Introduction to Machine Learning and Stochastic Optimization

**Robert M. Gower** 







Spring School on Optimization and Data Science, Novi Saad, March 2017

### Solving the Finite Sum Training Problem

#### **Optimization Sum of Terms**

A Datum Function  $f_i(w) := \ell \left( h_w(x^i), y^i \right) + \lambda R(w)$ 

$$\frac{1}{n}\sum_{i=1}^{n}\ell\left(h_w(x^i), y^i\right) + \lambda R(w) = \frac{1}{n}\sum_{i=1}^{n}\left(\ell\left(h_w(x^i), y^i\right) + \lambda R(w)\right)$$
$$= \frac{1}{n}\sum_{i=1}^{n}f_i(w)$$

Finite Sum Training Problem
$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w) =: f(w)$$

#### The Training Problem

Solving the *training problem*:

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w)$$

Reference method: Gradient descent

$$\nabla\left(\frac{1}{n}\sum_{i=1}^{n}f_i(w)\right) = \frac{1}{n}\sum_{i=1}^{n}\nabla f_i(w)$$

Gradient Descent Algorithm

Set 
$$w^0 = 0$$
, choose  $\alpha > 0$ .  
for  $t = 1, 2, 3, \dots, T$   
 $w^{t+1} = w^t - \frac{\alpha}{n} \sum_{i=1}^n \nabla f_i(w^t)$   
Output  $w^{T+1}$ 

#### **Gradient Descent Example**

A Logistic Regression problem using the fourclass labelled data from LIBSVM (n, d) = (862, 2)





#### The Training Problem

Solving the *training problem*:

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w)$$

#### **Problem with Gradient Descent:**

Each iteration requires computing a gradient  $\nabla f_i(w)$  for each data point. One gradient for each cat on the internet!

Gradient Descent Algorithm Set  $w^0 = 0$ , choose  $\alpha > 0$ . for  $t = 1, 2, 3, \dots, T$   $w^{t+1} = w^t - \frac{\alpha}{n} \sum_{i=1}^n \nabla f_i(w^t)$ Output  $w^{T+1}$ 

Is it possible to design a method that uses only the gradient of a **single** data function  $f_i(w)$  at each iteration?

Is it possible to design a method that uses only the gradient of a **single** data function  $f_i(w)$  at each iteration?

#### **Unbiased Estimate**

Let j be a random index sampled from  $\{1, ..., n\}$  selected uniformly at random. Then

$$\mathbb{E}_j\left[\nabla f_j(w)\right] = \frac{1}{n} \sum \nabla f_i(w) = \nabla f(w)$$

Is it possible to design a method that uses only the gradient of a **single** data function  $f_i(w)$  at each iteration?

#### **Unbiased Estimate**

Let j be a random index sampled from  $\{1, ..., n\}$  selected uniformly at random. Then

$$\mathbb{E}_j\left[\nabla f_j(w)\right] = \frac{1}{n} \sum \nabla f_i(w) = \nabla f(w)$$

Use  $\nabla f_j(w) \approx \nabla f(w)$ 



Stochastic Gradient Descent Algorithm  
Set 
$$w^0 = 0$$
, choose  $\alpha > 0$ .  
for  $t = 1, 2, 3, \dots, T$   
Sample  $j \in \{1, \dots, n\}$   
 $w^{t+1} = w^t - \alpha \nabla f_j(w^t)$   
Output  $w^{T+1}$ 



Strong Convexity

$$f(w) \ge f(y) + \langle \nabla f(y), w - y \rangle + \frac{\lambda}{2} ||w - y||_2^2$$
$$2\langle \nabla f(w), w - w^* \rangle \ge \lambda ||w - w^*||_2^2$$

**EXE:** Using that

$$\frac{\sigma_{\min}(A)^2}{2}||w-y||_2^2 \le \frac{1}{2}||A(w-y)||_2^2$$

Show that

$$\frac{1}{2}||Aw - b||_2^2 \ge \frac{1}{2}||Ay - b||_2^2 + \langle A^\top (Ay - b), w - y \rangle + \frac{\sigma_{\min}(A)^2}{2}||w - y||_2^2$$

Strong Convexity

Often the same as the regularization parameter

$$f(w) \ge f(y) + \langle \nabla f(y), w - y \rangle + \frac{\lambda}{2} ||w - y||_2^2$$
$$2\langle \nabla f(w), w - w^* \rangle \ge \lambda ||w - w^*||_2^2$$

