
Randomized Quasi-Newton Updates

are Linearly Convergent Matrix Inversion Algorithms

Robert M. Gower and Peter Richtárik∗

School of Mathematics
University of Edinburgh

United Kingdom

February 4, 2016

Abstract

We develop and analyze a broad family of stochastic/randomized algorithms for inverting a
matrix. We also develop a specialized variant which maintains symmetry or positive definite-
ness of the iterates. All methods in the family converge globally and linearly (i.e., the error
decays exponentially), with explicit rates. In special cases, we obtain stochastic block variants
of several quasi-Newton updates, including bad Broyden (BB), good Broyden (GB), Powell-
symmetric-Broyden (PSB), Davidon-Fletcher-Powell (DFP) and Broyden-Fletcher-Goldfarb-
Shanno (BFGS). Ours are the first stochastic versions of these updates shown to converge
to an inverse of a fixed matrix. Through a dual viewpoint we uncover a fundamental link be-
tween quasi-Newton updates and approximate inverse preconditioning. Further, we develop an
adaptive variant of randomized block BFGS, where we modify the distribution underlying the
stochasticity of the method throughout the iterative process to achieve faster convergence. By
inverting several matrices from varied applications, we demonstrate that AdaRBFGS is highly
competitive when compared to the well established Newton-Schulz and minimal residual meth-
ods. In particular, on large-scale problems our method outperforms the standard methods by
orders of magnitude. Development of efficient methods for estimating the inverse of very large
matrices is a much needed tool for preconditioning and variable metric methods in the advent
of the big data era.

∗This author would like to acknowledge support from the EPSRC Grant EP/K02325X/1, Accelerated Coordinate
Descent Methods for Big Data Optimization and the EPSRC Fellowship EP/N005538/1, Randomized Algorithms for
Extreme Convex Optimization.

Contents

1 Introduction 1
1.1 Outline . 1
1.2 Notation . 2

2 Contributions 2
2.1 New algorithms . 2
2.2 Dual formulation . 3
2.3 Quasi-Newton updates and approximate inverse preconditioning 3
2.4 Complexity: general results . 3
2.5 Complexity: discrete distributions . 4
2.6 Adaptive randomized BFGS . 4
2.7 Previous work . 4
2.8 Extensions . 5

3 Randomization of Quasi-Newton Updates 5
3.1 Quasi-Newton methods . 5
3.2 Quasi-Newton updates . 6
3.3 Randomized quasi-Newton updates . 7

4 Inverting Nonsymmetric Matrices 7
4.1 Projection viewpoint: sketch-and-project . 8
4.2 Optimization viewpoint: constrain-and-approximate 8
4.3 Equivalence . 9
4.4 Relation to multiple linear systems . 11

5 Inverting Symmetric Matrices 11
5.1 Projection viewpoint: sketch-and-project . 12
5.2 Optimization viewpoint: constrain-and-approximate 12
5.3 Equivalence . 12

6 Convergence 14
6.1 Norm of the expected error . 16
6.2 Expectation of the norm of the error . 18

7 Discrete Random Matrices 19
7.1 Optimizing an upper bound on the convergence rate 20
7.2 Convenient sampling . 22
7.3 Optimal and adaptive samplings . 22

8 Randomized Quasi-Newton Updates 23
8.1 One Step Update . 24
8.2 Simultaneous Randomized Kaczmarz Update . 24
8.3 Randomized Bad Broyden Update . 25
8.4 Randomized Powell-Symmetric-Broyden Update . 25
8.5 Randomized Good Broyden Update . 26
8.6 Approximate Inverse Preconditioning . 26
8.7 Randomized SR1 . 27

8.8 Randomized DFP Update . 27
8.9 Randomized BFGS Update . 28
8.10 Randomized Column Update . 29

9 AdaRBFGS: Adaptive Randomized BFGS 29
9.1 Motivation . 29
9.2 The algorithm . 30
9.3 Implementation . 31

10 Numerical Experiments 32
10.1 Experiment 1: synthetic matrices . 33
10.2 Experiment 2: LIBSVM matrices . 33
10.3 Experiment 3: UF sparse matrices . 33

11 Conclusion 34

12 Appendix: Optimizing the Convergence Rate 39

13 Appendix: Numerical Experiments with the Same Starting Matrix 39

1 Introduction

Matrix inversion is a standard tool in numerics, needed for instance, in computing a projection
matrix or a Schur complement, which are common place calculations in computational methods.
When only an approximate inverse is required, then iterative methods are the methods of choice, for
they can terminate the iterative process when the desired accuracy is reached. This can be far more
efficient than using a direct method. Calculating an approximate inverse is a much needed tool
in preconditioning [32] and, if the approximate inverse is guaranteed to be positive definite, then
the iterative scheme can be used to design variable metric optimization methods. Furthermore,
iterative methods can make use of an initial estimate of the inverse when available.

The driving motivation of this work is the need to develop algorithms capable of computing the
inverse of very large matrices, where standard techniques take an exacerbating amount of time or
simply fail. In particular, we develop a family of randomized/stochastic methods for inverting a
matrix, with specialized variants maintaining symmetry or positive definiteness of the iterates. All
methods in the family converge globally (i.e., from any starting point) and linearly (i.e., the error
decays exponentially). We give an explicit expression for the convergence rate.

As special cases, we obtain stochastic block variants of several quasi-Newton updates, includ-
ing bad Broyden (BB), good Broyden (GB), Powell-symmetric-Broyden (PSB), Davidon-Fletcher-
Powell (DFP) and Broyden-Fletcher-Goldfarb-Shanno (BFGS). To the best of our knowledge, these
are first stochastic versions of quasi-Newton updates. Moreover, this is the first time that quasi-
Newton methods are shown to be iterative methods for inverting a matrix. We also offer a new
interpretation of the quasi-Newton methods through a Lagrangian dual viewpoint. This new view-
point uncovers a fundamental link between quasi-Newton updates and approximate inverse precon-
ditioning.

We develop an adaptive variant of randomized block BFGS, in which we modify the distribu-
tion underlying the stochasticity of the method throughout the iterative process to achieve faster
convergence. Through extensive numerical experiments with matrices arising from several applica-
tions, we demonstrate that AdaRBFGS is highly competitive when compared to the well established
Newton-Schulz and minimal residual methods. In particular, on large-scale problems our method
outperforms the standard methods by orders of magnitude.

The development of efficient methods for estimating the inverse of very large matrices is a much
needed tool for preconditioning and variable metric methods in the advent of the big data era.

1.1 Outline

The rest of the paper is organized as follows. In Section 2 we summarize the main contributions
of this paper. In Section 3 we describe the quasi-Newton methods, which is the main inspiration
of our methods. Subsequently, Section 4 describes two algorithms, each corresponding to a variant
of the inverse equation, for inverting general square matrices. We also provide insightful dual
viewpoints for both methods. In Section 5 we describe a method specialized to inverting symmetric
matrices. Convergence in expectation is examined in Section 6, were we consider two types of
convergence: the convergence of i) the expected norm of the error, and the convergence of ii) the
norm of the expected error. In Section 7 we specialize our methods to discrete distributions, and
comment on how one may construct a probability distribution leading to the best complexity rate
(i.e., importance sampling). We then describe a convenient probability distribution which leads
to convergence rates which can be described in terms of spectral properties of the original matrix
to be inverted. In Section 8 we detail several instantiations of our family of methods, and their
resulting convergence rates. We show how via the choice of the parameters of the method, we

1

obtain stochastic block variants of several well known quasi Newton methods. We also describe
the simultaneous randomized Kaczmarz method here. Section 9 is dedicated to the development
of an adaptive variant of our randomized BFGS method, AdaRBFS, for inverting positive definite
matrices. This method adaptively changes the stochasticity of the method throughout the iterative
process to obtain faster practical convergence behaviour. Finally, in Section 10 we show through
numerical tests that AdaRBFGS significantly outperforms state-of-the-art iterative matrix inversion
methods on large-scale matrices.

1.2 Notation

Let I denote the n× n identity matrix. Let

〈X,Y 〉F (W−1)
def
= Tr

(
XTW−1YW−1

)
,

denote the weighted Frobenius inner product, where X,Y ∈ Rn×n and W ∈ Rn×n is a symmetric
positive definite “weight” matrix. As the trace is invariant under cyclic permutations, a fact we
use repeatedly throughout the article, we have

‖X‖2F (W−1) = Tr
(
XTW−1XW−1

)
= Tr

(
W−1/2XTW−1XW−1/2

)
=
∥∥∥W−1/2XW−1/2

∥∥∥2

F
, (1)

where we have used the convention F = F (I), since ‖ · ‖F (I) is the standard Frobenius norm. Let
‖·‖2 denote the induced operator norm for square matrices defined via

‖Y ‖2
def
= max
‖v‖2=1

‖Y v‖2 .

Finally, for positive definite W ∈ Rn×n, we define the weighted induced norm via

‖Y ‖W−1
def
=
∥∥∥W−1/2YW−1/2

∥∥∥
2
.

2 Contributions

In this section we describe the main contributions of this paper.

2.1 New algorithms

We develop a novel and surprisingly simple family of stochastic algorithms for inverting matrices.
The problem of finding the inverse of an n× n invertible matrix A can be characterized as finding
the solution to either of the inverse equations1 AX = I or XA = I. Our methods make use of
randomized sketching [30, 15, 29, 31] to reduce the dimension of the inverse equations in an iterative
fashion. To the best of our knowledge, these are the first stochastic algorithms for inverting a matrix
with global complexity rates.

In particular, our nonsymmetric method (Algorithm 1) is based on the inverse equation AX = I,
and performs the sketch-and-project iteration

Xk+1 = arg min
X∈Rn×n

1
2 ‖X −Xk‖2F (W−1) subject to STAX = ST , (2)

1One may use other equations uniquely defining the inverse, such as AXA = A, but we do not explore these in
this paper.

2

where S ∈ Rn×q is a random matrix drawn in an i.i.d. fashion from a fixed distribution D, and
W ∈ Rn×n is the positive definite “weight” matrix. The distribution D and matrix W are the
parameters of the method. Note that if we choose q � n, the constraint in the projection problem
(2) will be of a much smaller dimension than the original inverse equation, and hence the iteration
(2) will become cheap.

In an analogous way, we design a method based on the inverse equation XA = I (Algorithm 2).
By adding the symmetry constraint X = XT , we obtain Algorithm 3—a specialized method for
inverting symmetric matrices capable of maintaining symmetric iterates.

2.2 Dual formulation

Besides the primal formulation described in Section 2.1—sketch-and-project—we also provide dual
formulations of all three methods (Algorithms 1, 2 and 3). For instance, the dual formulation of
(2) is

Xk+1 = argX min
X∈Rn×n,Y ∈Rn×q

1
2

∥∥Xk −A−1
∥∥2

F (W−1)
subject to X = Xk +WATSY T . (3)

We call the dual formulation constrain-and-approximate as one seeks to perform the best approx-
imation of the inverse (with respect to the weighted Frobenius distance) while constraining the
search to a random affine space of matrices passing through Xk. While the projection (3) cannot
be performed directly since A−1 is not known, it can be performed indirectly via the equivalent
primal formulation (2).

2.3 Quasi-Newton updates and approximate inverse preconditioning

As we will discuss in Section 3, through the lens of the sketch-and-project formulation, Algorithm 3
can be seen as randomized block extension of the quasi-Newton updates [4, 10, 12, 34]. We distinguish
here between quasi-Newton methods, which are algorithms used in optimization, and quasi-Newton
updates, which are the matrix-update rules used in the quasi-Newton methods. Standard quasi-
Newton updates work with q = 1 (“block” refers to the choice q > 1) and S chosen in a deterministic
and way, depending on the sequence of iterates of the underlying optimization problem. To the
best of our knowledge, this is the first time stochastic versions of quasi-Newton updates were
designed and analyzed. On the other hand, through the lens of the constrain-and-approximate
formulation, our methods can be seen as new variants of the approximate inverse preconditioning
(AIP) methods [6, 32, 13, 1]. Moreover, the equivalence between these two formulations reveals
deep connections between what were before seen as distinct fields: the quasi-Newton and AIP
literature. Our work also provides several new insights for deterministic quasi-Newton updates.
For instance, the bad Broyden update [4, 19] is a particular best rank-1 update that minimizes the
distance to the inverse of A under the Frobenius norm. The BFGS update [4, 10, 12, 34] can be seen
as a projection of A−1 onto a space of rank-2 symmetric matrices. To the best of our knowledge,
this has not been observed before.

2.4 Complexity: general results

Our framework leads to global linear convergence (i.e., exponential decay) under very weak as-
sumptions on D. In particular, we provide an explicit convergence rate ρ for the exponential decay
of the norm of the expected error of the iterates (line 2 of Table 1) and the expected norm of the
error (line 3 of Table 1), where the rate is given by

ρ = 1− λmin(W 1/2E [Z]W 1/2), (4)

3

E
[
Xk+1 −A−1

]
= (I −WE [Z]) E

[
Xk+1 −A−1

]
Theorem 4.1∥∥E [Xk+1 −A−1

]∥∥2

W−1 ≤ ρ2 ·
∥∥E [Xk+1 −A−1

]∥∥2

W−1 Theorem 6.1

E
[∥∥Xk+1 −A−1

∥∥2

F (W−1)

]
≤ ρ · E

[∥∥Xk+1 −A−1
∥∥2

F (W−1)

]
Theorem 6.2

Table 1: Our main complexity results.

where
Z

def
= ATS(STAWATS)−1SAT .

We show that the converges rate ρ is always bounded between 0 and 1. Furthermore, we provide
a lower bound on ρ that shows that the rate can potentially improve as the number of columns
in S increases. This sets our method apart from current methods for inverting matrices that lack
global guarantees, such as Newton-Schulz, or the self-conditioning variants of the minimal residual
method.

