
Lecture notes on Numerical Analysis

Robert M. Gower

September 17, 2018

Abstract

Theses are my notes for my lectures for the MDI210 Optimization and Numerical Analysis

course. Theses notes are a work in progress, and will probably contain several small mistakes

(let me know?). If you are following my lectures you may find them useful to recall what

we covered in class. Otherwise, I recommend you read the excellent book by Golub and Van

Loan [1]. All topics covered in these notes and the lectures are covered in [1]. Furthermore

these notes are mostly based on [1].

Contents

1 Introduction to Numerical Linear Algebra 1

1.1 Eigenvalue and the similarity transform . 2

1.2 The SVD decomposition . 3

1.3 Norms . 4

1.4 Condition number and sensitivity . 5

2 Linear Systems 5

2.1 Triangular systems . 5

2.2 Gaussian elimination and LU decomposition . 6

2.3 Cholesky Decomposition . 8

3 Eigenvalues 9

3.1 Jacobi method . 10

3.2 Convergence of Jacobi . 11

1 Introduction to Numerical Linear Algebra

Numerical linear algebra is a set of numerical problems at the heart of which lies a matrix

A = (aij) =


a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n
...

...
...

. . .
...

ad1 ad2 ad3 . . . adn

 .

1

Numerical linear algebra problems are in turn at the heart of most optimization and engineering

problems. Thus their importance. We will learn to decompose a matrix into simpler matrices

(triangular or diagonal) to describe a matrix through a set of fundamental vectors and numbers

(eigenvalues and eigenvectors), and to see how sensitive a problem involving a matrix is or if it is

well posed (Conditioning).

There exist several classes of matrices, of particular interest in this course are

• Normal matrices AA> = A>A

• Symmetric matrices (aij) = A = A> = (aji)

• Orthogonal matrices AA> = A>A = I,

where I = (δij) denotes the identity matrix.

1.1 Eigenvalue and the similarity transform

One of the problems with writing a matrix down as a square of numbers is that we must choose

a coordinate basis to do so. The choice of this coordinate basis is somewhat arbitrary, and the

most important properties of the matrix are independent of this choice. The eigenvalues and

eigenvectors of a matrix give us some insight into these intrinsic properties of the matrix that are

independent of the coordinate basis we used to represent the matrix.

Definition 1 Let A ∈ Rn×n, x ∈ Rn and λ ∈ C. We say that x is an eigenvector and λ an

eigenvalue of A if x 6= 0 and

Ax = λx.

We also refer to (x, λ) as an eigenpair of A. We say λ(A) ⊂ C is the spectrum of A if λ(A)

contains all the eigenvalues of A, that is

λ(A)
def
= {λ | ∃x ∈ Rn such that x 6= 0, Ax = λx}.

We say that A is invertible if 0 6∈ λ(A).

A matrix can be entirely described by its eigenvalues and eigenvectors. Accordingly, we say

that two matrices are similar if they share the same spectrum. Or, said in another way:

Definition 2 We say that A ∈ Rn×n is similar to B ∈ Rn×n if there exists P ∈ Rn×n invertible

such that

A = P−1BP.

We say that A is diagonalizable when A is similar to a diagonal matrix.

Similar matrices define the same linear operator upto coordinate changes defined by P. Conse-

quently they also have the same spectrum.

2

Lemma 3 If A,B ∈ Rn×n are similar matrices then

λ(A) = λ(B).

Proof: Consider λ ∈ λ(A). Then there exists x ∈ Rn such that Ax = λx. By the similarity of A

and B we have that

P−1BPx = λx.

Left multiplying by P shows that λ ∈ λ(B) with associated eigenvector Px.

Lemma 4 If O ∈ Rn×n is an orthogonal matrix then every λ ∈ λ(O) is such that |λ| = 1.

Proof: Let (x, λ) be such that Ox = λx. If follows that

〈x, x〉 =
〈
x,O>Ox

〉
= 〈Ox,Ox〉 = ‖Ox‖22 = |λ|2 〈x, x〉 .

Dividing by 〈x, x〉 on both sides gives the result.

Theorem 5 (Spectral Theorem for symmetric matrices) Symmetric matrices are diagonal-

izable.

Proof: See Theorem 8.1.1 and proof in [1].

1.2 The SVD decomposition

Symmetric matrices have a delightfully simple spectral theory. The same does not hold for unsym-

metric matrices. Though we can borrow the spectra theory of symmetric matrices to give insight

into any unsymmetric matrix through their singular values.

Definition 6 We refer to σ(A)
def
= λ(A>A) as the set of singular values of A.