**EXE:** Using that

$$\frac{\sigma_{\min}(A)^2}{2}||w-y||_2^2 \le \frac{1}{2}||A(w-y)||_2^2$$

Show that

$$\frac{1}{2}||Aw - b||_2^2 \ge \frac{1}{2}||Ay - b||_2^2 + \langle A^\top (Ay - b), w - y \rangle + \frac{\sigma_{\min}(A)^2}{2}||w - y||_2^2$$

**Strong Convexity** 

Often the same as the regularization parameter

$$f(w) \ge f(y) + \langle \nabla f(y), w - y \rangle + \frac{\lambda}{2} ||w - y||_2^2$$
$$2\langle \nabla f(w), w - w^* \rangle \ge \lambda ||w - w^*||_2^2$$

Strong conveyity

EXE: Using that  

$$\frac{\sigma_{\min}(A)^{2}}{2}||w-y||_{2}^{2} \leq \frac{1}{2}||A(w-y)||_{2}^{2}$$
Show that  

$$\frac{1}{2}||Aw-b||_{2}^{2} \geq \frac{1}{2}||Ay-b||_{2}^{2} + \langle A^{\top}(Ay-b), w-y \rangle + \frac{\sigma_{\min}(A)^{2}}{2}||w-y||_{2}^{2}$$

Strong Convexity

Often the same as the regularization parameter

$$f(w) \ge f(y) + \langle \nabla f(y), w - y \rangle + \frac{\lambda}{2} ||w - y||_2^2$$
  
 $2\langle \nabla f(w), w - w^* \rangle \ge \lambda ||w - w^*||_2^2$ 

Strong convexity

EXE: Using that  

$$\frac{\sigma_{\min}(A)^{2}}{2}||w-y||_{2}^{2} \leq \frac{1}{2}||A(w-y)||_{2}^{2}$$
Show that  

$$\frac{1}{2}||Aw-b||_{2}^{2} \geq \frac{1}{2}||Ay-b||_{2}^{2} + \langle A^{\top}(Ay-b), w-y \rangle + \frac{\sigma_{\min}(A)^{2}}{2}||w-y||_{2}^{2}$$

**Expected Bounded Stochastic Gradients** 

 $\mathbb{E}\left[||\nabla f_j(w^t)||_2^2\right] \leq B^2$ , for all iterates  $w^t$  of SGD

#### Example of Strong Convexity



#### Theorem

If  $\frac{1}{\lambda} \ge \alpha > 0$  then the iterates of the SGD method satisfy

$$\mathbb{E}\left[||w^{t} - w^{*}||_{2}^{2}\right] \leq (1 - \alpha\lambda)^{t} \mathbb{E}\left[||w^{0} - w^{*}||_{2}^{2}\right] + \frac{\alpha}{\lambda}B^{2}$$
  
Shows that  $\alpha \approx \frac{1}{\lambda}$  Shows that  $\alpha \approx 0$ 

#### **Proof:**

$$\begin{split} ||w^{t+1} - w^*||_2^2 &= ||w^t - w^* - \alpha \nabla f_j(w^t)||_2^2 \\ &= ||w^t - w^*||_2^2 - 2\alpha \langle \nabla f_j(w^t), w^t - w^* \rangle + \alpha^2 ||\nabla f_j(w^t)||_2^2. \end{split}$$
Taking expectation with respect to  $j$ 

$$\mathbb{E}_j \left[ ||w^{t+1} - w^*||_2^2 \right] &= ||w^t - w^*||_2^2 - 2\alpha \langle \nabla f(w^t), w^t - w^* \rangle + \alpha^2 \mathbb{E}_j \left[ ||\nabla f_j(w^t)||_2^2 \\ &\leq ||w^t - w^*||_2^2 - 2\alpha \langle \nabla f(w^t), w^t - w^* \rangle + \alpha^2 B^2 \\ \end{bmatrix}$$
Strong conv.  $\swarrow \leq (1 - \alpha \lambda) ||w^t - w^*||_2^2 + \alpha^2 B^2$ 
Taking total expectation
$$\mathbb{E} \left[ ||w^{t+1} - w^*||_2^2 \right] \leq (1 - \alpha \lambda) \mathbb{E} \left[ ||w^t - w^*||_2^2 + \alpha^2 B^2 \\ &= (1 - \alpha \lambda)^{t+1} ||w^0 - w^*||_2^2 + \sum_{i=0}^t (1 - \alpha \lambda)^i \alpha^2 B^2 \\ \end{bmatrix}$$
Using the geometric series sum
$$\sum_{i=0}^t (1 - \alpha \lambda)^i = \frac{1 - (1 - \alpha \mu)^{t+1}}{\alpha \lambda} \leq \frac{1}{\alpha \lambda}$$

$$\mathbb{E} \left[ ||w^{t+1} - w^*||_2^2 \right] \leq (1 - \alpha \lambda)^{t+1} ||w^0 - w^*||_2^2 + \frac{\alpha}{\lambda} B^2$$

