
f (x) dx
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Calculus: Integrals

Integration examples and rules∫
(1) dx = x + C∫
xn dx =

xn+1

n + 1
+ C (n 6= −1)∫

x−1 = ln |x |+ C∫
ex dx = ex + C∫
ax dx =

ax

ln a
+ C (a > 0, a 6= 1)∫

af (x) dx = a
∫
f (x) dx∫

[f (x) + g(x)] dx =
∫
f (x) dx +

∫
g(x) dx∫

[f (x)]nf ′(x) dx =
[f (x)]n+1

n + 1
+ C (n 6= −1)∫

f (x)−1f ′(x) dx = ln f (x) + C∫
e f (x)f ′(x) dx = e f (x) + C∫
af (x)f ′(x) dx =

af (x)

ln a
+ C (a > 0, a 6= 1)

Robert M. Gower OR MSc Maths Revision Course 16 / 39



Calculus: Integrals

Integration by parts

For two functions u(x) and v(x)∫
u(x)v ′(x) dx = u(x)v(x)−

∫
v(x)u′(x) dx

Integration by Substitution

Substitution If u(x) is differentiable and f (x) continuous then∫
f (u(x))

du(x)

dx
dx =

∫
f (u)du
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Calculus: Integrals

Fundamental Theorem of Calculus

If f (x) is continuous for all x satisfying a ≤ x ≤ b, then∫ b

a
f (x) dx = F (b)− F (a)

where F (x) is any indefinite integral of f (x)
F (b)− F (a) is often written as [F (x)]ba

Exercises

Find the following integrals:

F (x) =

∫
(2x + 5)3dx .

Subst u = 2x + 5, F (x) = (2x + 5)4/8

F (x) =

∫ 2

1

ln x

x2
dx .

By parts, u(x) = ln x and v ′(x) = x−2.

F (x) = − log(x)x−1 − x−1.
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Linear Algebra



Linear Algebra: Matrices

Matrices

A matrix is any rectangular array of numbers

The ijth element of A, written as aij , is the number in the
ith row and jth column of A

Two matrices A and B are equal if aij = bij for all i and j
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Linear Algebra: Vectors

Vectors

Column vector is a matrix with only one column

Row vector is a matrix with only one row

Vector is a column vector or row vector

Dimension of a vector is the number of elements in it

Zero vector is vector with all elements equal 0

Scalar Product

If u is row vector and v is column vector with the same dimension
n, then the scalar product of u and v, written uv, is the number

u1v1 + · · ·+ unvn

For two column vectors u and v, the scalar product is uTv
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Linear Algebra: Vector norms

Norm

The norm of a vector is a quantity that describes in some way
length or size of the vector.

The p-norm ‖x‖p for p = 1, 2, ... is defined as

‖x‖p = (
∑
i

|xi |p)1/p

Commonly used versions of the p-norm are

p = 1 ‖x‖1 =
∑
i

|xi |

p = 2 ‖x‖2 =

√√√√(∑
i

|xi |2
)

p =∞ ‖x‖∞ = max
i
|xi |.
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Linear Algebra: Norm properties

Norm properties

Some useful properties, which are true for all norms, are

‖x‖ > 0 when x 6= 0 and ‖x‖ = 0 iff x = 0

‖kx‖ = |k|‖x‖ for any scalar k

‖x + y‖ ≤ ‖x‖+ ‖y‖
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Linear Algebra: Matrices

Special Matrices

For an m × n matrix A, the n ×m matrix AT which has
elements [AT ]ij = aji is called the transpose of A

A square matrix has equal numbers of rows and columns

A matrix A for which A = AT is symmetric

A diagonal matrix is one where only the elements aii are
non-zero

The identity matrix is diagonal with aii = 1

An orthogonal matrix has the property AAT = I
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Linear Algebra: Matrices

Positive definiteness

A real symmetric matrix is positive definite iff

xTAx > 0 for all x 6= 0

All the leading submatrices of A have positive determinants

All the eigenvalues of A satisfy λi > 0

There exists a non-singular matrix W such that A = W TW

If one of these conditions is true, it implies that the others are also
true
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Linear Algebra: Critical points

Critical point test for functions of two variables f (x , y)

For critical point (x , y) [where fx = 0, fy = 0] and Hessian matrix

H =

[
fxx fxy
fyx fyy

]
detH1 = fxx detH = fxx fyy − f 2

xy Conclusion

> 0 > 0 H is positive definite, so a (local) minimizer
< 0 > 0 H is negative definite, so a (local) maximizer
6= 0 < 0 H is indefinite, so a saddle point

The test is inconclusive if either of the determinants is 0
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Linear Algebra: Critical points

Exercise

Find and classify the stationary points of
f (x , y) = 2x2 − 4xy + y4 + 2

Answer:
∇f (x , y) = (4x − 4y ,−4x + 4y3)T .

Critical point (x , y) = (1, 1) or (x , y) = (−1,−1).

H(x , y) =

[
fxx fxy
fyx fyy

]
=

[
4 −4
−4 12y2

]
det(H1) = fxx = 4. det(H) = 48y2 − 16 > 0 for y = 1 or −1.