Exercise 7 Show that A>A is similar to AA>.

Proof: First we show that λ(A>A) ⊂ λ(AA>). Let λ ∈ λ(A>A) thus there exists x 6= 0 ∈ Rn

such that

A>Ax = λx.

Left multiplying by A gives

AA>(Ax) = λ(Ax).

If Ax = 0, then from the two preceding equalities we have that 0 ∈ λ(A>A) and 0 ∈ λ(AA>).

If Ax 6= 0, then Ax is an eigenvector of AA> with associated eigenvalue λ thus λ ∈ λ(AA>).

The opposite inclusion λ(AA>) ⊂ λ(A>A) can be derived verbatim by re-labelling Ā = A> and

Ā> = A.

Though AA> and A>A have the same eigenvalues, they may have different eigenvectors. We

will use their eigenvectors and common eigenvalues to construct a decomposition for A

3

Theorem 8 Let A ∈ Rm×n, Σ = diag(σ1, . . . , σn) be the singular values of A. Then there exits

orthogonal matrices V ∈ Rn×n and U ∈ Rm×m such that

A = UΣV >.

Proof: See Chapter 2.5 in [1].

Exe: Show that the columns of U and V are the eigenvectors of AA> and A>A, respectively.

1.3 Norms

First we generalize the notation of distance by defining a norm

Definition 9 Let E be a vector space defined over the reals R. We say that the function ‖·‖ : x ∈
R→ R+ is a norm if it is

Point separating: ‖x‖ = 0⇔ x = 0,∀x ∈ E.

Subadditive: ‖x+ y‖ ≤ ‖x‖+ ‖y‖, ∀x, y ∈ E

Homogeneous: ‖ax‖ = |a|‖x‖, ∀x ∈ E, a ∈ R.

If a multiplication operator is defined between vectors (think matrices) then we say that the norm

is submultiplicative if

Submultiplicative: ‖xy‖ ≤ ‖x‖‖y‖,∀x, y ∈ E.

Exercise 10 Show that ‖V y‖2 = ‖y‖2 for every y ∈ Rn and orthogonal matrix V ∈ Rn×n.

We can quickly embune the matrix space with norms induced by using vector norms. Let ‖·‖ :

Rn → R+ be a norm. Then we can extend the norm to operate over matrices by overloading its

definition with

‖A‖ def
= sup

x∈Rn,x 6=0

‖Ax‖
‖x‖

.

Lemma 11 All induced norms satisfy

‖Ax‖ ≤ ‖A‖‖x‖, ∀x ∈ Rn,

and are submultiplicative. Furthermore the L2 induced norm satisfies

‖A‖2 = σmax(A).

Proof: Homework (For the last part use the SVD decomposition).

4

1.4 Condition number and sensitivity

Now that we have established a notion of distance through norms, we turn our attention to an-

swering how far can an approximate solution of a linear system be from the true solution. That

is, consider the problem of determining x ∈ Rn such that

Ax = b,

where b ∈ Rn. But imagine we have perturbed the vector b by adding on an error εδb and end up

solving

Ay = b+ εδb. (1)

How big can ‖y − x‖ be? Let us first re-write δx = y − x. Assuming A is invertible and left

multiplying A−1 on both sides of (1) we get

x+ δx = A−1(b+ εδb).

Now using that x = A−1b we have that

δx = εA−1δb.

Taking norms and using that ‖b‖ = ‖Ax‖ ≤ ‖A‖‖x‖ we have that

‖δx‖
‖x‖

= ε‖A−1‖‖A‖ def
= εκ(A).

This last quantity is what we define as the condition number, and it governs how much the relative

error in x gets amplified.

2 Linear Systems

The work horse of numerical linear algebra is the solution of linear systems

Ax = b,

where A ∈ Rn×n and b ∈ Rn are given, and x ∈ Rn is the unknown.

2.1 Triangular systems

There are two efficient algorithms for solving triangular linear systems. Either the forward sub-

stitution or backward substitution. For instance, to deduce the backwards substitution method,

consider the upper triangular system given by

n∑
j=i

aijxj = bi. (2)

5

Separating out the xi term we have

n∑
j=i

aijxj + aiixi = bi. (3)

Assuming aii 6= 0 and isolating xi gives

xi =
bi −

∑n
j=i+1 aijxj

aii
. (4)

This suggests an algorithm, by calculating first xn = bi
aii

then progressing backwards.

Algorithm 1 Backward substitution

for k = n, . . . , 1 do

xi =
bi −

∑n
j=i+1 aijxj

aii
.

Exercise 12 What can we do if we find aii = 0? What does it say about this triangular system if

aii = 0?