П









Theorem (Shrinking stepsize)

If  $\alpha_t = \frac{1}{t\lambda}$  then the iterates of the SGD method satisfy

$$\mathbb{E}\left[||w^t - w^*||_2^2\right] \le \frac{4B^2}{t}$$

Stochastic Gradient Descent Algorithm Set  $w^0 = 0, \alpha_t = \frac{1}{t\lambda}$ . for  $t = 1, 2, 3, \dots, T$ Sor  $j \in \{1, \dots, n\}$   $w^{t+1} = w^t - \alpha_t \nabla f_j(w^t)$ Output  $w^{T+1}$ 

Theorem (Shrinking stepsize)

If  $\alpha_t = \frac{1}{t\lambda}$  then the iterates of the SGD method satisfy

$$\mathbb{E}\left[||w^t - w^*||_2^2\right] \le \frac{4B^2}{t} \qquad \qquad \text{Sublinear convergence}$$

Stochastic Gradient Descent Algorithm Set  $w^0 = 0, \alpha_t = \frac{1}{t\lambda}$ . for  $t = 1, 2, 3, \dots, T$ Sor  $j \in \{1, \dots, n\}$   $w^{t+1} = w^t - \alpha_t \nabla f_j(w^t)$ Output  $w^{T+1}$ 

Theorem (Shrinking stepsize)

If  $\alpha_t = \frac{1}{t\lambda}$  then the iterates of the SGD method satisfy

$$\mathbb{E}\left[||w^t - w^*||_2^2\right] \le \frac{4B^2}{t} \qquad \qquad \text{Sublinear convergence}$$

Stochastic Gradient Descent Algorithm Set  $w^0 = 0, \alpha_t = \frac{1}{t\lambda}$ . for  $t = 1, 2, 3, \dots, T$ Sor  $j \in \{1, \dots, n\}$   $w^{t+1} = w^t - \alpha_t \nabla f_j(w^t)$ Output  $w^{T+1}$ Shrinking Stepsize



















Maybe just an unbiased estimate is not enough.



### Variance reduced methods through Sketching



Instead of using directly  $\nabla f_j(w^t) \approx \nabla f(w^t)$ Use  $\nabla f_j(w^t)$  to update estimate  $g_t \approx \nabla f(w^t)$ 





Instead of using directly  $\nabla f_j(w^t) \approx \nabla f(w^t)$ Use  $\nabla f_j(w^t)$  to update estimate  $g_t \approx \nabla f(w^t)$ 



$$w^{t+1} = w^t - \alpha g^t$$

Ĵ

Instead of using directly  $\nabla f_j(w^t) \approx \nabla f(w^t)$ Use  $\nabla f_j(w^t)$  to update estimate  $g_t \approx \nabla f(w^t)$ 



$$w^{t+1} = w^t - \alpha g^t$$

We would like gradient estimate such that:

Unbiased

$$\mathbb{E}[g^t] = \nabla f(w^t)$$

Converges in L2

$$\mathbb{E}||g^t - \nabla f(w^t)||_2^2 \xrightarrow[w^t \to w^*]{} 0$$

Instead of using directly  $\nabla f_j(w^t) \approx \nabla f(w^t)$ Use  $\nabla f_j(w^t)$  to update estimate  $g_t \approx \nabla f(w^t)$ 



$$w^{t+1} = w^t - \alpha g^t$$

We would like gradient estimate such that:

Unbiased
$$\mathbb{E}[g^t] = \nabla f(w^t)$$
Solves problem of  
 $||\nabla f_j(w)||_2^2 \leq B^2$ Converges  
in L2 $\mathbb{E}[|g^t - \nabla f(w^t)||_2^2$  $\rightarrow 0$   
 $w^t \rightarrow w^*$
# Example: The Stochastic Average Gradient

Maintain  $J^t \approx [\nabla f_1(w^t), \dots, \nabla f_n(w^t)]$  and iterate

$$w^{t+1} = w^t - \frac{\alpha}{n} \sum_{i=1}^n J_i^t = w^t - \alpha g^t$$

Update  $J_i^t$ 's by sampling  $j \in \{1, \ldots, n\}$  uniformly at random and setting:

$$J_i^t = \begin{cases} J_i^t = \nabla f_i(w^t) & \text{if } i = j \\ J_i^t = J_i^{t-1} & \text{if } i \neq j \end{cases}$$



M. Schmidt, N. Le Roux, F. Bach (2016) Mathematical Programming Minimizing Finite Sums with the Stochastic Average Gradient.