2.5 Complexity: discrete distributions

We detail a convenient choice of probability for discrete distributions D that gives easy-to-interpret
convergence results depending on a scaled condition number of A. With this convenient probability
distribution we obtain methods for inverting matrices with the same convergence rate as the ran-
domized Kaczmarz method [36] and randomized coordinate descent [23] for solving linear systems.
We also obtain importance sampling results by optimizing an upper bound on the convergence rate.

2.6 Adaptive randomized BFGS

We develop an additional highly efficient method—adaptive randomized BFGS (AdaRBFGS)—
for calculating an approximate inverse of positive definite matrices. Not only does the method
greatly outperform the state-of-the-art methods such as Newton-Schulz and approximate inverse
preconditioning methods, but it also preserves positive definiteness, a quality not present in previous
methods. Therefore, AdaRBFGS can be used to precondition positive definite systems and to design
new variable-metric optimization methods. Since the inspiration behind this method comes from
the desire to design an optimal adaptive distribution for S by examining the complexity rate ρ, this
work also highlights the importance of developing algorithms with explicit convergence rates.

2.7 Previous work

A widely used iterative method for inverting matrices is the Newton-Schulz method [33] introduced
in 1933, and its variants which is still subject of ongoing research [25]. The drawback of the Newton-
Schulz methods is that they do not converge for any initial estimate. Instead, an initial estimate
that is close to A−1 (in some norm) is required. In contrast, the methods we present converge
globally for any initial estimate. Bingham [3] describes a method that uses the characteristic
polynomial to recursively calculate the inverse, though it requires the calculating the coefficients of
the polynomial when initiated, which is costly, and the method has fallen into disuse. Goldfarb [11]

4

uses Broyden’s method [4] for iteratively inverting matrices. Our methods include a stochastic
variant of Broyden’s method.

The approximate inverse preconditioning (AIP) methods [6, 32, 13, 1] calculate an approximate
inverse by minimizing in X ∈ Rn×n the residual ‖XA− I‖F (Frobenius norm). They accomplish
this by applying a number of iterations of the steepest descent or minimal residual method. A
considerable drawback of the AIP methods, is that the approximate inverses are not guaranteed to
be positive definite nor symmetric, even when A is both. A solution to the lack of symmetry is to
“symmetrize” the estimate between iterations, but then it is difficult to guarantee the quality of
the new symmetric estimate. Another solution is to calculate directly a factored form LLT = X
and minimize in L the residual

∥∥LTAL− I∥∥
F

. But now this residual is a non-convex function, and
is thus difficult to minimize. A variant of our method naturally maintains symmetry of the iterates.

2.8 Extensions

This work opens up many possible avenues for extensions. For instance, new efficient methods could
be achieved by experimenting and analyzing through our framework with different sophisticated
sketching matrices S, such as the Walsh-Hadamard matrix [26, 30]. Furthermore, our method
produces low rank estimates of the inverse and can be adapted to calculate low rank estimates of
any matrix. Our methods can be applied to non-invertible matrices A, in which case they converge
to a particular pseudo-inverse.

Our results can be used to push forward work into stochastic variable metric methods. Such
as the work by Leventhal and Lewis [24], where they present a randomized iterative method for
estimating Hessian matrices that converge in expectation with known convergence rates for any
initial estimate. Stich et al. [35] use Leventhal and Lewis’ method to design a stochastic variable
metric method for black-box minimization, with explicit convergence rates, and promising numeric
results. We leave these and other extensions to future work.

3 Randomization of Quasi-Newton Updates

Our methods are inspired by, and in some cases can be considered to be, randomized block variants
of the quasi-Newton updates. In this section we explain how our algorithms arise naturally from the
quasi-Newton setting. Readers familiar with quasi-Newton methods may jump ahead to Section 3.3.

3.1 Quasi-Newton methods

A problem of fundamental interest in optimization is the unconstrained minimization problem

min
x∈Rn

f(x), (5)

where f : Rn → R is a sufficiently smooth function. Quasi-Newton (QN) methods, first proposed
by Davidon in 1959 [7], are an extremely powerful and popular class of algorithms for solving this
problem, especially in the regime of moderately large n. In each iteration of a QN method, one
approximates the function locally around the current iterate xk by a quadratic of the form

f(xk + s) ≈ f(xk) + (∇f(xk))
T s+

1

2
sTBks, (6)

where Bk is a suitably chosen approximation of the Hessian: Bk ≈ ∇2f(xk). After this, a direction
sk is computed by minimizing the quadratic approximation in s, obtaining

sk = −B−1
k ∇f(xk), (7)

5

if the matrix Bk is invertible. The next iterate is then set to

xk+1 = xk + hk, hk = αksk,

for a suitable choice of stepsize αk, often chosen by a line-search procedure (i.e., by approximately
minimizing f(xk + αsk) in α).

Gradient descent arises as a special case of this process by choosing Bk to be constant throughout
the iterations. A popular choice is Bk = LI, where I is the identity matrix and L ∈ R+ is the
Lipschitz constant of the gradient of f . In such a case, the quadratic approximation (6) is a global
upper bound on f(xk + s), which means that f(xk + sk) is guaranteed to be at least as good (i.e.,
smaller or equal) as f(xk), leading to guaranteed descent. Newton’s method also arises as a special
case: by choosing Bk = ∇2f(xk). These two algorithms are extreme cases on the opposite end of
a spectrum. Gradient descent benefits from a trivial update rule for Bk and from cheap iterations
due to the fact that no linear systems need to be solved. However, curvature information is largely
ignored, which slows down the practical convergence of the method. Newton’s method utilizes the
full curvature information contained in the Hessian, but requires the computation of the Hessian in
each step, which is expensive for large n. QN methods aim to find a sweet spot on the continuum
between these two extremes. In particular, the QN methods choose Bk+1 to be a matrix for which
the secant equation is satisfied:

Bk+1(xk+1 − xk) = ∇f(xk+1)−∇f(xk). (8)

The basic reasoning behind this requirement is the following: if f is a convex quadratic then
the Hessian matrix satisfies the secant equation for all pairs of vectors xk+1 and xk. If f is not a
quadratic, the reasoning is as follows. Using the fundamental theorem of calculus, we have that(∫ 1

0
∇2f(xk + thk) dt

)
(xk+1 − xk) = ∇f(xk+1)−∇f(xk).

By selecting Bk+1 that satisfies the secant equation, we are enforcing that Bk+1 mimics the action
of the integrated Hessian along the line segment joining xk and xk+1. Unless n = 1, the secant
equation (8) does not have a unique solution in Bk+1. All QN methods differ only in which particular
solution is used. The formulas transforming Bk to Bk+1 are called QN updates.

Since these matrices are used to compute the direction sk via (7), it is often more reasonable
to instead maintain a sequence of inverses Xk = B−1

k . By multiplying both sides of (8) by Xk+1,
we arrive at the secant equation for the inverse:

Xk+1(∇f(xk+1)−∇f(xk)) = xk+1 − xk. (9)

The most popular classes of QN updates choose Xk+1 as the closest matrix to Xk, in a suitable
norm (usually a weighted Frobenius norm with various weight matrices), subject to the secant
equation, often with an explicit symmetry constraint:

Xk+1 = arg min
X

{
‖X −Xk‖ : Xyk = hk, X = XT

}
, (10)

where yk = ∇f(xk+1)−∇f(xk),

3.2 Quasi-Newton updates

Consider now problem (5) with the quadratic objective

f(x) =
1

2
xTAx− bTx+ c, (11)

6

where A is an n× n symmetric positive definite matrix, b ∈ Rn and c ∈ R. Granted, this is not a
typical problem for which QN methods would be used by a practitioner. Indeed, the Hessian of f
does not change, and hence one does not have to track it. The problem can simply be solved by
setting the gradient to zero, which leads to the system Ax = b, the solution being x∗ = A−1b. As
solving a linear system is much simpler than computing the inverse A−1, approximately tracking the
(inverse) Hessian of f along the path of the iterates {xk}—the basic strategy of all QN methods—
seems like too much effort for what is ultimately a much simpler problem.

However, and this is one of the main insights of this work, instead of viewing QN methods as
optimization algorithms, we can alternatively interpret them as iterative algorithms producing a
sequence of matrices, {Bk} or {Xk}, hopefully converging to some matrix of interest. In particular,
one would hope that if a QN method is applied to the quadratic problem (11), with any symmetric
positive definite initial guess X0, then the sequence {Xk} converges to A−1.

For f given by (11), the QN updates of the minimum distance variety given by (10) take the
form

Xk+1 = arg min
X

{
‖X −Xk‖ : XAhk = hk, X = XT

}
. (12)

3.3 Randomized quasi-Newton updates

While the motivation for our work comes from optimization, having arrived at the update (12),
we can dispense of some of the implicit assumptions and propose and analyze a wider class of
methods. In particular, in this paper we analyze a large class of randomized algorithms of the type
(12), where the vector hk is replaced by a random matrix S and A is any invertible2, and not
necessarily symmetric or positive definite matrix. This constitutes a randomized block extension
of the QN updates.

4 Inverting Nonsymmetric Matrices

In this paper we are concerned with the development and complexity analysis of a family of stochas-
tic algorithms for computing the inverse of a nonsingular matrix A ∈ Rn×n. The starting point
in the development of our methods is the simple observation that the inverse A−1 is the (unique)
solution of a linear matrix equation, which we shall refer to as inverse equation:

AX = I. (13)

Alternatively, one can use the inverse equation XA = I instead. Since (13) is difficult to solve
directly, our approach is to iteratively solve a small randomly relaxed version of (13). That is, we
choose a random matrix S ∈ Rn×q, with q � n, and instead solve the following sketched inverse
equation:

STAX = ST . (14)

If we base the method on the second inverse equation, the sketched inverse equation XAS = S
should be used instead. Note that A−1 satisfies (14). If q � n, the sketched inverse equation is of
a much smaller dimension than the original inverse equation, and hence easier to solve. However,
the equation will no longer have a unique solution and in order to design an algorithm, we need a
way of picking a particular solution. Our algorithm defines Xk+1 to be the solution that is closest

2In fact, one can apply the method to an arbitrary real matrix A, in which case the iterates {Xk} converge to
the Moore-Penrose pseudoinverse of A. However, this development is outside the scope of this paper, and is left for
future work.

7

to the current iterate Xk in a weighted Frobenius norm. This is repeated in an iterative fashion,
each time drawing S independently from a fixed distribution D.

The distribution D and the matrix W can be seen as parameters of our method. The flexibility
of being able to adjust D and W is important: by varying these parameters we obtain various
specific instantiations of the generic method, with varying properties and convergence rates. This
gives the practitioner the flexibility to adjust the method to the structure of A, to the computing
environment and so on. As we shall see in Section 8, for various choices of these parameters we
recover stochastic block variants of several well known quasi-Newton updates.

4.1 Projection viewpoint: sketch-and-project

The next iterate Xk+1 is the nearest point to Xk that satisfies a sketched version of the inverse
equation:

Xk+1 = arg min
X

1

2
‖X −Xk‖2F (W−1) subject to STAX = ST (15)

In the special case when S = I, the only such matrix is the inverse itself, and (15) is not helpful.
However, if S is “simple”, (15) will be easy to compute and the hope is that through a sequence of
such steps, where the matrices S are sampled in an i.i.d. fashion from some distribution, Xk will
converge to A−1.

Alternatively, we can sketch the equation XA = I and project onto XAS = S:

Xk+1 = arg min
X

1

2
‖X −Xk‖2F (W−1) subject to XAS = S (16)

While the method (15) sketches the rows of A, the method (15) sketches the columns of A.
Thus we refer to (15) as the row variant and to (16) as the column variant. The two variants (15)
and (16) both converge to the inverse of A, as will be established in Section 6.

If A is singular, then the iterates of (16) converge to the left inverse, while the iterates of (15)
converge to the right inverse, an observation we leave to future work.

4.2 Optimization viewpoint: constrain-and-approximate

The row sketch-and-project method can be cast in an apparently different yet equivalent viewpoint:

Xk+1 = argX min
X,Y

1

2

∥∥X −A−1
∥∥2

F (W−1)
subject to X = Xk +WATSY T (17)

In this viewpoint, at each iteration (17), we select a random affine space that passes through Xk.
After that, we select the point in this space that is as close as possible to the inverse. This random
search space is special in that, independently of the input pair (W,S) we can efficiently compute
the projection of A−1 onto this space, without knowing A−1 explicitly.

The column variant (16) also has an equivalent constrain-and-approximate formulation:

Xk+1 = argX min
X,Y

1

2

∥∥X −A−1
∥∥2

F (W−1)
subject to X = Xk + Y STATW (18)

These two variants (17) and (18) can be viewed as new variants of the approximate inverse
preconditioner (AIP) methods [1, 13, 22, 21]. The AIP methods are a class of methods for com-
puting approximate inverses of A by minimizing ‖XA− I‖F via iterative optimization algorithms.

8

In particular, the AIP methods use variants of the steepest descent or a minimal residual method
to minimize ‖XA− I‖F . The idea behind the AIP methods is to minimize the distance of X from
A−1 in some sense. Our variants do just that, but under a weight Frobenius norm. Furthermore,
our methods project onto a randomly generated affine space instead of employing steepest descent
of a minimal residual method.

4.3 Equivalence

We now prove that (15) and (16) are equivalent to (17) and (18), respectively, and give their explicit
solution.

Theorem 4.1. The viewpoints (15) and (17) are equivalent to (16) and (18), respectively. Fur-
thermore, if S has full column rank, then the explicit solution to (15) is

Xk+1 = Xk +WATS(STAWATS)−1ST (I −AXk) (19)

and the explicit solution to (16) is

Xk+1 = Xk + (I −XkA
T)S(STATWAS)−1STATW (20)

Proof. We will prove all the claims for the row variant, that is, we prove that (15) are (17) equivalent
and that their solution is given by (19). The remaining claims, that (16) are (18) are equivalent
and that their solution is given by (20), follow with analogous arguments.