Because of the ease in which we can solve triangular linear systems, it is convenient to decompose

all linear systems into triangles. For instance, suppose we can find a decomposition of A = LU

where L ∈ Rn×n is lower triangular and U = Rn×n is upper triangular. We can then solve the

linear system Ax = b using two triangular solves. First we solve a lower triangular system

Ly = b ⇔ L Ux︸︷︷︸
y

= b.

Then we solve the upper triangular system

Ux = y.

The resulting x is our desired solution to Ax = b.

2.2 Gaussian elimination and LU decomposition

Gaussian elimination performs varies row transformations on A until we reach an upper triangular

matrix. The idea behind row transformations is that we apply invertible transformations to both

sides of the equation until the resulting system matrix is triangular. That is, let P ∈ Rn×n be

invertible then

{x |PAx = Pb} = {x |Ax = b}.

If we can construct P so that PA is triangular, then our work is done. We will do this iteratively.

Let A0 = A and Ak denote the matrix after all elements akij = 0 for 1 ≤ j ≤ k and i ≥ j + 1. To

generate Ak+1 from Ak we need to perform a row operation.

6



1 0 0 . . . 0 0

0 1 0
... 0 0

... 1 0 0
...

...
... − akk+1k

/
akkk 1

. . .
...

...
...

...
...

...
...

0 0 − aknk
/
akkk . . . 0 1





ak11 ak12 ak13 . . . ak1n

0
. . .

...
... ak2n

... 0 akkk
...

...
...

...
...

...
...

0 0 aknk . . . aknn


=



ak11 ak12 ak13 . . . ak1n

0
. . .

...
... ak2n

... 0 akkk
...

...
...

...
...

...
...

0 0 0 . . . aknn


= Ak+1

(5)

This operation can be represented in a much more compact way using algebra. Let

Ek = I − βke>k , (6)

where ek = (0, · · · , 1
kth
, 0, · · · , 0) ∈ Rn is the kth unit coordinate vector and βk = (0, . . . , 0,

akk+1k

akkk
(k+1)th

, . . . ,
aknk

akkk
).

We refer to (6) as the kth row operation. With this notation we can write (5) as

EkA
k = Ak+1.

Before moving on we need the following lemma.

Lemma 13 Let Ek be the kth row operation. It follows

1. E−1k = I + βke
>
k .

2. E−1k−1E
−1
k = I + βke

>
k + βk−1e

>
k−1

Proof:

1. By direct computation we have

(I + βke
>
k)(I − βke>k) = I + βke

>
k − βke>k − βke>k βke>k = I − βke>k βke>k .

Since the support of βk does not intersect with the support of ek we have that e>k βk = 0.

2. Again by computation

E−1k−1Ek = (I + βk−1e
>
k−1)(I + βke

>
k) = I + βk−1e

>
k−1 + +βke

>
k + βk−1e

>
k−1βke

>
k .

Once again we have an inner product e>k−1βk between two vector with disjoint support, thus

e>k−1βk = 0 and the result follows.

Gaussian elimination applies n row operations until the matrix is upper triangular

EnEn−1 · · ·E1A = U. (7)

7

The cost of applying Ek is (n− k − 1)n consequently the cost of performing (7) is

n∑
k=1

(n− k − 1)n = O(n3).

Since by Lemma (13) Ek is invertible for every k we have that the product of row operations

in (7) is also invertible with

(EnEn−1 · · ·E1)
−1 = E−11 · · ·E

−1
n−1E

−1
n

def
= L. (8)

Again by Lemma (13) and straight forward induction we have that the matrix L in (8) is lower

triangular. Left multiplying (7) by L we have

A = LU. (9)

This is known as the LU decomposition

2.3 Cholesky Decomposition

When A is a positive definite matrix, we can efficiently compute a triangular decomposition. That

is, when A � 0 then there exists a lower triangular matrix B ∈ Rn×n such that

A = BB> =


b11 0 . . . 0

b21 b22 0
...

...
...

. . .
...

bn1 bn2 . . . bnn




b11 b21 . . . bn1

0 b22 . . .
...

...
...

. . .
...

0 0 . . . bnn

 .

We can use the above equation to directly calculate the elements of B. For example, the first

column on either side of the above equation is given by

a:1 =


a11

a21
...

an1

 = b11


b11

b21
...

bn1

 = b11b:1.

The first line of the above says that b211 = a11 thus b11 =
√
a11. We can continue in a similar

fashion to calculate the remaining elements of B, that is, by observing

a:j =
n∑
i=1

〈bj:, bi:〉 ei =
n∑
i=1

j∑
k=1

bjkbikei =

j∑
k=1

bjkb:k.