How to prove this converges? Is this the only option?

## Introducing the Jacobian

$$\min_{w \in \mathbf{R}^d} f(w) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n f_i(w)$$

$$F(w) \stackrel{\text{def}}{=} (f_1(w), \dots, f_n(w))$$
$$DF(w) = (\nabla f_1(w), \dots, \nabla f_n(w))$$

## Introducing the Jacobian

$$\min_{w \in \mathbf{R}^d} f(w) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n f_i(w)$$

$$F(w) \stackrel{\text{def}}{=} (f_1(w), \dots, f_n(w))$$
$$DF(w) = (\nabla f_1(w), \dots, \nabla f_n(w))$$
$$\nabla f(w) = \frac{1}{n} DF(w) \mathbf{1}, \quad \text{where } \mathbf{1}^\top = (1, 1, \dots, 1) \in \mathbf{R}^n$$

# Introducing the Jacobian

$$\min_{w \in \mathbf{R}^d} f(w) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n f_i(w)$$

$$F(w) \stackrel{\text{def}}{=} (f_1(w), \dots, f_n(w))$$
$$DF(w) = (\nabla f_1(w), \dots, \nabla f_n(w))$$
$$\nabla f(w) = \frac{1}{n} DF(w) \mathbf{1}, \quad \text{where } \mathbf{1}^\top = (1, 1, \dots, 1) \in \mathbf{R}^n$$
$$\nabla f(w) \text{ is a dense linear meassurement of } DF(w)$$

Maintain  $J^t \approx [\nabla f_1(w^t), \dots, \nabla f_n(w^t)] = DF(w^t)$  and iterate

$$w^{t+1} = w^t - \frac{\alpha}{n} \sum_{i=1}^n J_i^t$$

Update  $J_i^t$ 's by sampling  $j \in \{1, ..., n\}$  uniformly at random and setting:

$$J_i^t = \begin{cases} J_i^t = \nabla f_i(w^t) & \text{if } i = j \\ J_i^t = J_i^{t-1} & \text{if } i \neq j \end{cases}$$

Is this the only option? How to prove this converges?

Maintain  $J^t \approx [\nabla f_1(w^t), \dots, \nabla f_n(w^t)] = DF(w^t)$  and iterate

$$w^{t+1} = w^t - \frac{\alpha}{n} \sum_{i=1}^n J_i^t$$
 Estimate of  $\frac{1}{n} DF(w^t) \mathbf{1}$ 

Update  $J_i^t$ 's by sampling  $j \in \{1, ..., n\}$  uniformly at random and setting:

$$J_i^t = \begin{cases} J_i^t = \nabla f_i(w^t) & \text{if } i = j \\ J_i^t = J_i^{t-1} & \text{if } i \neq j \end{cases}$$

Is this the only option? How to prove this converges?

Maintain  $J^t \approx [\nabla f_1(w^t), \dots, \nabla f_n(w^t)] = DF(w^t)$  and iterate

$$w^{t+1} = w^t - \frac{\alpha}{n} \sum_{i=1}^n J_i^t$$
 Estimate of  $\frac{1}{n} DF(w^t) \mathbf{1}$ 

Update  $J_i^t$ 's by sampling  $j \in \{1, ..., n\}$  uniformly at random and setting: Stoch. Linear Measurement  $DF(w^t)e_j$ 

$$J_i^t = \begin{cases} J_i^t = \nabla f_i(w^t) & \text{if } i = j \\ J_i^t = J_i^{t-1} & \text{if } i \neq j \end{cases}$$

Is this the only option? How to prove this converges?