It suffices to consider the case when W = I, as we can perform a change of variables to recover
the solution for any W . Indeed, in view of (1), with the change of variables

X̂
def
= W−1/2XW−1/2, X̂k

def
= W−1/2XkW

−1/2, Â
def
= W 1/2AW 1/2 and Ŝ

def
= W−1/2S, (21)

(15) becomes

min
X̂∈Rn×n

1

2

∥∥∥X̂ − X̂k

∥∥∥2

F
subject to ŜT ÂX̂ = ŜT . (22)

If we moreover let Ŷ = W−1/2Y , then (17) becomes

min
X̂∈Rn×n,Ŷ ∈Rn×q

1

2

∥∥∥X̂ − Â−1
∥∥∥2

F
subject to X̂ = X̂k + ÂT ŜŶ T . (23)

By substituting the constraint in (23) into the objective function, then differentiating to find
the stationary point, we obtain that

X̂ = X̂k + ÂT Ŝ(ŜT ÂÂT Ŝ)−1ŜT (I − ÂX̂k), (24)

is the solution to (23). After changing the variables back using (21), the update (24) becomes (37).
Now we prove the equivalence of (22) and (23) using Lagrangian duality. The sketch-and-project

viewpoint (22) has a convex quadratic objective function with linear constraints, thus strong duality
holds. Introducing Lagrangian multiplier Ŷ ∈ Rn×q, the Langrangian dual of (22) is given by

L(X̂, Ŷ) =
1

2

∥∥∥X̂ − X̂k

∥∥∥2

F
−
〈
Ŷ T , ŜT Â(X̂ − Â−1)

〉
F
. (25)

9

Algorithm 1 Stochastic Iterative Matrix Inversion (SIMI) – nonsymmetric row variant

1: input: invertible matrix A ∈ Rn×n
2: parameters: D = distribution over random matrices; positive definite matrix W ∈ Rn×n
3: initialize: arbitrary square matrix X0 ∈ Rn×n
4: for k = 0, 1, 2, . . . do
5: Sample an independent copy S ∼ D
6: Compute Λ = S(STAWATS)−1ST

7: Xk+1 = Xk +WATΛ(I −AXk) . This is equivalent to (15) and (17)

8: output: last iterate Xk

Clearly
(22) = min

X∈Rn×n
max

Ŷ ∈Rn×q
L(X̂, Ŷ).

We will now prove that
(23) = max

Ŷ ∈Rn×q
min

X∈Rn×n
L(X̂, Ŷ),

thus proving that (22) and (23) are equivalent by strong duality. Differentiating the Lagrangian in
X̂ and setting to zero gives

X̂ = X̂k + ÂT ŜŶ T . (26)

Substituting back into (25) gives

L(X̂, Ŷ) =
1

2

∥∥∥ÂT ŜŶ T
∥∥∥2

F
−
〈
ÂT ŜŶ T , X̂k + ÂT ŜŶ T − Â−1

〉
F

= −1

2

∥∥∥ÂT ŜŶ T
∥∥∥2

F
−
〈
ÂT ŜŶ T , X̂ − Â−1

〉
F
.

Adding ±1
2

∥∥∥X̂k − Â−1
∥∥∥2

F
to the above gives

L(X̂, Ŷ) = −1

2

∥∥∥ÂT ŜŶ T + X̂k − Â−1
∥∥∥2

F
+

1

2

∥∥∥X̂k − Â−1
∥∥∥2

F
.

Finally, substituting (26) into the above, minimizing in X̂ then maximizing in Ŷ , and dispensing

of the term 1
2

∥∥∥X̂k − Â−1
∥∥∥2

F
as it does not depend on Ŷ nor X̂, we have that the dual problem is

max
Ŷ

min
X̂

L(X̂, Ŷ) = min
X̂,Ŷ

1

2

∥∥∥X̂ − Â−1
∥∥∥2

F
subject to X̂ = X̂k + ÂT ŜŶ T .

It now remains to change variables using (21) and set Y = W 1/2Ŷ to obtain (17).

Based on Theorem 4.1, we can summarize the methods described in this section as Algorithm 1
and Algorithm 2.

The explicit formulas (19) and (20) for (15) and (16) allow us to efficiently implement these
methods, and facilitate convergence analysis. In particular, we can now see that the convergence
analysis of (20) will follow trivially from analyzing (19). This is because (19) and (20) differ only
in terms of a transposition. That is, transposing (20) gives

XT
k+1 = XT

k +WAS(STATWAS)−1ST (I −ATXT
k),

10

Algorithm 2 Stochastic Iterative Matrix Inversion (SIMI) – nonsymmetric column variant

1: input: invertible matrix A ∈ Rn×n
2: parameters: D = distribution over random matrices; positive definite matrix W ∈ Rn×n
3: initialize: arbitrary square matrix X0 ∈ Rn×n
4: for k = 0, 1, 2, . . . do
5: Sample an independent copy S ∼ D
6: Compute Λ = S(STATWAS)−1ST

7: Xk+1 = Xk + (I −XkA
T)ΛATW . This is equivalent to (16) and (18)

8: output: last iterate Xk

which is the solution to the row variant of the sketch-and-project viewpoint but where the equation
ATXT = I is sketched instead of AX = I. Thus it suffices to study the convergence of (19), then
the convergence of (20) follows by simply swapping the role of A for AT . We collect this observation
is the following remark.

Remark 4.1. The expression for the rate of Algorithm 2 is the same as the expression for the rate
of Algorithm 1, but with every occurrence of A swapped for AT .

4.4 Relation to multiple linear systems

Any iterative method for solving linear systems can be applied to the n linear systems that define
the inverse through AX = I to obtain an approximate inverse. Though not all methods for solving
linear systems can be applied to solve these n linear systems simultaneously, that is calculating
each column of X simultaneously, which is necessary for an efficient matrix inversion method.

The recently proposed methods in [15] for solving linear systems can be easily and efficiently gen-
eralized to inverting a matrix, and the resulting method is equivalent to our row variant method (15)
and (17). To show this, we perform the change of variables X̂k = XkW

−1/2, Â = W 1/2A and
Ŝ = W−1/2S then (15) becomes

X̂k+1
def
= Xk+1W

−1/2 = arg min
X̂∈Rn×n

1

2

∥∥∥W−1/2(X̂ − X̂k)
∥∥∥2

F
subject to ŜT ÂX̂ = ŜT .

The above is a separable problem and each column of X̂k+1 can be calculated separately. Let x̂ik+1

be the ith column of X̂k+1 which can be calculated through

x̂ik+1 = arg min
x̂∈Rn

1

2

∥∥∥W−1/2(x̂− x̂ik)
∥∥∥2

2
subject to ŜT Âx̂ = ŜT ei.

The above was proposed as a method for solving linear systems in [15] applied to the system Âx̂ = ei.
Thus the convergence results established in [15] carry over to our row variant (15) and (17). In
particular, the theory in [15] proves that the expected norm difference of each column of W−1/2Xk

converges to W−1/2A−1 with rate ρ as defined in (4). This equivalence breaks down when we
impose additional matrix properties through constraints, such as symmetry.

5 Inverting Symmetric Matrices

When A is symmetric, it may be useful to maintain symmetry in the iterates, in which case the
nonsymmetric methods—Algorithms 1 and 2—have an issue, as they do not guarantee that the
iterates are symmetric. However, we can modify (15) by adding a symmetry constraint. The
resulting symmetric method naturally maintains symmetry in the iterates.

11

{X | X = XT }

·Xk

{
X | STAX = ST

}

·Xk+1

·A−1

Projection·

Figure 1: The new estimate Xk+1 is obtained by projecting Xk onto the affine space formed by intersecting
{X | X = XT } and

{
X | STAX = ST

}
.

5.1 Projection viewpoint: sketch-and-project

The new iterate Xk+1 is the result of projecting Xk onto the space of matrices that satisfy a sketched
inverse equation and that are also symmetric, that is

Xk+1 = arg min
X

1

2
‖X −Xk‖2F (W−1) subject to STAX = ST , X = XT (27)

See Figure 1 for an illustration of the symmetric update (27).
This viewpoint can be seen as a randomized block version of the quasi-Newton methods [12,

18], as detailed in Section 3. The flexibility in using a weighted norm is important for choosing a
norm that better reflects the geometry of the problem. For instance, when A is symmetric positive
definite, it turns out that W−1 = A results in a good method. This added freedom of choosing an
appropriate weighting matrix has proven very useful in the quasi-Newton literature, in particular,
the highly successful BFGS method [4, 10, 12, 34] selects W−1 as an estimate of the Hessian matrix.

5.2 Optimization viewpoint: constrain-and-approximate

The viewpoint (27) also has an interesting dual viewpoint:

Xk+1 = argX min
X,Y

1

2

∥∥X −A−1
∥∥2

F (W−1)
subject to X = Xk +

1

2
(Y STAW +WATSY T) (28)

The minimum is taken over matrices X ∈ Rn×n and Y ∈ Rn×q. The next iterate Xk+1 is the best
approximation to A−1 restricted to a random affine space of symmetric matrices. Furthermore,
(28) is a symmetric equivalent of (17); that is, the constraint in (28) is the result of projecting the
constraint in (17) onto the space of symmetric matrices.

When A is symmetric positive definite and we choose W−1 = A in (17) and (18), then∥∥X −A−1
∥∥2

F (A)
= Tr

(
(X −A−1)A(X −A−1)A

)
= ‖XA− I‖2F .

This is exactly the objective function used in most approximate inverse preconditioners (AIP) [1,
13, 22, 21].

5.3 Equivalence

We now prove that the two viewpoints (27) and (28) are equivalent, and show their explicit solution.

12

Theorem 5.1. If A and Xk are symmetric, then the viewpoints (27) and (28) are equivalent. That
is, they define the same Xk+1. Furthermore, if S has full column rank, then the explicit solution to
(27) and (28) is

Xk+1 = Xk − (XkAS − S)ΛSTAW +WASΛ(STAXk − ST)
(
ASΛSTAW − I

)
(29)

where Λ
def
= (STAWAS)−1.

Proof. It was recently shown in [14, Section 2] and [20, Section 4]3 that (29) is the solution to (27).
We now prove the equivalence of (27) and (28) using Lagrangian duality. It suffices to prove the
claim for W = I as we did in the proof of Theorem 4.1, since using the change of variables (21)
applied to (27) we have that (27) is equivalent to

min
X̂∈Rn×n

1

2

∥∥∥X̂ − X̂k

∥∥∥2

F
subject to ŜT ÂX̂ = ŜT , X̂ = X̂T . (30)

Since (27) has a convex quadratic objective with linear constraints, strong duality holds. Thus
we will derive a dual formulation for (30) then use the change of coordinates (21) to recover the
solution to (27). Let Γ ∈ Rn×q and Λ ∈ Rn×n and consider the Lagrangian of (30) which is

L(X̂,Γ,Λ) =
1

2

∥∥∥X̂ − X̂k

∥∥∥2

F
−
〈

ΓT , ŜT Â(X̂ − Â−1)
〉
F
−
〈

Λ, X̂ − X̂T
〉
F
. (31)

Differentiating in X̂ and setting to zero gives

X̂ = X̂k + ÂT ŜΓT + Λ− ΛT . (32)

Applying the symmetry constraint X = XT gives

Λ− ΛT =
1

2

(
ΓŜT Â− ÂT ŜΓT

)
.

Substituting the above into (32) gives

X̂ = X̂k +
1

2

(
ΓŜT Â+ ÂT ŜΓT

)
. (33)

Now let Θ = 1
2(ΓŜT Â+ ÂT ŜΓT) and note that, since the matrix Θ + X̂k − Â−1 is symmetric, we

get 〈
ÂT ŜΓT ,Θ + X̂k − Â−1

〉
F

=
〈

Θ,Θ + X̂k − Â−1
〉
F
. (34)

Substituting (33) into (31) gives

L(X̂,Γ,Λ) =
1

2
‖Θ‖2F −

〈
ÂT ŜΓT ,Θ + X̂k − Â−1

〉
F

(34)
=

1

2
‖Θ‖2F −

〈
Θ,Θ + X̂k − Â−1

〉
F

= −1

2
‖Θ‖2F −

〈
Θ, X̂k − Â−1

〉
F
. (35)

Adding ±1
2

∥∥∥X̂k − Â−1
∥∥∥2

F
to (35) gives

L(X̂,Γ,Λ) = −1

2

∥∥∥Θ + X̂k − Â−1
∥∥∥2

F
+

1

2

∥∥∥X̂k − Â−1
∥∥∥2

F
.

3To re-interpret methods for solving linear systems through Bayesian inference, Hennig constructs estimates of
the inverse system matrix using the sampled action of a matrix taken during a linear solve [20].

13

Finally, using (33) and maximizing over Γ then minimizing over X gives the dual problem

min
X̂,Γ

1

2

∥∥∥X̂ − Â−1
∥∥∥2

F
subject to X̂ = X̂k +

1

2
(ΓŜT Â+ ÂT ŜΓT).

It now remains to change variables according to (21) and set Y = W 1/2Γ.