Computing f (1, 1) = 1 = f (−1,−1) two global minima!
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Linear Algebra: Matrix operations

Matrix operations

Scalar multiple of a matrix: If A is a matrix, c is a number,
then matrix cA is obtained by multiplying each element of A
by c

Addition of two matrices: If A and B are two matrices with
same order (that is, m × n), then matrix C = A + B is
obtained by defining cij = aij + bij

Matrix multiplication: The matrix product of two matrices
A and B, written AB, is defined if and only if

number of columns in A = number of rows in B

Suppose A is m × r matrix and B is r × n matrix, then the
matrix product C = AB is a m×n matrix whose ijth element
cij is the scalar product of ith row of A and j column of B
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Linear Algebra: Matrix operations

Inversion and Transposition

Matrix inversion: Some n × n square matrices are invertible
and it is possible to find A−1 such that

AA−1 = I

Inverse of matrix product: Let A and B both be n × n
square invertible matrices. Then (AB)−1 = B−1A−1

Transpose matrices: from the definition of a transpose
matrix above, it is not too hard to see these properties

(AT )T = A
(A + B)T = AT + BT

(cA)T = cAT

(AB)T = BTAT

(AT )−1 = (A−1)T
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Linear Algebra: Matrix operations

Exercises

Given the matrices

A =

[
1 1 3
1 2 1

]
,B =

 1 2 0
−1 1 0
3 0 −1

 ,
evaluate AB, BAT

Considering C and D as matrices of dimension n × n, simplify
C (CD)−1D(C−1D)−1

C (CD)−1D(C−1D)−1 = CD−1C−1D(C−1D)−1

= CD−1C−1DD−1C
= CD−1(C−1C )
= CD−1.
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Linear Algebra: Matrix operations

Determinant

The determinant of a 2× 2 matrix can be calculated

det

[
a b
c d

]
≡
∣∣∣∣ a b
c d

∣∣∣∣ ≡ ad − bc

For larger matrices, the determinant may be found by calculating
the determinants of minor matrices Mij recursively

det(A) =
k∑

i=1

aij(−1)i+jMij
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Linear Algebra: Matrix operations

Exercises

Given

A =

[
1 2
−1 1

]
, B =

 1 2 0
−1 1 0
3 0 −1

 ,
calculate det(A) and det(B)
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Linear Algebra: Matrix operations

Methods for inverting matrices

The formula for a 2× 2 matrix:[
a b
c d

]−1

=
1

ad − bc

[
d −b
−c a

]
Augment the matrix A to [A I ] and use Gauss method (see
below)

Cramer’s rule (in theory)
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Linear Algebra: Matrix operations

Elementary row operations (ero)

If matrix A′ is obtained by a set of elementary row operations from
matrix A, then A and A′ are equivalent

Type 1 ero: A′ is obtained by multiplying any row of A by a
nonzero number

Type 2 ero: A′ is obtained by first multiplying any row of A
(say, row i) by a nonzero number, then adding it to another
row of A (say, row j), that is,

row j of A′ = c(row i of A) + row j of A

Type 3 ero: interchange any two rows of A
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Linear Algebra: Matrix operations

Exercises

Given

A =

[
1 2
−1 1

]
, B =

 1 2 0
−1 1 0
3 0 −1

 ,
determine A−1 and B−1 and verify your results

A−1 =

[
1/3 −2/3
1/3 1/3

]
, B−1 =

 1/3 −2/3 0
1/3 1/3 0

1 −2 −1

 ,

Robert M. Gower OR MSc Maths Revision Course 35 / 39



Linear Algebra: Matrix operations

Exercises

Given

A =

[
1 2
−1 1

]
, B =

 1 2 0
−1 1 0
3 0 −1

 ,
determine A−1 and B−1 and verify your results

A−1 =

[
1/3 −2/3
1/3 1/3

]
, B−1 =

 1/3 −2/3 0
1/3 1/3 0

1 −2 −1

 ,

Robert M. Gower OR MSc Maths Revision Course 35 / 39



Linear Algebra: Solving systems

Systems of linear equations

Suppose A is m × n matrix and b is a vector of dimension m

A system of linear equations is

Ax = b

with unknown column vector x of dimension n

A column vector x is solution of a system of linear equations
if it satisfies Ax = b

Find a solution by Gauss method:
For the system Ax = b, construct the augmented matrix
[A b] and use type 1, type 2 and type 3 eros

Special cases:
No solution or infinite number of solutions
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Linear Algebra: Solving systems

Exercise

Solve by Gaussian elimination:

x − y + z = 1

2x − y − 3z = 0

−x + y + 2z = 2

 1 −1 1
2 −1 −3
−1 1 2

xy
z

 =

1
0
2

 .
(x , y , z) = (3, 3, 1).
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Linear Algebra: Differentiation

Differentiating linear algebra expressions

The symbol ∇ denotes the vector derivative or gradient operator

∇f (x) =


∂f
∂x1

...
∂f
∂xn


Here is a brief summary of how to apply this operator to
expressions involving vectors and matrices. τ is a scalar, c, x ∈ Rn

are vectors, while A,Q are matrices, all of suitable dimensions

f (x) cTx τcTx ATx
1

2
xTQx

∇f (x) c τc A 1
2 (Qx + QTx)
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Further exercises

Express {x : |x + 3| < 2} as intervals

−5 < x < −1.

Solve by Gaussian elimination

4x − y = 3

−2x + 5y = 21

(x , y) = (2, 5).

Assume c, s, x, y ∈ Rn are vectors, while A,Q ∈ Rn×n are
matrices, all of suitable dimensions.
Find ∇xL(x) for the following expressions

L(x) = cTx− xT s
L(x) = yT (Ax− b)

L(x) = cTx +
1

2
xTQx

∇xL(x) = c− s
∇xL(x) = ATy
∇xL(x) = c + 1

2 (Q + QT )x.
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