## **Stochastic Sparse Sketches**

Sparse Stochastic Matrix

 $S \in \mathbf{R}^{n \times \tau}$  a sparse matrix and  $\tau \ll d$ 

 $S \sim \mathcal{D}$  fixed distribution



## **Stochastic Sparse Sketches**

Sparse Stochastic Matrix

 $S \in \mathbf{R}^{n \times \tau}$  a sparse matrix and  $\tau \ll d$ 

 $S \sim \mathcal{D}$  fixed distribution

Stochastic Sketch
$$DF(w)S = \sum_{i=1}^{\tau} DF(w)S_{:i}$$

#### Eg: SGD Sketch

 $S = e_j \in \mathbf{R}^d$  the *j*th unit coordinate vector with  $\mathbb{P}(S = e_j) = \frac{1}{n}$  $DF(x)S = \nabla f_j(w)$ 

## **Stochastic Sparse Sketches**

Eg: Mini-batch SGD Sketch

$$S = I_C \in \mathbf{R}^{n \times \tau}$$
 where  $C \subset \{1, \ldots, n\}$ 

$$DF(w)S = [\nabla f_{C_1}(w), \dots, \nabla f_{C_\tau}(w)]$$

Exe. 
$$\tau = 3, n = 6, \quad S = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 and  $DF(w)S = [\nabla f_1(w), \nabla f_4(w), \nabla f_6(w)]$ 

Many examples: Sparse Rademacher matrices, sampling with replacement, nonuniform...etc

Maintain Jacobian Estimate

 $J^{t-1} \approx DF(w^{t-1})$ 



Sample Stochastic Sketch $S \sim \mathcal{D}$  $DF(w^t)S$ 





Improved Guess $J^t \approx DF(w^t)$ 

Jacobian Sketching Algorithm Set  $\alpha > 0, w^1 = 0, J^0 \in \mathbb{R}^{d \times n}$ For  $t = 1, \dots, T$ Sample  $S \sim \mathcal{D}$ Calculate Sketch  $DF(w^t)S$ Update  $J^t$  using  $DF(w^t)S$  and  $J^{t-1}$ Calculate  $g^t = \frac{1}{n}J^t\mathbf{1}$ Step  $w^{t+1} = w^t - \alpha g^t$ .

Jacobian Sketching Algorithm Set  $\alpha > 0, w^1 = 0, J^0 \in \mathbb{R}^{d \times n}$ For  $t = 1, \ldots, T$ Sample  $S \sim \mathcal{D}$ Calculate Sketch  $DF(w^t)S$ Update  $J^t$  using  $DF(w^t)S$  and  $J^{t-1}$ Calculate  $g^t = \frac{1}{n}J^t\mathbf{1}$ Step  $w^{t+1} = w^t - \alpha g^t$ .  $\approx \frac{1}{n}DF(w)\mathbf{1}$ 



# Updating the Jacobian Estimate: Sketch and project

 $J^t = DF(w^t)$ 

# Updating the Jacobian Estimate: Sketch and project

#### $J^t S = DF(w^t)S, \quad S \sim \mathcal{D}$

# Updating the Jacobian Estimate: Sketch and project

$$J^{t} = \arg \min_{J \in \mathbb{R}^{d \times n}} ||J - J^{t-1}||_{F}^{2}$$
$$J^{t}S = DF(w^{t})S, \quad S \sim \mathcal{D}$$

```
Updating the Jacobian
Estimate:
Sketch and project
```

Sketch and Project the Jacobian  $J^{t} = \arg \min_{J \in \mathbb{R}^{d \times n}} ||J - J^{t-1}||_{F}^{2}$   $J^{t}S = DF(w^{t})S, \quad S \sim \mathcal{D}$ 

```
Updating the Jacobian
Estimate:
Sketch and project
```

Sketch and Project the Jacobian  

$$J^{t} = \arg \min_{J \in \mathbb{R}^{d \times n}} ||J - J^{t-1}||_{F}^{2}$$

$$J^{t}S = DF(w^{t})S, \quad S \sim \mathcal{D}$$



RMG and Peter Richtarik (2015) **Randomized iterative methods for linear systems** SIAM Journal on Matrix Analysis and Applications 36(4)

$$J^{t} = \arg \min_{J \in \mathbb{R}^{d \times n}} ||J - J^{t-1}||_{F}^{2}$$
  
subject to  $JS = DF(w^{t})S$ 

Show that the solution  $J^t$  is given by

Solution: 
$$J^t = J^{t-1} - (J^{t-1} - DF(w^t))S(S^{\top}S)^{-1}S^{\top}$$

**Proof:** The Lagrangian is given by

$$J^{t} = \arg \min_{J \in \mathbb{R}^{d \times n}} ||J - J^{t-1}||_{F}^{2}$$
  
subject to  $JS = DF(w^{t})S$ 

Show that the solution  $J^t$  is given by

Solution: 
$$J^t = J^{t-1} - (J^{t-1} - DF(w^t))S(S^{\top}S)^{-1}S^{\top}$$

**Proof:** The Lagrangian is given by

$$L(J,Y) := \frac{1}{2} ||J - J^{t-1}||_F^2 + \langle Y, (DF^t - J)S \rangle = \frac{1}{2} ||J - J^{t-1}||_F^2 + \langle YS^{\top}, DF^t - J \rangle$$