Algorithm 3 Stochastic Iterative Matrix Inversion (SIMI) – symmetric variant

1: input: symmetric invertible matrix A ∈ Rn×n
2: parameters: D = distribution over random matrices; symmetric positive definite W ∈ Rn×n
3: initialize: symmetric matrix X0 ∈ Rn×n
4: for k = 0, 1, 2, . . . do
5: Sample an independent copy S ∼ D
6: Compute Λ = S(STAWAS)−1ST

7: Compute Θ = ΛAW
8: Compute Mk = XkA− I
9: Xk+1 = Xk −MkΘ− (MkΘ)T + ΘT (AXkA−A)Θ . This is equivalent to (27) & (28)

10: output: last iterate Xk

6 Convergence

We now analyze the convergence of the error, Xk −A−1, for iterates of Algorithms 1, 2 and 3. For
the sake of economy of space, we only analyze Algorithms 1 and 3. Convergence of Algorithm 2
follows from convergence of Algorithm 1 by observing Remark 4.1.

The first analysis we present in Section 6.1 is concerned with the convergence of∥∥E [Xk −A−1
]∥∥2

,

that is, the norm of the expected error. We then analyze the convergence of

E
[∥∥Xk −A−1

∥∥]2 ,
the expected norm of the error. The latter is a stronger type of convergence, as explained in the
following proposition.

Proposition 6.1. Let X ∈ Rn×n be a random matrix, ‖·‖ a matrix norm induced by an inner
product, and fix A−1 ∈ Rn×n. Then∥∥E [X −A−1

] ∥∥2
= E

[∥∥X −A−1
∥∥2
]
−E

[
‖X −E [X]‖2

]
.

Proof. Note that E
[
‖X −E [X]‖2

]
= E

[
‖X‖2

]
− ‖E [X]‖2 . Adding and subtracting

∥∥A−1
∥∥2 −

2
〈
E [X] , A−1

〉
from the right hand side, then grouping the appropriate terms, yields the desired

result.

14

This shows that if E
[∥∥Xk −A−1

∥∥2
]

converges to zero, then
∥∥E [Xk −A−1

]∥∥2
converges to zero.

But the converse is not necessarily true. Rather, the variance E
[
‖Xk −E [Xk]‖2

]
must converge

to zero for the converse to be true4.
The convergence of Algorithms 1 and 3 can be entirely characterized by studying the following

random matrix
Z

def
= ATS(STAWATS)−1STA. (36)

With this definition, the update step of Algorithm 1 can be re-written as a simple fixed point
formula

Xk+1 −A−1 = (I −WZ) (Xk −A−1). (37)

We can also simplify the iterates of Algorithm 3 to

Xk+1 −A−1 = (I −WZ) (Xk −A−1) (I − ZW) . (38)

The only stochastic component in both methods is contained in the matrix Z, and ultimately,
the convergence of the iterates will depend on E [Z], the expected value of this matrix. Thus we
start with two lemmas concerning the Z and E [Z] matrices.

Lemma 6.1. If Z is defined as in (36), then

1. the eigenvalues of W 1/2ZW 1/2 are either 0 or 1,

2. the matrix W 1/2ZW 1/2 projects onto the q–dimensional subspace Range
(
W 1/2ATS

)
.

Proof. Using (36), simply verify that (W 1/2ZW 1/2)2 = W 1/2ZW 1/2 proves that it is a projection
matrix, and thus has eigenvalues 0 or 1. Furthermore, the matrix W 1/2ZW 1/2 projects onto
Range

(
W 1/2ATS

)
, which follows by verifying

W 1/2ZW 1/2(W 1/2ATS) = W 1/2ATS and W 1/2ZW 1/2y = 0, ∀y ∈ Null
(
W 1/2ATS

)
.

Finally dim
(
Range

(
W 1/2ATS

))
= Rank

(
W 1/2ATS

)
= Rank (S) = q.

Lemma 6.2. Let Z be defined as in (36). The spectrum of W 1/2E [Z]W 1/2 is contained in [0, 1].

Proof. Let Ẑ = W 1/2ZW 1/2, thus W 1/2E [Z]W 1/2 = E
[
Ẑ
]
. Since the mapping A 7→ λmax(A)

is convex, by Jensen’s inequality we get λmax(E
[
Ẑ
]
) ≤ E

[
λmax(Ẑ)

]
. Applying Lemma 6.1, we

conclude that λmax(E
[
Ẑ
]
) ≤ 1. The inequality λmin(E

[
Ẑ
]
) ≥ 0 can be shown analogously using

convexity of the mapping A 7→ −λmin(A).

4The convergence of
∥∥E [

Xk −A−1
]∥∥2

is also known in the probability literature as L2–norm convergence. It also
follows trivially from the Markov’s inequality that convergence in L2–norm implies convergence in probability.

15

6.1 Norm of the expected error

We start by proving that the norm of the expected error of the iterates of Algorithm 1 and Algo-
rithm 3 converges to zero. The following theorem is remarkable in that we do not need to make
any assumptions on the distribution S, except that S has full column rank. Rather, the theorem
pinpoints that convergence depends solely on the spectrum of I −W−1/2E [Z]W−1/2.

Theorem 6.1. Let S be a random matrix which has full column rank with probability 1 (so that Z
is well defined). Then the iterates Xk+1 of Algorithm 1 satisfy

E
[
Xk+1 −A−1

]
= (I −WE [Z])E

[
Xk −A−1

]
. (39)

Let X0 ∈ Rn×n. If Xk is calculated in either one of these two ways

1. Applying k iterations of Algorithm 1,

2. Applying k iterations of Algorithm 3 (assuming A and X0 are symmetric),

then Xk converges to the inverse exponentially fast, according to∥∥E [Xk −A−1
]∥∥
W−1 ≤ ρk

∥∥X0 −A−1
∥∥
W−1 , (40)

where
ρ

def
= 1− λmin(W 1/2E [Z]W 1/2). (41)

Moreover, we have the following lower and upper bounds on the convergence rate:

0 ≤ 1− E [q]

n
≤ ρ ≤ 1. (42)

Proof. For all k, define Rk
def
= W−1/2(Xk −A−1)W−1/2. Left and right multiplying (37) by W−1/2

gives
Rk+1 = (I −W 1/2ZW 1/2)Rk. (43)

Taking expectation with respect to S in (43) gives

E [Rk+1 | Rk] = (I −W 1/2E [Z]W 1/2)Rk. (44)

Taking full expectation in (43) and using the tower rule gives

E [Rk+1] = E [E [Rk+1 | Rk]]
(44)
= E

[
(I −W 1/2E [Z]W 1/2)Rk

]
= (I −W 1/2E [Z]W 1/2)E [Rk] . (45)

Applying the norm in (45) gives∥∥E [Xk+1 −A−1
]∥∥
W−1 = ‖E [Rk+1]‖2 ≤

∥∥∥I −W 1/2E [Z]W 1/2
∥∥∥

2
‖E [Rk]‖2

=
∥∥∥I −W 1/2E [Z]W 1/2

∥∥∥
2

∥∥E [Xk −A−1
]∥∥
W−1 . (46)

Furthermore ∥∥∥I −W 1/2E [Z]W 1/2
∥∥∥

2
= λmax

(
I −W 1/2E [Z]W 1/2

)
= 1− λmin(W 1/2E [Z]W 1/2)

(41)
= ρ, (47)

16

where we used to symmetry of (I −W 1/2E [Z]W 1/2) when passing from the operator norm to the
spectral radius. Note that the symmetry of E [Z] derives from the symmetry of Z. It now remains
to unroll the recurrence in (46) to get (40).

Now we analyse the iterates of Algorithm 3. Left and right multiplying (38) by W−1/2 we have

Rk+1 = P (Rk)
def
=
(
I −W 1/2ZW 1/2

)
Rk

(
I −W 1/2ZW 1/2

)
. (48)

Defining P̄ (R)
def
= E [P (R)], taking expectation in (48), conditioned on Rk, gives

E [Rk+1 | Rk] = P̄ (Rk).

As P̄ is a linear operator, taking expectation again yields

E [Rk+1] = E
[
P̄ (Rk)

]
= P̄ (E [Rk]). (49)

Let |||P̄ |||2
def
= max‖R‖2=1

∥∥P̄ (R)
∥∥

2
be the operator induced norm. Applying norm in (49) gives∥∥E [Xk+1 −A−1
]∥∥
W−1 = ‖E [Rk+1]‖2 (50)

≤ |||P̄ |||2 ‖E [Rk]‖2
= |||P̄ |||2

∥∥E [Xk −A−1
]∥∥
W−1 . (51)

Clearly, P is a positive linear map, that is, it is linear and maps positive semi-definite matrices
to positive semi-definite matrices. Thus, by Jensen’s inequality, the map P̄ is also a positive linear
map. As every positive linear map attains its norm at the identity matrix (see Corollary 2.3.8
in [2]), we have that

|||P̄ |||2 =
∥∥P̄ (I)

∥∥
2

(48)
=

∥∥∥E [(I −W 1/2ZW 1/2
)
I
(
I −W 1/2ZW 1/2

)]∥∥∥
2

(Lemma 6.1)
=

∥∥∥E [I −W 1/2ZW 1/2
]∥∥∥

2

(47)
= ρ.

Inserting the above equivalence in (51) and unrolling the recurrence gives (40).
Finally to prove (42), as proven in Lemma 6.2, the spectrum of W 1/2E [Z]W 1/2 is contained

in [0, 1] consequently 0 ≤ ρ ≤ 1. Furthermore, as the trace of a matrix is equal to the sum of its
eigenvalues, we have

E [q]
(Lemma 6.1)

= E
[
Tr
(
W 1/2ZW 1/2

)]
= Tr

(
E
[
W 1/2ZW 1/2

])
≥ nλmin

(
E
[
W 1/2ZW 1/2

])
, (52)

where we used that W 1/2ZW 1/2 projects onto a q–dimensional subspace (Lemma 6.1), and thus
Tr
(
W 1/2ZW 1/2

)
= q. Rearranging (52) gives (42).

If ρ = 1, this theorem does not guarantee convergence. But when E [Z] is positive definite, as
it will transpire in all practical variants of our method, some of which we describe in Section 8, the
rate ρ will be strictly less than one, and the norm of the expected error will converge to zero.

17

6.2 Expectation of the norm of the error

Now we consider the convergence of the expected norm of the error. This form of convergence is
preferred, as it also proves that the variance of the iterates converges to zero (see Proposition 6.1).

Theorem 6.2. Let S be a random matrix that has full column rank with probability 1 and such
that E [Z] is positive definite, where Z is defined in (36). Let X0 ∈ Rn×n. If Xk is calculated in
either one of these two ways

1. Applying k iterations of Algorithm 1,

2. Applying k iterations of Algorithm 3 (assuming both A and X0 are symmetric matrices),

then Xk converges to the inverse according to

E
[∥∥Xk −A−1

∥∥2

F (W−1)

]
≤ ρk

∥∥X0 −A−1
∥∥2

F (W−1)
. (53)

Proof. First consider Algorithm 1, where Xk+1 is calculated by iteratively applying (37). If we let

Rk
def
= Xk −A−1, R̂k

def
= W−1/2RkW

−1/2, Ẑ
def
= W 1/2ZW 1/2, (54)

then from (37) we have

R̂k+1 =
(
I − Ẑ

)
R̂k. (55)

From this we obtain

‖Rk+1‖2F (W−1)

(1)
=

∥∥∥R̂k+1

∥∥∥2

F
(56)

(55)
=

∥∥∥(I − Ẑ) R̂k∥∥∥2

F

= Tr
((
I − Ẑ

)(
I − Ẑ

)
R̂kR̂

T
k

)
(Lemma 6.1)

= Tr
((
I − Ẑ

)
R̂kR̂

T
k

)
(57)

=
∥∥∥R̂k∥∥∥2

F
−Tr

(
ẐR̂kR̂

T
k

)
.

Taking expectations, conditioned on R̂k, we get

E

[∥∥∥R̂k+1

∥∥∥2

F
| R̂k

]
=
∥∥∥R̂k∥∥∥2

F
−Tr

(
E
[
Ẑ
]
R̂kR̂

T
k

)
.

Using that Tr
(
E
[
Ẑ
]
R̂kR̂

T
k

)
≥ λmin

(
E
[
Ẑ
])

Tr
(
R̂kR̂

T
k

)
, which relies on the symmetry of E

[
Ẑ
]
,

we have that

E

[∥∥∥R̂k+1

∥∥∥2

F
| R̂k

]
≤
(

1− λmin

(
E
[
Ẑ
]))∥∥∥R̂k∥∥∥2

F
= ρ ·

∥∥∥R̂k∥∥∥2

F
.

In order to arrive at (53), it now remains to take full expectation, unroll the recurrence and use
the substitution (54)

Now we assume that A and X0 are symmetric and {Xk} are the iterates computed by Algo-
rithm 3. Left and right multiplying (38) by W−1/2 we have

R̂k+1 =
(
I − Ẑ

)
R̂k

(
I − Ẑ

)
. (58)

18

Taking norm we have∥∥∥R̂k+1

∥∥∥2

F

(Lemma 6.1)
= Tr

(
R̂k

(
I − Ẑ

)
R̂k

(
I − Ẑ

))
= Tr

(
R̂kR̂k

(
I − Ẑ

))
−Tr

(
R̂kẐR̂k

(
I − Ẑ

))
≤ Tr

(
R̂kR̂k

(
I − Ẑ

))
, (59)

where in the last inequality we used the fact that I − Ẑ is symmetric, whence

Tr
(
R̂kẐR̂k

(
I − Ẑ

))
= Tr

(
Ẑ1/2R̂k

(
I − Ẑ

)
R̂kẐ

1/2
)
≥ 0.

The remainder of the proof follows similar steps as those we used in the first part of the proof
from (57) onwards.

Theorem 6.2 establishes that for all three methods, the expected norm of the error converges
exponentially fast to zero. Moreover, the convergence rate ρ is the same that appeared in Theo-
rem 6.1, where we established the convergence of the norm of the expected error.