We can build a recurrence in k from the above by first separating out the jth term in the summation

to give

bjjb:j = a:j −
j−1∑
k=1

bjkb:k
def
= v. (10)

8

Now suppose we have already calculated the columns from the 1st to (j − 1)th column of B.

Using (10) we can then calculate the jth column by first noting that bjj =
√
a:j −

∑j−1
k=1 bjkb:k =√

v(j) then setting

b:j =
v√
v(j)

=
a:j −

∑j−1
k=1 bjkb:k√
bjj

.

This provides the following algorithm

Algorithm 2 (B) =Cholesky Decomposition(A)

1: for j = 1, . . . , n do

2: Calculate v = a:j −
∑j−1

k=1 bjkb:k

3: Set b:j = v/
√
v(j)

Exe: Show that the number of flops of the Cholesky algorithm is proportional to O(n3). Sol:

The summation is where most of the effort goes, thus
∑n

j=1

∑j−1
k=1 1 =

∑n
j=1(j−1) = (1+n)n

2 −n =

O(n3).

With the Cholesky matrix in hand, we can uncover many properties of the matrix A.

Lemma 14 Let A be a positive definite matrix. It follows that

1. The Cholesky decomposition B>B = A always exists. We can prove this by construction.

That is, using induction we can show that Algorithm 2. This boils down to showing that

v(j) 6= 0 does not occur.

2. det(A) = (b1 · · · bn)2. Indeed, using properties of the determinant we have that

det(A) = det(B>B) = det(B>)det(B) = det(B)2 = (b1 · · · bn)2.

3 Eigenvalues

Eigenvalues are important. To get a feel for this importance, watch the video https://www.

youtube.com/watch?v=XggxeuFDaDU on the collapse of Tacoma Narrows Bridge as it resonates in

the wind. This resonance is related to the smallest eigenvalue of the structural equations.

We can calculate the eigenvalues of a matrix A ∈ Rn×n by finding the roots of its characteristic

polynomial. That is, let (λ, x) be an eigenpair of A thus

Ax = λx⇔ (A− λI)x = 0.

Since x 6= 0 this shows that A− λI is not invertible and consequently

det(A− λI) = 0. (11)

If we can find all the solutions of (11) in λ, then we will have all the eigenvalues. But solving (11)

requires finding all the roots of the polynomial (11), and this is difficult. Indeed, according to the

AbelRuffini theorem there is no general, explicit and exact algebraic formula for the roots of a

polynomial with degree 5 or more. Thus we turn to approximate methods for finding eigenvalues.

9

https://www.youtube.com/watch?v=XggxeuFDaDU
https://www.youtube.com/watch?v=XggxeuFDaDU

3.1 Jacobi method

Let A ∈ Rn×n be a symmetric matrix. We know from the Spectral Theorem that symmetric

matrices are diagonalizable, that is, there exists an orthogonal matrix V ∈ Rn×n and diagonal

matrix Λ = diag(λ1, . . . , λn) such that A = V DV >. This also shows that A is similar to D and

thus the eigenvalues of A are λ1, . . . , λn. Furthermore, by right multiplying by V it follows that

AV = V D,

consequently the columns of V are the eigenvectors of A. Thus if we could calculate the decom-

position A = V DV > we would know the eigenvalues and eigenvectors of A. The objective of this

section is to detail the Jacobi method for calculating this decomposition.

The idea behind the Jacobi method is to iteratively minimize the off-diagonal elements of A

until we have a diagonal matrix. That is, we want to minimize the offset

off(A) =

n∑
i=1

∑
j 6=i

a2ij = ‖A‖2F −
n∑
i=1

a2ii. (12)

The method proceeds by scanning through the matrix A and finding the element that has the

largest absolute value, that is apq = max1≤i<j≤n |aij |, then replace this element by a zero by using

similarity transformations. Our tool for eliminating large off diagonal elements is the Givens/Jacobi

Transform defined by

J(p, q, θ) =

p q

1 . . . 0 . . . 0 . . . 0
...

. . .
...

...
...

0 . . . c . . . s . . . 0
...

...
. . .

...
...

0 . . . −s . . . c . . . 0
...

...
...

. . .
...