$$J^{t} = \arg \min_{J \in \mathbb{R}^{d \times n}} ||J - J^{t-1}||_{F}^{2}$$
  
subject to  $JS = DF(w^{t})S$ 

Show that the solution  $J^t$  is given by

Solution: 
$$J^t = J^{t-1} - (J^{t-1} - DF(w^t))S(S^{\top}S)^{-1}S^{\top}$$

**Proof:** The Lagrangian is given by  $L(J,Y) := \frac{1}{2} ||J - J^{t-1}||_F^2 + \langle Y, (DF^t - J)S \rangle$   $= \frac{1}{2} ||J - J^{t-1}||_F^2 + \langle YS^{\top}, DF^t - J \rangle$ 

(1)

Differentiating in J and setting to zero:  $YS^{\top} = J - J^{t-1}$ 

$$J^{t} = \arg \min_{J \in \mathbb{R}^{d \times n}} ||J - J^{t-1}||_{F}^{2}$$
  
subject to  $JS = DF(w^{t})S$ 

Show that the solution  $J^t$  is given by

Solution: 
$$J^t = J^{t-1} - (J^{t-1} - DF(w^t))S(S^{\top}S)^{-1}S^{\top}$$

**Proof:** The Lagrangian is given by

$$\begin{split} L(J,Y) &:= \frac{1}{2} ||J - J^{t-1}||_F^2 + \langle Y, (DF^t - J)S \rangle \\ &= \frac{1}{2} ||J - J^{t-1}||_F^2 + \langle YS^\top, DF^t - J \rangle \end{split}$$

Differentiating in J and setting to zero:  $YS^{\top} = J - J^{t-1}$  (1) Right multiplying by  $S(S^{\top}S)^{-1}$  gives :  $Y = (DF^t - J^{t-1})S(S^{\top}S)^{-1}$  (2)

$$J^{t} = \arg \min_{J \in \mathbb{R}^{d \times n}} ||J - J^{t-1}||_{F}^{2}$$
  
subject to  $JS = DF(w^{t})S$ 

Show that the solution  $J^t$  is given by

Solution: 
$$J^t = J^{t-1} - (J^{t-1} - DF(w^t))S(S^{\top}S)^{-1}S^{\top}$$

**Proof:** The Lagrangian is given by

$$\begin{split} L(J,Y) &:= \frac{1}{2} ||J - J^{t-1}||_F^2 + \langle Y, (DF^t - J)S \rangle \\ &= \frac{1}{2} ||J - J^{t-1}||_F^2 + \langle YS^\top, DF^t - J \rangle \end{split}$$

Differentiating in J and setting to zero:  $YS^{\top} = J - J^{t-1}$  (1) Right multiplying by  $S(S^{\top}S)^{-1}$  gives :  $Y = (DF^t - J^{t-1})S(S^{\top}S)^{-1}$  (2)

Substituting (1) into (2) gives the solution.

$$J^{t} = \arg \min_{J \in \mathbb{R}^{d \times n}} ||J - J^{t-1}||_{F}^{2}$$
  
subject to  $JS = DF(w^{t})S$ 

$$J^{t} = J^{t-1} - (J^{t-1} - DF(w^{t}))S(S^{\top}S)^{-1}S^{\top}$$

$$g^{t} = \frac{1}{n} J^{t-1} \mathbf{1} - \frac{\eta}{n} (J^{t-1} - DF(w^{t})) S(S^{\top}S)^{-1} S^{\top} \mathbf{1}$$

$$J^{t} = \arg \min_{J \in \mathbb{R}^{d \times n}} ||J - J^{t-1}||_{F}^{2}$$
  
subject to  $JS = DF(w^{t})S$ 

#### Solution:

$$J^{t} = J^{t-1} - (J^{t-1} - DF(w^{t}))S(S^{\top}S)^{-1}S^{\top}$$

$$g^{t} = \frac{1}{n} J^{t-1} \mathbf{1} - \frac{\eta}{n} (J^{t-1} - DF(w^{t})) S(S^{\top}S)^{-1} S^{\top} \mathbf{1}$$