Both of the convergence results in Theorems 6.1 and 6.2 can be recast as iteration complexity
bounds. For instance, using standard arguments, from Theorem 6.1 we observe that for a given
0 < ε < 1 we have that

k ≥
(

1

2

)
1

1− ρ
log

(
1

ε

)
⇒

∥∥E [Xk −A−1
]∥∥2

W−1 ≤ ε
∥∥X0 −A−1

∥∥2

W−1 . (60)

On the other hand, from Theorem 6.2 we have

k ≥ 1

1− ρ
log

(
1

ε

)
⇒ E

[∥∥Xk −A−1
∥∥2

F (W−1)

]
≤ ε

∥∥X0 −A−1
∥∥2

F (W−1)
. (61)

To push the expected norm of the error below the ε tolerance (61), we require double the amount of
iterates, as compared to bringing the norm of expected error below the same tolerance (60). This
is because in Theorem 6.2 we determined that ρ is the rate at which the expectation of the squared
norm error converges, while in Theorem 6.1 we determined that ρ is the rate at which the norm,
without the square, of the expected error converges. Though it takes double the number of iterations
to decrease the expectation of the norm error, as proven in Proposition 6.1, the former is a stronger
form of convergence. Thus, Theorem 6.1 does not give a stronger result than Theorem 6.2, but
rather, these theorems give qualitatively different results and ultimately enrich our understanding
of the iterative process.

7 Discrete Random Matrices

We now consider the case of a discrete random matrix S. We show that when S is a complete discrete
sampling, then E [Z] is positive definite, and thus from Theorems 6.1 and 6.2, Algorithms 1, 2 and 4
converge.

Definition 7.1 (Complete Discrete Sampling). The random matrix S has a finite discrete distribu-
tion with r outcomes. In particular, S = Si ∈ Rn×qi with probability pi > 0 for i = 1, . . . , r, where Si

is of full column rank. We say that S is a complete discrete sampling when S
def
= [S1, . . . , Sr] ∈ Rn×n

has full row rank.

19

As an example of a complete discrete sampling, let S = ei (the ith unit coordinate vector in
Rn) with probability pi = 1/n, for i = 1, . . . , n. Then S, as defined in Definition 7.1, is equal to the
identity matrix: S = I. Consequently, S is a complete discrete sampling. In fact, from any basis
of Rn we could construct a complete discrete sampling in an analogous way.

Next we establish that for discrete distribution of S, that S having a complete discrete distribu-
tion is a necessary and sufficient condition for E [Z] to be positive definite. We also determine simple
formula for E [Z] . This will allow us to determine an optimized distribution for S in Section 7.1.

Proposition 7.1. Let S be a discrete random matrix with r outcomes. The matrix E [Z] is positive
definite if and only if S is a complete discrete sampling. Furthermore

E [Z] = ATSD2STA, (62)

where
D

def
= Diag

(√
p1(ST1 AWATS1)−1/2, . . . ,

√
pr(S

T
r AWATSr)

−1/2
)
. (63)

Proof. Taking the expectation of Z as defined in (36) gives

E [Z] =
r∑
i=1

ATSi(S
T
i AWATSi)

−1STi Api

= AT

(
r∑
i=1

Si
√
pi(S

T
i AWATSi)

−1/2(STi AWATSi)
−1/2√piSTi

)
A

=
(
ATSD

) (
DSTA

)
,

and E [Z] is clearly positive semi-definite. Note that, since we assume throughout that S has full
column rank with probability 1, the matrix D is well defined and nonsingular. Let v ∈ Null (E [Z]) ,
thus

0 = vTATSD2STAv =
∥∥DSTAv

∥∥2

2
,

which shows that STAv = 0 and thus Av ∈ Null
(
ST
)
. Assume that S is a complete discrete

sampling then ST has full column rank. Thus Av = 0 together with the non-singularity of A gives
v = 0. Conversely, assume that ST does not have full column rank, then there exists a nonzero
w ∈ Null

(
ST
)

and consequently 0 6= A−1w ∈ Null (E [Z]) , which shows that E [Z] would not be
positive definite.

With a closed form expression for E [Z] we can optimize ρ over the possible distributions of S
to yield a better convergence rate.

7.1 Optimizing an upper bound on the convergence rate

So far we have proven two different types of convergence for Algorithms 1, 2 and 3 in Theorems 6.1
and 6.2. Furthermore, both forms of convergence depend on the same convergence rate ρ for which
we have a closed form expression (41).

The availability of a closed form expression for the convergence rate opens up the possibility of
designing particular distributions for S optimizing the rate. In [15] it was shown that (in the context
of solving linear systems) for a complete discrete sampling, computing the optimal probability
distribution, assuming the the matrices {Si}ri=1 are fixed, leads to a semi-definite program (SDP).
In some cases, the gain in performance from the optimal probabilities is much larger than the loss
incurred by having to solve the SDP. However, this is not always the case.

20

Here we propose an alternative: to optimize the following upper bound on the convergence rate:

ρ = 1− λmin(W 1/2E [Z]W 1/2) ≤ 1− 1

Tr
(
W−1/2(E [Z])−1W−1/2

) def
= γ.

To emphasize the dependence of γ and Z on the probability distribution p = (p1, . . . , pr) ∈ Rr,
let us denote

γ(p)
def
= 1− 1

Tr
(
W−1/2(E [Zp])−1W−1/2

) , (64)

where we have added a subscript to Z to indicate that it is a function of p. We now minimize γ(p)
over the probability simplex:

∆r
def
=

{
p = (p1, . . . , pr) ∈ Rr :

r∑
i=1

pi = 1, p ≥ 0

}
.

Theorem 7.1. Let S be a complete discrete sampling and let Si ∈ Rn×qi, for i = 1, 2, . . . , r, be
such that S−T = [S1, . . . , Sr]. Then

min
p∈∆r

γ(p) = 1− 1(∑r
i=1

∥∥∥W 1/2ATSiS
T
i A
−TW−1/2

∥∥∥
F

)2 . (65)

Proof. In view of (64), minimizing γ in p is equivalent to minimizing Tr
(
W−1/2(E [Zp])

−1W−1/2
)

in p. Further, we have

Tr
(
W−1/2(E [Zp])

−1W−1/2
)

(62)
= Tr

(
W−1/2(ATSD2STA)−1W−1/2

)
(66)

= Tr
(
W−1/2A−1S−TD−2S−1A−TW−1/2

)
(63)
=

r∑
i=1

1

pi
Tr
(
W−1/2A−1Si(S

T
i AWATSi)S

T
i A
−TW−1/2

)
=

r∑
i=1

1

pi

∥∥∥W 1/2A−1SiS
T
i AW

−1/2
∥∥∥2

F
. (67)

Applying Lemma 12.1 in the Appendix, the optimal probabilities are given by

pi =

∥∥W 1/2A−1SiS
T
i AW

−1/2
∥∥
F∑r

j=1

∥∥∥W 1/2A−1SjSTj AW
−1/2

∥∥∥
F

, i = 1, 2, . . . , r (68)

Plugging this into (67) gives the result (65).

Observe that in general, the optimal probabilities (68) cannot be calculated, since the formula
involves the inverse of A, which is not known. However, if A is symmetric positive definite, we can
choose W = A2, which eliminates this issue. If A is not symmetric positive definite, or if we do
not wish to choose W = A2, we can approach the formula (68) as a recipe for a heuristic choice of
the probabilities: we can use the iterates {Xk} as a proxy for A−1. With this setup, the resulting
method is not guaranteed to converge by the theory developed in this paper. However, in practice
one would expect it to work well. We have not done extensive experiments to test this, and leave
this to future research. To illustrate, let us consider a concrete simple example. Choose W = I

21

and Si = ei (the unit coordinate vector in Rn). We have S = [e1, . . . , en] = I, whence Si = ei for
i = 1, . . . , r. Plugging into (68), we obtain

pi =

∥∥Xkeie
T
i A
∥∥
F∑r

j=1

∥∥∥Xkeje
T
j A
∥∥∥
F

=
‖Xkei‖2

∥∥eTi A∥∥2∑r
j=1 ‖Xkej‖2

∥∥∥eTj A∥∥∥
2

.

7.2 Convenient sampling

We now ask the following question: given matrices S1, . . . , Sr defining a complete discrete sampling,
assign probabilities pi to Si so that the convergence rate ρ becomes easy to interpret. The following
result was first stated in [15] in the context of solving linear systems, and gives a convenient choice
of probabilities resulting in the rate ρ which depends on a (scaled) condition number of the original
data matrix A.

Proposition 7.2. Let S be a complete discrete sampling where S = Si with probability

pi =
∥∥∥W 1/2ATSi

∥∥∥2

F

/∥∥∥W 1/2ATS
∥∥∥2

F
. (69)

Then the convergence rate takes the form

ρ = 1− 1

κ2
2,F (W 1/2ATS)

, (70)

where

κ2,F (W 1/2ATS)
def
=
∥∥∥(W 1/2ATS)−1

∥∥∥
2

∥∥∥W 1/2ATS
∥∥∥
F

=

√
Tr (STAWATS)

λmin (STAWATS)
≥
√
n. (71)

Proof. For the proof of (70), see Theorem 5.1 in [15]. The bound in (71) follows trivially.

Following from Remark 4.1, we can determine a convergence rate for Algorithm 2 based on the
Theorem 7.2.

Remark 7.1. Let S be a complete discrete sampling where S = Si with probability

pi =
∥∥∥W 1/2ASi

∥∥∥2

F

/∥∥∥W 1/2AS
∥∥∥2

F
. (72)

Then Algorithm 2 converges at the rate ρ2 = 1− 1/κ2
2,F (W 1/2AS).

7.3 Optimal and adaptive samplings

Having decided on the probabilities p1, . . . , pr associated with the matrices S1, . . . , Sr in Proposi-
tion 7.2, we can now ask the following question. How should we choose the matrices {Si} if we
want ρ to be as small as possible? Since the rate improves as the condition number κ2

2,F (W 1/2ATS)
decreases, we should aim for matrices that minimize the condition number. Notice that the lower
bound in (71) is reached for S = (W 1/2AT)−1 = A−TW−1/2. While we do not know A−1, we can
use our best current approximation of it, Xk, in its place. This leads to a method which adapts the
probability distribution governing S throughout the iterative process. This observation inspires
a very efficient modification of Algorithm 3, which we call AdaRBFGS (Adaptive Randomized
BFGS), and describe in Section 9.

22

Notice that, luckily and surprisingly, our twin goals of computing the inverse and optimizing the
convergence rate via the above adaptive trick are compatible. Indeed, we wish to find A−1, whose
knowledge gives us the optimal rate. This should be contrasted with the SDP approach mentioned
earlier: i) the SDP could potentially be harder than the inversion problem, and ii) having found
the optimal probabilities {pi}, we are still not guaranteed the optimal rate. Indeed, optimality is
relative to the choice of the matrices S1, . . . , Sr, which can be suboptimal.

Remark 7.2 (Adaptive sampling). The convergence rate (70) suggests how one can select a sam-
pling distribution for S that would result in faster practical convergence. We now detail several
practical choices for W and indicate how to sample S. These suggestions require that the distribu-
tion of S depends on the iterate Xk, and thus no longer fit into our framework. Nonetheless, we
collect these suggestions here in the hope that others will wish to extend these ideas further, and as
a demonstration of the utility of developing convergence rates.

1. If W = I, then Algorithm 1 converges at the rate ρ = 1− 1/κ2
2,F (ATS), and hence S should

be chosen so that S is a preconditioner of AT . For example S = XT
k , that is, S should be a

sampling of the rows of Xk.

2. If W = I, then Algorithm 2 converges at the rate ρ = 1 − 1/κ2
2,F (AS), and hence S should

be chosen so that S is a preconditioner of A. For example S = Xk; that is, S should be a
sampling of the columns of Xk.

3. If A is symmetric positive definite, we can choose W = A−1, in which case Algorithm 3
converges at the rate ρ = 1 − 1/κ2

2,F (A1/2S). This rate suggests that S should be chosen so

that S is an approximation of A−1/2. In Section 9 we develop these ideas further, and design
the AdaRBFGS algorithm.

4. If W = (ATA)−1, then Algorithm 1 can be efficiently implemented with S = AV , where V

is a complete discrete sampling. Furthermore ρ = 1 − 1/κ2
2,F (AV), where V

def
= [V1, . . . , Vr].

This rate suggests that V should be chosen so that V is a preconditioner of A. For example
V = Xk; that is, V should be a sampling of the rows of Xk.

5. If W = (AAT)−1, then Algorithm 2 can be efficiently implemented with S = ATV , where
V is a complete discrete sampling. From Remark 7.1, the convergence rate of the resulting
method is given by 1 − 1/κ2

2,F (ATV). This rate suggests that V should be chosen so that V

is a preconditioner of AT . For example, V = XT
k ; that is, V should be a sampling of the

columns of Xk.

6. If A is symmetric positive definite, we can choose W = A2, in which case Algorithm 3 can be
efficiently implemented with S = AV. Furthermore ρ = 1 − 1/κ2

2,F (AV). This rate suggests
that V should be chosen so that V is a preconditioner of A. For example V = Xk, that is, V
should be a sampling of the rows or the columns of Xk.

8 Randomized Quasi-Newton Updates

Algorithms 1, 2 and 3 are in fact families of algorithms indexed by the two parameters: i) positive
definite matrix W and ii) distribution D (from which we pick random matrices S). This allows
us to design a myriad of specific methods by varying these parameters. Here we highlight some
of these possibilities, focusing on complete discrete distributions for S so that convergence of the

23

iterates is guaranteed through Theorems 6.1 and 6.2. We also compute the convergence rate ρ for
these special methods for the convenient probability distribution given by (69) (Proposition 7.2) so
that the rate ρ depends on a condition number which is easy to interpret. We will also make some
connections to existing quasi-Newton and Approximate Inverse Preconditioning methods. Table 2
provides a guide through this section.