0 . . . 0 . . . 0 . . . 1



p

q

Where c = cos(θ) and s = sin(θ). We can define this matrix more succinctly as

J(p, q, θ) = I + (c− 1)epe
>
p + (c− 1)eqe

>
q + sepe

>
q − seqe>p = I +

[
ep eq

] [c− 1 s

−s c− 1

][
e>p
e>q

]
By carefully choosing θ we can use the following transform

B = J(p, q, θ)AJ(p, q, θ)>, (13)

to eliminate apq (and aqp because of symmetry). Note that B is a similar matrix to A. To see how

to do this, by examining the pth and qth row and column of (13) we see that the following holds[
bpp bpq

bqp bqq

]
=

[
c s

−s c

]> [
app apq

aqp aqq

][
c s

−s c

]
. (14)

10

This in turn shows that

bpq = cs(app − aqq) + (c2 − s2)apq.

Now we choose θ so that bpq = 0. Setting the above to zero and dividing through by c2apq we have

− t2 + 2Kt+ 1 = 0, (15)

where t = tan(θ) = c/s and K =
app−aqq
2apq

. The solutions to (15) are given by

t = K ±
√
K2 + 1.

In the standard Jacobi method we choose the smallest of the two above roots

t = min{C +
√
C2 + 1, C −

√
C2 + 1}.

This in turn guarantees that |θ| ≤ π
4 . We can then recover c and s using that

c =
1√

1 + t2
, s = ct.

This gives us the following method for calculating c ans s in Algorithm 3.

Algorithm 3 (c, s) =Calculate Jacobi Transform(p, q, A)

1: K =
app−aqq
2apq

2: t = min{K +
√
K2 + 1,K −

√
K2 + 1}.

3: c = 1√
1+t2

4: s = ct

With the means to calculate a single Jacobi transform, we can now iteratively apply many

transforms to try to minimize the off diagonal elements of A, see Algorithm 4. Next we prove that

Algorithm 4 converges and does what we intended it to do.

Algorithm 4 (c, s) =Calculate Jacobi Transform((p, q, A))

1: Initialize: k = 0 and A0 = A.

2: while off(Ak+1) < ε do

3: Choose (p, q) so that apq = maxi 6=j |apq|
4: (c, s) =Calculate Jacobi Transform((p, q, Ak))

5: Ak+1 = J(p, q, θ)>AkJ(p, q, θ).

3.2 Convergence of Jacobi

We now need the following lemma, which will be given as an exercise in class

Lemma 15 1. Let

J =

[
c s

−s c

]
.

Show that J>J = JJ> = I, that is, J is an orthogonal matrix.

11

2. Prove that Tr (AB) = Tr (BA) for compatible matrices.

3. Let ‖A‖2F = Tr
(
A>A

)
and let J be an orthogonal matrix. Prove that ‖J>AJ‖2F = ‖A‖2F .

Proof:

1. Direct computation.

2. We have that

Tr (AB) =
n∑
i=1

n∑
j=1

aijbji =
n∑
j=1

n∑
i=1

bjiaij = Tr (BA) .

3. From the previous property it follows that

‖J>AJ‖2F = Tr
(
J>A>JJ>AJ

)
= Tr

(
J>A>AJ

)
= Tr

(
A>AJJ>

)
= Tr

(
A>A

)
= ‖A‖2F .

Using the previous lemma, given that J(p, q, θ) is an orthogonal matrix, we have from (14) that

‖A‖2F = ‖B‖2F .

What is more, the Frobenius norm of both sides of (14) are also the same thus

a2pp + a2qq + 2a2pq = b2pp + b2qq + 2b2pq = b2pp + b2qq. (16)

Consequently since bpq = 0 we have that

off(B) = ‖B‖2F −
n∑
i=1

b2ii

= ‖A‖2F −
n∑

i=1,i 6=p,q
b2ii − b2pp − b2qq

= ‖A‖2F −
n∑

i=1,i 6=p,q
a2ii − b2pp − b2qq

= ‖A‖2F −
n∑
i=1

a2ii + a2pp + a2qq − b2pp − b2qq

(16)
= off(A)− 2a2pq.

This shows that the off diagonal terms are decreasing. Furthermore, since apq is chosen as the

largest off diagonal term in absolute value, we have that

a2pq ≥
off(A)

n(n− 1)
.

Thus finally

off(B) ≤ off(A)− 2

n(n− 1)
off(A) =

(
1− 2

n(n− 1)

)
off(A).

That is, applying k steps of Algorithm 4 we have that

off(Ak) ≤
(

1− 2

n(n− 1)

)k
off(A).

12

	Introduction to Numerical Linear Algebra
	Eigenvalue and the similarity transform
	The SVD decomposition
	Norms
	Condition number and sensitivity

	Linear Systems
	Triangular systems
	Gaussian elimination and LU decomposition
	Cholesky Decomposition

	Eigenvalues
	Jacobi method
	Convergence of Jacobi