If  $\eta = 1$  then  $g^t = \frac{1}{n}J^t \mathbf{1}$ 

$$J^{t} = \arg \min_{J \in \mathbb{R}^{d \times n}} ||J - J^{t-1}||_{F(W)}^{2}$$
  
subject to  $JS = DF(w^{t})S$ 

$$J^{t} = J^{t-1} - (J^{t-1} - DF(w^{t}))S(S^{\top}W^{-1}S)^{-1}S^{\top}W^{-1}$$

$$g^{t} = \frac{1}{n} J^{t-1} \mathbf{1} - \frac{\eta}{n} (J^{t-1} - DF(w^{t})) S(S^{\top} W^{-1} S)^{-1} S^{\top} W^{-1} \mathbf{1}$$

$$J^{t} = \arg \min_{J \in \mathbb{R}^{d \times n}} ||J - J^{t-1}||_{F}^{2}$$
  
subject to  $JS = DF(w^{t})S$ 

$$J^{t} = J^{t-1} - (J^{t-1} - DF(w^{t}))S(S^{\top}S)^{-1}S^{\top}$$

$$g^{t} = \frac{1}{n} J^{t-1} \mathbf{1} - \frac{\eta}{n} (J^{t-1} - DF(w^{t})) S(S^{\top}S)^{-1} S^{\top} \mathbf{1}$$

$$J^{t} = \arg \min_{J \in \mathbb{R}^{d \times n}} ||J - J^{t-1}||_{F}^{2}$$
  
subject to  $JS = DF(w^{t})S$ 

$$J^{t} = J^{t-1} - (J^{t-1} - DF(w^{t}))S(S^{\top}S)^{-1}S^{\top} =: P_{S}$$

$$g^{t} = \frac{1}{n} J^{t-1} \mathbf{1} - \frac{\eta}{n} (J^{t-1} - DF(w^{t})) S(S^{\top}S)^{-1} S^{\top} \mathbf{1}$$

# **Unbiased Condition**

**Lemma.** If  $(\frac{1}{n}, \mathbf{1})$  is an eigenpair of  $\mathbb{E}[P_S]$  then

 $\mathbb{E}_S[g^t] = \nabla f(w^t)$ 

consequently  $g^t$  is an unbiased estimator.

**Proof:** 
$$g^t = g^{t-1} - \frac{\eta}{n} (J^{t-1} - DF(w^t)) S(S^\top S)^{-1} S^\top \mathbf{1}$$

# **Unbiased Condition**

**Lemma.** If  $(\frac{1}{n}, \mathbf{1})$  is an eigenpair of  $\mathbb{E}[P_S]$  then

 $\mathbb{E}_S[g^t] = \nabla f(w^t)$ 

consequently  $g^t$  is an unbiased estimator.

**Proof:** 
$$g^t = g^{t-1} - \frac{\eta}{n} (J^{t-1} - DF(w^t)) S(S^\top S)^{-1} S^\top \mathbf{1}$$

# **Unbiased Condition**

**Lemma.** If  $(\frac{1}{n}, \mathbf{1})$  is an eigenpair of  $\mathbb{E}[P_S]$  then

 $\mathbb{E}_S[g^t] = \nabla f(w^t)$ 

consequently  $g^t$  is an unbiased estimator.

$$\begin{aligned} \mathbf{Proof:} \quad g^{t} &= g^{t-1} - \frac{\eta}{n} (J^{t-1} - DF(w^{t})) S(S^{\top}S)^{-1}S^{\top}\mathbf{1} \\ & \mathbb{E}_{S}[g^{t}] = \frac{1}{n} J^{t-1}\mathbf{1} - \frac{\eta}{n} (J^{t-1} - DF(w^{t})) \mathbb{E}_{S}[S(S^{\top}S)^{-1}S^{\top}]\mathbf{1} \\ &= \frac{1}{n} J^{t-1}\mathbf{1} - \frac{\eta}{n\eta} (J^{t-1} - DF(w^{t}))\mathbf{1} \quad P_{S} \\ &= \frac{1}{n} J^{t-1}\mathbf{1} - \frac{1}{n} J^{t-1}\mathbf{1} + \frac{1}{n} DF(w^{t}))\mathbf{1} \quad = \quad \nabla f(w^{t}) \end{aligned}$$

Let 
$$\mathbb{P}[S = e_i] = \frac{1}{n}$$
 for  $i = 1, ..., n$ . Show that

$$\mathbb{E}[P_S]\mathbf{1} = \mathbb{E}[S(S^{\top}S)^{-1}S^{\top}]\mathbf{1} = \frac{1}{n}\mathbf{1}$$