A W S Inverse Equation Randomized Update Section

any any invertible any One Step 8.1
any I ei AX = I Simultaneous Kaczmarz (SK) 8.2
any I vector XA = I Bad Broyden (BB) 8.3
sym. I vector AX = I,X = XT Powell-Symmetric-Broyden (PSB) 8.4
any I vector XA−1 = I Good Broyden (GB) 8.5
sym. A−1 −Xk vector AX = I or XA = I Symmetric Rank 1 (SR1) 8.7
s.p.d. A vector XA−1 = I,X = XT Davidon-Fletcher-Powell (DFP) 8.8
s.p.d. A−1 vector AX = I,X = XT Broyden-Fletcher-Goldfarb-Shanno (BFGS) 8.9
any (ATA)−1 vector AX = I Column 8.10

Table 2: Specific randomized updates for inverting matrices discussed in this section, obtained
as special cases of our algorithms. First column: “sym” means “symmetric” and “s.p.d.” means
“symmetric positive definite”. Block versions of all these updates are obtained by choosing S as a
matrix with more than one column (i.e., not as a vector).

8.1 One Step Update

We have the freedom to select S as almost any random matrix that has full column rank. This
includes choosing S to be a constant and invertible matrix, such as the identity matrix I, in
which case X1 must be equal to the inverse. Indeed, the sketch-and-project formulations of all
our algorithms reveal that. For Algorithm 1, for example, the sketched system is STAX = ST ,
which is equivalent to AX = I, which has as its unique solution X = A−1. Hence, X1 = A−1,
and we have convergence in one iteration/step. Through inspection of the complexity rate, we see
that W 1/2E [Z]W 1/2 = I and ρ = λmin(W 1/2E [Z]W 1/2) = 1, thus this one step convergence is
predicted the theory, Theorems 6.1 and 6.2.

8.2 Simultaneous Randomized Kaczmarz Update

Perhaps the most natural choice for the weighting matrix W is the identity W = I. With this choice,
Algorithm 1 is equivalent to applying the randomized Kaczmarz update simultaneously to the n
linear systems encoded in AX = I. To see this, note that the sketch-and-project viewpoint (15) of
Algorithm 1 is

Xk+1 = arg min
X

1

2
‖X −Xk‖2F subject to STAX = ST , (73)

which, by (19), results in the explicit update

Xk+1 = Xk +ATS(STAATS)−1ST (I −AXk). (74)

If S is a random coordinate vector, then (73) is equivalent to projecting the jth column of Xk

onto the solution space of Ai:x = δij , which is exactly an iteration of the randomized Kaczmarz

24

update applied to solving Ax = ej . In particular, if S = ei with probability pi = ‖Ai:‖22 / ‖A‖
2
F then

according to Proposition 7.2, the rate of convergence of update (74) is given by

E
[∥∥Xk −A−1

∥∥2

F

]
=

(
1− 1

κ2
2,F (A)

)k ∥∥X0 −A−1
∥∥2

F

where we used that κ2,F (A) = κ2,F (AT). This is exactly the rate of convergence given by Strohmer
and Vershynin in [36] for the randomized Kaczmarz method.

8.3 Randomized Bad Broyden Update

The update (74) can also be viewed as an adjoint form of the bad Broyden update [4, 19]. To see
this, if we use Algorithm 2 with W = I, then the iterative process is

Xk+1 = Xk + (I −XkA)S(STATAS)−1STAT . (75)

This update (75) is a randomized block form of the bad Broyden update [4, 19]. In the quasi-Newton
setting, S is not random, but rather the previous step direction S = δ ∈ Rn. Furthermore, if we

rename γ
def
= AS ∈ Rn, then (75) becomes

Xk+1 = Xk +
δ −Xkγ

‖γ‖22
γT , (76)

which is the standard way of writing the bad Broyden update [19]. The update (74) is an adjoint
form of the bad Broyden in the sense that, if we transpose (74), then set S = δ and denote γ = ATS,
we obtain the bad Broyden, but applied to XT

k instead.
From the constrain-and-approximate viewpoint (18) we give a new interpretation to the bad

Broyden update, namely, the update (76) can be written as

Xk+1 = argX min
X∈Rn×n, y∈Rn

1

2

∥∥X −A−1
∥∥2

F
subject to X = Xk + yγT .

Thus, the bad Broyden update is the best rank-one update approximating the inverse.
We can determine the rate at which our randomized variant of the BB update (75) converges

by using Remark 7.1. In particular, if S = Si with probability pi = ‖ASi‖2F
/
‖AS‖2F , then (81)

converges with the rate

E
[∥∥Xk −A−1

∥∥2

F

]
=

(
1− 1

κ2
2,F (AS)

)k ∥∥X0 −A−1
∥∥2

F
.

8.4 Randomized Powell-Symmetric-Broyden Update

If A is symmetric and we use Algorithm 3 with W = I, the iterates are given by

Xk+1 = Xk +AST (STA2S)−1SA(XkAS − S)
(
(STA2S)−1STA− I

)
− (XkAS − S)(STA2S)−1STA, (77)

which is a randomized block form of the Powell-Symmetric-Broyden update [14]. If S = Si with
probability pi = ‖ASi‖2F / ‖AS‖2F , then according to Proposition 7.2, the iterates (77) and (74)
converge according to

E
[∥∥Xk −A−1

∥∥2

F

]
≤

(
1− 1

κ2
2,F (ATS)

)k ∥∥X0 −A−1
∥∥2

F
.

25

8.5 Randomized Good Broyden Update

Next we present a method that shares certain properties with Gaussian elimination and can be
viewed as a randomized block variant of the good Broyden update [4, 19]. This method requires
the following adaptation of Algorithm 2: instead of sketching the inverse equation, consider the
update (78) that performs a column sketching of the equation XA−1 = I by right multiplying with
Aei, where ei is the ith coordinate vector. Projecting an iterate Xk onto this sketched equation
gives

Xk+1 = arg min
X∈Rn×n

1

2
‖X −Xk‖2F subject to Xei = Aei. (78)

The iterates defined by the above are given by

Xk+1 = Xk + (A−Xk)eie
T
i . (79)

Given that we are sketching and projecting onto the solution space of XA−1 = I, the iterates of
this method converge to A. Therefore the inverse iterates X−1

k converge to A−1. We can efficiently
compute the inverse iterates by using the Woodbury formula [37] which gives

X−1
k+1 = X−1

k −
(X−1

k A− I)eie
T
i X
−1
k

eTi X
−1
k Aei

. (80)

This update (80) behaves like Gaussian elimination in the sense that, if i is selected in a cyclic
fashion, that is i = k on the kth iteration, then from (79) it is clear that

Xk+1ei = Aei, thus X−1
k+1Aei = ei, for i = 1 . . . k.

That is, on the kth iteration, the first k columns of the matrix X−1
k+1A are equal to the first k

columns of the identity matrix. Consequently, Xn = A and X−1
n = A−1. If instead, we select i

uniformly at random, then we can adapt Proposition 7.2 by swapping each occurrence of AT for
A−1 and observing that Si = Aei thus S = A. Consequently the iterates (79) converge to A at a
rate of

ρ = 1− κ2
2,F

(
A−1A

)
= 1− 1

n
,

and thus the lower bound (42) is achieved and Xk converges to A according to

E
[
‖Xk −A‖2F

]
≤
(

1− 1

n

)k
‖X0 −A‖2F .

Despite this favourable convergence rate, this does not say anything about how fast X−1
k converges

to A−1. Therefore (80) is not an efficient method for calculating an approximate inverse. If we
replace ei by a step direction δk ∈ Rd, then the update (80) is known as the good Broyden update [4,
19].

8.6 Approximate Inverse Preconditioning

When A is symmetric positive definite, we can choose W = A−1, and Algorithm 1 is given by

Xk+1 = Xk + S(STAS)−1ST (I −AXk). (81)

26

The constrain-and-approximate viewpoint (17) of this update is

Xk+1 = argX min
X,Y

1

2

∥∥∥A1/2XA1/2 − I
∥∥∥2

F
subject to X = Xk + SY T .

This viewpoint reveals that the update (81) is akin to the Approximate Inverse Preconditioning
(AIP) methods [1, 13, 22, 21].

We can determine the rate a which (81) converges using Remark 7.1. In particular, if S = Si
with probability pi = Tr

(
STi ASi

)
/Tr

(
STAS

)
, then (81) converges with rate

ρ = 1− 1

κ2
2,F (A1/2S)

= 1− λmin(STAS)

Tr (STAS)
, (82)

and according to

E

[∥∥∥A1/2XkA
1/2 − I

∥∥∥2

F

]
≤
(

1− λmin(STAS)

Tr (STAS)

)k ∥∥∥A1/2X0A
1/2 − I

∥∥∥2

F
.

8.7 Randomized SR1

The Symmetric Rank-1 (SR1) update [8, 27] does not explicitly fit into our framework, and nor
does it fit into the traditional quasi-Newton framework, since it requires a W that is not positive
definite. Despite this, we present the update since it is still commonly used.

When A is symmetric and W = A−1 −Xk then from (19) or (20) we get

Xk+1 = Xk + (I −AXk)
TS(ST (A−AXkA)S)−1ST (I −AXk). (83)

This choice for W presents problems, namely, the update (83) is not always well defined because it
requires inverting ST (A−AXkA)S which is not necessarily invertible. To fix this, we should select
the sketching matrix S so that ST (A − AXkA)S is invertible. But this in turn means that S will
depend on Xk and most likely cannot be sampled in an i.i.d fashion. Alternatively, we can alter
the definition of the update, and use the pseudo inverse of ST (A−AXkA)S in place of the inverse.

Since W is not positive definite, our convergence theory says nothing about this update.

8.8 Randomized DFP Update

If A is symmetric positive definite then we choose W = A. Furthermore, if we adapt the sketch-
and-project formulation (15) to sketch the equation XA−1 = I by right multiplying by AS, and
additionally impose symmetry on the iterates, we arrive at the following update.

Xk+1 = arg min
X∈Rn×n

1

2
‖X −Xk‖2F (A) subject to XS = AS, X = XT . (84)

The solution to the above is given by

Xk+1 = AS(STAS)−1STA+
(
I −AS(STAS)−1ST

)
Xk

(
I − S(STAS)−1STA

)
. (85)

Using the Woodbury formula [37], we find that

X−1
k+1 = X−1

k +AS(STAS)−1STA−X−1
k S

(
STX−1

k S
)−1

STX−1
k . (86)

The update (86) is a randomized variant of the Davidon-Fletcher-Powell (DFP) update [7, 10].
We can adapt Proposition 7.2 to determine the rate at which Xk converges to A by swapping each

27

occurrence of AT for A−1. Indeed, for example, let Si = Aei with probability pi = λmin(A)/ Tr (A) ,
then the iterates (79) converge to A at a rate of

E
[
‖Xk −A‖2F (A−1)

]
≤
(

1− λmin(A)

Tr (A)

)k
‖X0 −A‖2F (A−1) . (87)

Thus Xk converges to A at a favourable rate. But this does not indicate at what rate does X−1
k

converge to A−1. This is in contrast to the randomized BFGS, which produces iterates that converge
to A−1 at this same favourable rate, as we show in the next section. This sheds new light on why
BFGS update performs better than the DFP update.

8.9 Randomized BFGS Update

If A is symmetric and positive definite, we can choose W = A−1 and apply Algorithm 3 to maintain
symmetry of the iterates. The iterates are given by

Xk+1 = S(STAS)−1ST +
(
I − S(STAS)−1STA

)
Xk

(
I −AS(STAS)−1ST

)
. (88)

This is a block variant, see [14], of the BFGS update [4, 10, 12, 34]. The constrain-and-approximate
viewpoint gives a new interpretation to the Block BFGS update. That is, from (27), the iterates (88)
can be equivalently defined by

Xk+1 = argX min
X,Y

1

2
‖XA− I‖2F subject to X = Xk + SY T + Y ST .

Thus the block BFGS update, and the standard BFGS update, can be seen as a method for
calculating an approximate inverse subject to a particular symmetric affine space passing through
Xk. This is a completely new way of interpreting the BFGS update.

If pi = Tr
(
STi ASi

)
/Tr

(
SAST

)
, then according to Proposition 7.2, the updates (88) and (81)

converge according to

E
[
‖XkA− I‖2F

]
≤

(
1− 1

κ2
2,F (A1/2S)

)k
‖X0A− I‖2F . (89)

A remarkable property of the update (88) is that it preserves positive definiteness of A. Indeed,

assume that Xk is positive definite and let v ∈ Rn and P
def
= S(STAS)−1ST . Left and right

multiplying (88) by vT and v, respectively, gives

vTXk+1v = vTPv + vT (I − PA)Xk (I −AP) v ≥ 0.

Thus vTXk+1v = 0 implies that Pv = 0 and (I −AP) v = 0, which when combined gives v = 0.
This proves that Xk+1 is positive definite. Thus the update (88) is particularly well suited for
calculating the inverse of a positive definite matrices.

In the next section, we detail a update designed to improve the convergence rate in (89). The
result is a method that is able to invert large scale positive definite matrices orders of magnitude
faster than the state-of-the-art.

28

8.10 Randomized Column Update

We now describe an update that has no connection to any previous updates, yet the convergence
rate we determine (92) is favourable, and comparable to all the other updates we develop.

For this update, we need to perform a linear transformation of the sampling matrices. For
this, let V be a complete discrete sampling where V = Vi ∈ Rn×qi with probability pi > 0, for
i = 1, . . . , r. Let V = [V1, . . . , Vr]. Let the sampling matrices be defined as Si = AVi ∈ Rn×qi for
i = 1, . . . , r. As A is nonsingular, and S = AV, then S is a complete discrete sampling. With these
choices and W−1 = ATA, the sketch-and-project viewpoint (15) is given by

Xk+1 = arg min
X

1

2
‖X −Xk‖2F (ATA) subject to V T

i A
TAX = V T

i A
T .

The solution to the above are the iterates of Algorithm 1, which is given by

Xk+1 = Xk + Vi(V
T
i A

TAVi)
−1V T

i (AT −ATAXk). (90)

From the constrain-and-approximate viewpoint (17), this can be written as

Xk+1 = arg min
X∈Rn×n

1

2

∥∥A(XAT − I)
∥∥2

F
subject to X = Xk + ViY

T , Y ∈ Rn×q.

With these same parameter choices for S and W , the iterates of Algorithm 3 are given by

Xk+1 = Xk + Vi(V
T
i A

2Vi)
−1V T

i (AXk − I)
(
A2Vi(V

T
i A

2Vi)
−1V T

i − I
)

− (XkA− I)AVi(V
T
i A

2Vi)
−1V T

i . (91)

If we choose pi =
∥∥(AAT)−1/2AATVi

∥∥2

F
/
∥∥(AAT)−1/2AATV

∥∥2

F
=
∥∥ATVi∥∥2

F
/
∥∥ATV

∥∥2

F
, then ac-

cording to Proposition 7.2, the iterates (90) and (91) converge exponentially in expectation to the
inverse according to

E
[∥∥A(XkA

T − I)
∥∥2

F

]
≤

(
1− 1

κ2
2,F (AV)

)k ∥∥A(X0A
T − I)

∥∥2

F
. (92)

There also exists an analogous “row” variant of (90), which arises by using Algorithm 2, but we do
not explore it here.

9 AdaRBFGS: Adaptive Randomized BFGS

All the updates we have developed thus far use a sketching matrix S that is sampled in an i.i.d.
fashion from a fixed distribution D at each iteration. In this section we assume that A is symmetric
positive definite, and propose AdaRBFGS: a variant of the RBFGS update, discussed in Section 8.9,
which adaptively changes the distribution D throughout the iterative process. Due to this change,
Theorems 6.1 and 6.2 and Proposition 7.2 are no longer applicable. Superior numerical efficiency
of this update is verified through extensive numerical experiments in Section 10.

9.1 Motivation

We now motivate the design of this new update by examining the convergence rate (89) of the
RBFGS iterates (88). Recall that in RBFGS we choose W = A−1 and S = Si with probability

pi = Tr
(
STi ASi

)
/Tr

(
SAST

)
, i = 1, 2, . . . , r, (93)

29

where S is a complete discrete sampling and S = [S1, . . . , Sr]. The convergence rate is

ρ = 1− 1

κ2
2,F (A1/2S)

(71)
= 1− λmin(STAS)

Tr (STAS)
.

Consider now the question of choosing the matrix S in such a way that ρ is as small as possible.
Note that the optimal choice is any S such that

STAS = I.

Indeed, then ρ = 1−1/n, and the lower bound (71) is attained. For instance, the choice S = A−1/2

would be optimal. This means that in each iteration we would choose S to be a random column
(or random column submatrix) of A−1/2. Clearly, this is not a feasible choice, as we do not know
the inverse of A. In fact, it is A−1 which we are trying to find! However, this leads to the following
interesting observation: the goals of finding the inverse of A and of designing an optimal distribution
D are in synchrony.

9.2 The algorithm

While we do not know A−1/2, we can use the information of the iterates {Xk} themselves to
construct a good adaptive sampling. Indeed, the iterates contain information about the inverse
and hence we can use them to design a better sampling S. In order to do so, it will be useful to
maintain a factored form of the iterates,

Xk = LkL
T
k , (94)

where Lk ∈ Rn×n is invertible. With this in place, let us choose S to be a random column submatrix
of Lk. In particular, let C1, C2, . . . , Cr be nonempty subsets of [n] = {1, 2, . . . , n} forming a partition
of [n], and at iteration k choose

S = LkI:Ci

def
= Si, (95)

with probability pi given by (93) for i = 1, 2, . . . , r. For simplicity, assume that C1 = {1, . . . , c1},
C2 = {c1 + 1, . . . , c2} and so on, so that, by the definition of S, we have

S = [S1, . . . , Sr] = Lk. (96)

Note that now both S and pi depend on k. The method described above satisfies the following
recurrence.

Theorem 9.1. Consider one step of the AdaRBFGS method described above. Then

E
[∥∥Xk+1 −A−1

∥∥2

F (A)
|Xk

]
≤
(

1− λmin(AXk)

Tr (AXk)

)∥∥Xk −A−1
∥∥2

F (A)
. (97)

Proof. Using the same arguments as those in the proof of Theorem 6.2, we obtain

E
[∥∥Xk+1 −A−1

∥∥2

F (A)
|Xk

]
≤
(

1− λmin

(
A−1/2E [Z | Xk]A

−1/2
))∥∥Xk −A−1

∥∥2

F (A)
, (98)

where

Z
(99)
= ASi(S

T
i ASi)

−1STi A. (99)

30

So, we only need to show that

λmin

(
A−1/2E [Z | Xk]A

−1/2
)
≥ λmin(AXk)

Tr (AXk)
.

Since S is a complete discrete sampling, Proposition 7.1 applied to our setting says that

E [Z | Xk] = ASD2STA, (100)

where
D

def
= Diag

(√
p1(ST1 AS1)−1/2, . . . ,

√
pr(S

T
r ASr)

−1/2
)
. (101)

We now have

λmin

(
A−1/2E [Z | Xk]A

−1/2
) (100)+(96)

≥ λmin

(
A1/2LkL

T
kA

1/2
)
λmin(D2)

(94)
=

λmin(AXk)

λmax(D−2)

(101)
=

λmin(AXk)

maxi λmax(STi ASi)/pi

≥ λmin(AXk)

maxi Tr
(
STi ASi

)
/pi

(93)+(96)
=

λmin(AXk)

Tr (AXk)
,

where in the second equality we have used the fact that the largest eigenvalue of a block diagonal
matrix is equal to the maximum of the largest eigenvalues of the blocks.

If Xk converges to A−1, then necessarily the one-step rate of AdaRBFGS proved in Theorem 9.1
asymptotically reaches the lower bound

ρk
def
= 1− λmin(AXk)

Tr (AXk)
→ 1− 1

n
.

In other words, as long as this method works, the convergence rate gradually improves, and
becomes asymptotically optimal and independent of the condition number. We leave a deeper
analysis of this and other adaptive variants of the methods developed in this paper to future work.

9.3 Implementation

To implement the AdaRBFGS update, we need to maintain the iterates Xk in the factored form
(94). Fortunately, a factored form of the update (88) was introduced in [17], which we shall
now describe. Assuming that Xk is symmetric positive definite such that Xk = LkL

T
k , we shall

describe how to obtain a corresponding factorization of Xk+1. Letting Gk = (STL−Tk L−1
k S)1/2 and

Rk = (STAS)−1/2, it can be verified through direct inspection [17] that Xk+1 = Lk+1L
T
k+1, where

Lk+1 = Lk + SRk

(
G−1
k STL−Tk −RTk STALk

)
. (102)

If we instead of (95) consider the more general update S = LkS
′, where S̃ is chosen in an i.i.d.

fashion from some fixed distribution D̃, then

Lk+1 = Lk + LkS̃Rk

(
(S̃T S̃)−1/2S̃T −RTk S̃TLTkALk

)
. (103)

31

Algorithm 4 Adaptive Randomized BFGS (AdaRBFGS)

1: input: symmetric positive definite matrix A
2: parameter: D̃ = distribution over random matrices with n rows
3: initialize: pick invertible L0 ∈ Rn×n
4: for k = 0, 1, 2, . . . do
5: Sample an independent copy S̃ ∼ D̃
6: Compute S = LkS̃ . S is sampled adaptively, as it depends on k
7: Compute Rk = (S̃TAS̃)−1/2

8: Lk+1 = Lk + SRk

(
(S̃T S̃)−1/2S̃T −RTk STALk

)
. Update the factor

9: output: Xk = LkL
T
k

The above can now be implemented efficiently, see Algorithm 4.
In Section 10 we test two variants based on (103). The first is the AdaRBFGS gauss update,

in which the entries of S̃ are standard Gaussian. The second is AdaRBFGS cols, where S̃ = I:Ci ,
as described above, and |Ci| = q for all i for some q.

10 Numerical Experiments

Given the demand for approximate inverses of positive definite matrices in preconditioning and
in variable metric methods in optimization, and the authors own interests in the aforementioned
applications, we restrict our test to inverting positive definite matrices.

We test four iterative methods for inverting matrices. This rules out the all-or-nothing direct
methods such as Gaussian elimination of LU based methods.

For our tests we use two variants of Algorithm 4: AdaRBFGS gauss, where S̃ ∈ Rn×q is a normal
Gaussian matrix, and AdaRBFGS cols, where S̃ consists of a collection of q distinct coordinate
vectors in Rn, selected uniformly at random. At each iteration the AdaRBFGS methods compute
the inverse of a small matrix STAS of dimension q × q. To invert this matrix we use MATLAB’s
inbuilt inv function, which uses LU decomposition or Gaussian elimination, depending on the
input. Either way, inv costs O(q3). We selected q =

√
n so that the cost of inverting O(q3) and

forming O(n2q) the matrix STAS are of the same order.
We compare our method to two well established and competitive methods, the Newton-Schulz

method [33] and the global self-conditioned Minimal Residual (MR) method [6]. The Newton-
Schulz method arises from applying the Newton-Raphson method to solve the inverse equation
I −AX = 0, which gives

Xk+1 = 2Xk −XkAXk. (104)

The MR method was designed to calculate approximate inverses, and it does so by minimizing the
norm of the residual along the preconditioned residual direction, that is

‖I −AXk+1‖2F = min
α∈R

{
‖I −AX‖2F subject to X = Xk + αXk(I −AXk)

}
, (105)

see [32, chapter 10.5] for a didactic introduction to MR methods. The resulting iterates of the MR
are given by

Xk+1 = Xk +
Tr
(
RTkAXkRk

)
Tr ((AXkRk)TAXkRk)

XkRk, (106)

where Rk = I −AXk.

32

We perform two sets of tests. On the first set, we choose a different starting matrix for each
method which is optimized, in some sense, for that method. We then compare the empirical
convergence of each method, including the time take to calculate X0. In particular, the Newton-
Schulz is only guaranteed to converge for an initial matrix X0 such that ρ(I −X0A) < 1. Indeed,
the Newton-Schulz method did not converge in most of our experiments when X0 was not carefully
chosen according to this criteria. To remedy this, we choose X0 = 0.99 ·AT /σ2(A) for the Newton-
Schulz method, so that ρ(I−X0A) < 1 is satisfied. To compute σ(A) we used the inbuilt MATLAB
function normest which is coded in C++. While for MR we followed the suggestion in [32] and
used the projected identity for the initial matrix X0 = (Tr (A) /Tr

(
AAT

)
) · I. For our AdaRBFGS

methods we simply used X0 = I, as this worked well in practice.
In the second set of tests, which we relegate to the Appendix, we compare the empirical con-

vergence of the methods starting from the same matrix, namely the identity matrix X0 = I.
We run each method until the relative error ‖I −AXk‖F / ‖I −AX0‖F is below 10−2. All exper-

iments were performed and run in MATLAB R2014b. To appraise the performance of each method
we plot the relative error against time taken and against the number of floating point operations
(flops).

10.1 Experiment 1: synthetic matrices

First we compare the four methods on synthetic matrices generated using the matrix function rand.
To appraise the difference in performance of the methods as the dimension of the problem grows,
we tested for n = 1000, 2000 and 5000. As the dimension grows, only the two variants of the
AdaRBFGS method are able to reach the 10−2 desired tolerance in a reasonable amount time and
number of flops (see Figure 2).

10.2 Experiment 2: LIBSVM matrices

Next we invert the Hessian matrix ∇2f(x) of four ridge-regression problems of the form

min
x∈Rn

f(x)
def
=

1

2
‖Ax− b‖22 +

λ

2
‖x‖22 , ∇2f(x) = ATA+ λI, (107)

using data from LIBSVM [5], see Figure 3. We use λ = 1 as the regularization parameter. On the
two problems of smaller dimension, aloi and protein, the four methods have a similar performance,
and encounter the inverse in less than one second. On the two larger problems, gisette-scale and
real-sim, the two variants of AdaRBFGS significantly outperform the MR and the Newton-Schulz
method.

10.3 Experiment 3: UF sparse matrices

For our final batch of tests, we invert several sparse matrices from the Florida sparse matrix
collection [9]. We have selected six problems from six different applications, so that the set of
matrices display a varied sparsity pattern and structure, see Figure 4.

On the matrix Bates/Chem97ZtZ of moderate size, the four methods perform well, with the
Newton-Schulz method converging first in time and AdaRBFGS cols first in flops. While on the
matrices of larger dimension, the two variants of AdaRBFGS converge much faster, often orders of
magnitude before the MR and Newton-Schulz method reach the required precision.

The significant difference between the performance of the methods on large scale problems can
be, in part, explained by their iteration cost. The iterates of the Newton-Schulz and MR method

33

0 1 2 3

time (s)

10-2

10-1

100

e
r
r
o
r

0 5 10

flops #1010

MR
AdaRBFGS_cols
AdaRBFGS_gauss
NewtonSchulz

(a) rand with n = 104

0 5 10

time (s)

10-2

10-1

100

e
r
r
o
r

0 5 10

flops #1011

MR
AdaRBFGS_cols
AdaRBFGS_gauss
NewtonSchulz

(b) rand with n = 2 · 104

0 10 20 30 40

time (s)

10-2

10-1

100

e
r
r
o
r

0 1 2 3 4

flops #1012

MR
AdaRBFGS_cols
AdaRBFGS_gauss
NewtonSchulz

(c) rand with n = 5 · 104

Figure 2: Synthetic MATLAB generated problems. Uniform random matrix A = ĀT Ā where
Ā =rand(n).

compute n×n matrix-matrix products. While the cost of an iteration of the AdaRBFGS methods
is dominated by the cost of a n × n matrix by n × q matrix product. As a result, and because
we set q =

√
n, this is difference of n3 to n2+1/2 in iteration cost, which clearly shows on the

larger dimensional instances. On the other hand, both the Newton-Schulz and MR method are
quadratically locally convergent, thus when the iterates are close to the solution, these methods
enjoy a notable speed-up.