**Proof:**
# Exercise

Let 
$$\mathbb{P}[S = e_i] = \frac{1}{n}$$
 for  $i = 1, ..., n$ . Show that

$$\mathbb{E}[P_S]\mathbf{1} = \mathbb{E}[S(S^{\top}S)^{-1}S^{\top}]\mathbf{1} = \frac{1}{n}\mathbf{1}$$

**Proof:** 

## Exercise

Let 
$$\mathbb{P}[S = e_i] = \frac{1}{n}$$
 for  $i = 1, ..., n$ . Show that

$$\mathbb{E}[P_S]\mathbf{1} = \mathbb{E}[S(S^{\top}S)^{-1}S^{\top}]\mathbf{1} = \frac{1}{n}\mathbf{1}$$

Proof:  $\mathbb{E}[S(S^{\top}S)^{-1}S^{\top}]\mathbf{1} = \sum_{i=1}^{n} \frac{1}{n} \frac{e_i e_i^{\top}}{e_i^{\top} e_i}$  $= \frac{1}{n} \sum_{i=1}^{n} e_i e_i^{\top} \mathbf{1}$  $= \frac{1}{n} I \mathbf{1} = \frac{1}{n} \mathbf{1}$ 

## A Jacobian Based Method

#### Archetype Jacobian Sketching Algorithm

Choose distribution 
$$\mathcal{D}$$
 and unbiased  $\eta > 0$   
Set  $\alpha > 0, w^1 = 0, J^0 \in \mathbb{R}^{d \times n}$   
For  $t = 1, \dots, T$   
Sample  $S \sim \mathcal{D}$   
Calculate Sketch  $DF(w^t)S$   
Update  $J^t = J^{t-1} - (J^{t-1} - DF(w^t))S(S^\top S)^{-1}S^\top$   
Calculate  $g^t = \frac{1}{n}J^{t-1}\mathbf{1} - \frac{\eta}{n}(J^{t-1} - DF(w^t))S(S^\top S)^{-1}S^\top \mathbf{1}$   
Step  $w^{t+1} = w^t - \alpha g^t$ 

# A Jacobian Based Method

#### Archetype Jacobian Sketching Algorithm

Choose distribution 
$$\mathcal{D}$$
 and unbiased  $\eta > 0$   
Set  $\alpha > 0, w^1 = 0, J^0 \in \mathbb{R}^{d \times n}$   
For  $t = 1, \dots, T$   
Sample  $S \sim \mathcal{D}$   
Calculate Sketch  $DF(w^t)S$   
Update  $J^t = J^{t-1} - (J^{t-1} - DF(w^t))S(S^\top S)^{-1}S^\top$   
Calculate  $g^t = \frac{1}{n}J^{t-1}\mathbf{1} - \frac{\eta}{n}(J^{t-1} - DF(w^t))S(S^\top S)^{-1}S^\top \mathbf{1}$   
Step  $w^{t+1} = w^t - \alpha g^t$   
Looks expensive and  
complicated Investigate

### **Example: minibatch-SAGA**

Homework:

Let  $C \subset \{1, \ldots, n\}$  with  $|C| = \tau$  and  $\mathbb{P}[S = I_C] = \frac{1}{\binom{n}{\tau}}$ 

$$\mathbb{E}[P_S]\mathbf{1} = \frac{\tau}{n}\mathbf{1}$$

Exe. 
$$\tau = 3, n = 6, \quad S = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 and  $DF(w)$ 

and  $DF(w)S = [\nabla f_1(w), \nabla f_4(w), \nabla f_6(w)]$ 

### Example: minibatch-SAGA

Homework:

Let  $C \subset \{1, \ldots, n\}$  with  $|C| = \tau$  and  $\mathbb{P}[S = I_C] = \frac{1}{\binom{n}{\tau}}$ 

$$\mathbb{E}[P_S]\mathbf{1} = \frac{\tau}{n}\mathbf{1}$$

Exe. 
$$\tau = 3, n = 6, \quad S = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 and  $DF(w)S = [\nabla f_1(w), \nabla f_4(w), \nabla f_6(w)]$ 

Jacobain update

$$J_j^t = \begin{cases} \nabla f_j(w^t) & \text{if } j \in C, \\ J_j^{t-1} & \text{if } j \neq C. \end{cases}$$

Gradiant estimate 
$$g^t = \frac{1}{n} J^{t-1} \mathbf{1} - \frac{1}{\tau} \sum_{j \in C} (J_j^{t-1} - \nabla f_j(w^t))$$

Proving Convergence of Variance reduced methods