11 Conclusion

We develop a family of stochastic methods for iteratively inverting matrices, with a specialized
variant for asymmetric, symmetric and positive definite matrices. The methods have two dual
viewpoints, a sketch-and-project viewpoint which is an extension of the least-change formulation
of the quasi-Newton methods, and a constrain-and-approximate viewpoint which is related to the
approximate inverse preconditioning (API) methods. The equivalence between these two viewpoints
reveals a new connection between the quasi-Newton and the API methods, which were previously
considered to be unrelated.

Under mild conditions, we prove convergence rates through two different perspectives, the
convergence of the expected norm of the error, and the norm of the expected error. Our convergence
theorems are general enough to accommodate discrete samplings and continuous samplings, though
we only explore discrete sampling here in more detail.

For discrete samplings, we determine a probability distribution for which the convergence rates
are equal to a scaled condition number, and thus are easily interpretable. Furthermore, for discrete
sampling, we determining a practical optimized sampling distribution, that is obtained by mini-

34

0 0.1 0.2 0.3

time (s)

10-3

10-2

10-1

100

e
r
r
o
r

0 0.5 1 1.5 2

flops #108

MR
AdaRBFGSBFGS_cols
AdaRBFGSBFGS_gauss
NewtonSchulz

(a) aloi

0 1 2 3 4

time (s)

10-2

10-1

100

e
r
r
o
r

0 1 2 3

flops #109

MR
AdaRBFGS_cols
AdaRBFGS_gauss
NewtonSchulz

(b) protein

0 100 200 300

time (s)

10-3

10-2

10-1

100

e
r
r
o
r

0 5 10 15

flops #1012

MR
AdaRBFGS_cols
AdaRBFGS_gauss
NewtonSchulz

(c) gisette scale

0 1000 2000 3000

time (s)

10-1

100

e
r
r
o
r

0 2 4 6

flops #1013

MR
AdaRBFGS_cols
AdaRBFGS_gauss
NewtonSchulz

(d) real sim

Figure 3: The performance of Newton-Schulz, MR, AdaRBFGS gauss and AdaRBFGS cols meth-
ods on the Hessian matrix of four LIBSVM test problems: (a) aloi: (m;n) = (108, 000; 128)
(b) protein: (m;n) = (17, 766; 357) (c) gisette scale: (m;n) = (6000; 5000) (d) real-sim:
(m;n) = (72, 309; 20, 958).

35

0 10 20 30

time (s)

10-2

10-1

100

e
r
r
o
r

0 1 2 3 4

flops #1011

MR
AdaRBFGS_cols
AdaRBFGS_gauss
NewtonSchulz

(a) Bates/Chem97ZtZ

0 20 40 60

time (s)

10-3

10-2

10-1

100

e
r
r
o
r

0 5 10

flops #1011

MR
AdaRBFGS_cols
AdaRBFGS_gauss
NewtonSchulz

(b) FIDAP/ex9

0 200 400 600

time (s)

10-2

10-1

100

e
r
r
o
r

0 1 2 3 4

flops #1012

MR
AdaRBFGS_cols
AdaRBFGS_gauss
NewtonSchulz

(c) Nasa/nasa4704

0 100 200 300 400

time (s)

10-2

10-1

100

e
r
r
o
r

0 0.5 1 1.5 2

flops #1013

MR
AdaRBFGS_cols
AdaRBFGS_gauss
NewtonSchulz

(d) HB/bcsstk18

0 500 1000

time (s)

10-1

100

e
r
r
o
r

0 1 2 3 4

flops #1013

MR
AdaRBFGS_cols
AdaRBFGS_gauss
NewtonSchulz

(e) Pothen/bodyy4

0 2000 4000 6000

time (s)

10-1

100

e
r
r
o
r

0 1 2 3 4

flops #1013

MR
AdaRBFGS_cols
AdaRBFGS_gauss
NewtonSchulz

(f) ND/nd6k

0 500 1000 1500

time (s)

10-1

100

e
r
r
o
r

0 5 10 15

flops #1012

RaCo_cols
RaCo_gauss

(g) GHS psdef/wathen100

Figure 4: The performance of Newton-Schulz, MR, AdaRBFGS gauss and AdaRBFGS cols on
(a) Bates-Chem97ZtZ: n = 2 541, (b) FIDAP/ex9: n = 3, 363, (c) Nasa/nasa4704: n = 4 , 704,
(d) HB/bcsstk18: n = 11, 948, (e) Pothen/bodyy4: n = 17, 546 (f) ND/nd6k: n = 18, 000 (g)
GHS psdef/wathen100: n = 30, 401.

36

mizing an upper bound on the convergence rate. We develop new randomized block variants of the
quasi-Newton updates, including the BFGS update, complete with convergence rates, and provide
new insights into these methods using our dual viewpoint.

For positive definite matrices, we develop an Adaptive Randomized BFGS methods (AdaRBFGS),
which in large-scale numerical experiments, prove to be orders of magnitude faster (in time and
flops) then the self-conditioned minimal residual method and the Newton-Schulz method. In par-
ticular, only the AdaRBFGS methods are able to approximately invert the 20, 958× 20, 958 ridge
regression matrix based on the real-sim data set in reasonable time and flops.

This work opens up many possible venues for future work, including, developing methods that
use continuous random sampling, implementing a limited memory approach akin to the LBFGS [28]
method, which could maintain an operator that serves as an approximation to the inverse. As
recently shown in [16], an analogous method applied to linear systems converges with virtually no
assumptions on the system matrix. This can be extended to calculating the pseudo inverse matrix,
something we leave for future work.

References

[1] M. Benzi and M. Tůma. “Comparative study of sparse approximate inverse preconditioners”.
Applied Numerical Mathematics 30.2–3 (1999), pp. 305–340.

[2] R. Bhatia. Positive Definite Matrices. Princeton Series in Applied Mathematics. Princeton,
NJ, USA: Princeton University Press, 2008, p. 264.

[3] M. D. Bingham. “A new method for obtaining the inverse matrix”. Journal of the American
Statistical Association 36.216 (1941), pp. 530–534.

[4] C. G. Broyden. “A class of methods for solving nonlinear simultaneous equations”. Mathe-
matics of Computation 19.92 (1965), pp. 577–593.

[5] C.-C. Chang and C.-J. Lin. “LIBSVM : a library for support vector machines”. ACM Trans-
actions on Intelligent Systems and Technology 2.3 (Apr. 2011), pp. 1–27.

[6] E. Chow and Y. Saad. “Approximate inverse preconditioners via sparse-sparse iterations”.
SIAM Journal of Scientific Computing 19.3 (1998), pp. 995–1023.

[7] W. C Davidon. Variable metric method for minimization. Tech. rep. A.E.C. Research and
Development Report, ANL-5990, 1959.

[8] W. C. Davidon. “Variance algorithms for minimization”. Computer Journal 10 (1968), pp. 406–
410.

[9] T. A. Davis and Y. Hu. “The university of Florida sparse matrix collection”. ACM Trans.
Math. Softw. 38.1 (2011), 1:1–1:25.

[10] B. R. Fletcher and M. J. D. Powell. “A rapidly convergent descent method for minimization”.
The Computer Journal 6.2 (1963), pp. 163–168.

[11] D. Goldfarb. “Modification methods for inverting matrices and solving systems of linear
algebraic equations”. Mathematics of Computation 26.120 (1972), pp. 829–829.

[12] D. Goldfarb. “A family of variable-metric methods derived by variational means”. Mathemat-
ics of Computation 24.109 (1970), p. 23.

[13] N. I. M. Gould and J. A. Scott. “Sparse approximate-inverse preconditioners using norm-
minimization techniques”. SIAM Journal on Scientific Computing 19.2 (1998), pp. 605–625.

37

[14] R. M. Gower and J Gondzio. “Action constrained quasi-Newton methods”. arXiv:1412.8045v1
(2014).

[15] R. M. Gower and P. Richtárik. “Randomized iterative methods for linear systems”. SIAM
Journal on Matrix Analysis and Applications 36.4 (2015), pp. 1660–1690.

[16] R. M. Gower and P. Richtárik. “Stochastic dual ascent for solving linear systems”. arXiv:1512.06890
(2015).

[17] S. Gratton, A. Sartenaer, and J. T. Ilunga. “On a class of limited memory preconditioners
for large-scale nonlinear least-squares problems”. SIAM Journal on Optimization 21.3 (2011),
pp. 912–935.

[18] B. J. Greenstadt. “Variations on variable-metric methods”. Mathematics of Computation
24.109 (1969), pp. 1–22.

[19] A. Griewank. “Broyden updating, the good and the bad!” Optimization Stories, Documenta
Mathematica. Extra Volume: Optimization Stories (2012), pp. 301–315.

[20] P. Hennig. “Probabilistic interpretation of linear solvers”. SIAM Journal on Optimization
25.1 (2015), pp. 234–260.

[21] T. Huckle and A. Kallischko. “Frobenius norm minimization and probing for preconditioning”.
International Journal of Computer Mathematics 84.8 (2007), pp. 1225–1248.

[22] L. Y. Kolotilina and a. Y. Yeremin. “Factorized sparse approximate inverse preconditionings
i. theory”. SIAM Journal on Matrix Analysis and Applications 14.1 (1993), pp. 45–58.

[23] D. Leventhal and A. S. Lewis. “Randomized methods for linear constraints: convergence rates
and conditioning”. Mathematics of Operations Research 35.3 (2010), pp. 641–654.

[24] D. Leventhal and A. Lewis. “Randomized hessian estimation and directional search”. Opti-
mization 60.3 (2011), pp. 329–345.

[25] W. Li and Z. Li. “A family of iterative methods for computing the approximate inverse
of a square matrix and inner inverse of a non-square matrix”. Applied Mathematics and
Computation 215.9 (2010), pp. 3433–3442.

[26] Y. Lu, P. Dhillon, D. P. Foster, and L. Ungar. “Faster ridge regression via the subsam-
pled randomized hadamard transform” (2013). Ed. by C. Burges, L. Bottou, M. Welling, Z.
Ghahramani, and K. Weinberger, pp. 369–377.

[27] B. A. Murtagh and R. W. H. Sargent. “A constrained minimization method with quadratic
convergence”. In: Optimization. Ed. by R. Fletcher. London: Academic Press, 1969.

[28] J. Nocedal. “Updating quasi-Newton matrices with limited storage”. Mathematics of Com-
putation 35.151 (1980), p. 773.

[29] M. Pilanci and M. Wainwright. “Randomized sketches of convex programs with sharp guar-
antees”. Information Theory, IEEE Transactions on 61.9 (2015), pp. 5096–5115.

[30] M. Pilanci and M. J. Wainwright. “Iterative Hessian sketch : Fast and accurate solution
approximation for constrained least-squares”. to appear in Journal of Machine Learning Re-
search (2015), pp. 1–33.

[31] M. Pilanci and M. J. Wainwright. “Newton sketch : A linear-time optimization algorithm
with linear-quadratic convergence”. arXiv:1505.02250 (2015).

[32] Y. Saad. Iterative Methods for Sparse Linear Systems. 2nd. Philadelphia, PA, USA: Society
for Industrial and Applied Mathematics, 2003.

38

[33] G. Schulz. “Iterative berechung der reziproken matrix”. ZAMM - Zeitschrift für Angewandte
Mathematik und Mechanik 13.1 (1933), pp. 57–59.

[34] D. F. Shanno. “Conditioning of quasi-Newton methods for function minimization”. Mathe-
matics of Computation 24.111 (1971), pp. 647–656.

[35] S. U. Stich, C. L. Müller, and B. Gärtner. “Variable metric random pursuit”. Mathematical
Programming (2015), pp. 1–31.

[36] T. Strohmer and R. Vershynin. “A randomized Kaczmarz algorithm with exponential con-
vergence”. Journal of Fourier Analysis and Applications 15.2 (2009), pp. 262–278.

[37] M. A. Woodbury. Inverting modified matrices. Tech. rep. Rep. no. 42, Statistical Research
Group, Princeton University, 1950.

12 Appendix: Optimizing the Convergence Rate

Lemma 12.1. Let a1, . . . , ar be positive real numbers. Then[√
a1∑r

i=1

√
ai
, . . . ,

√
an∑r

i=1

√
ai

]
= arg min

p∈∆r

r∑
i=1

ai
pi
.

Proof. Incorporating the constraint
∑r

i=1 pi = 1 into the Lagrangian we have

min
p≥0

r∑
i=1

ai
pi

+ µ
r∑
i=1

(pi − 1),

where µ ∈ R. Differentiating in pi and setting to zero, then isolating pi gives

pi =

√
ai
µ
, for i = 1, . . . r. (108)

Summing over i gives

1 =
r∑
i=1

√
ai
µ

⇒ µ =

(
r∑
i=1

√
ai

)2

.

Inserting this back into (108) gives pi =
√
ai/
∑r

i=1

√
ai.

13 Appendix: Numerical Experiments with the Same Starting
Matrix

We now investigate the empirical convergence of the methods MR, AdaRBFGS cols and AdaRGFBS gauss
when initiated with the same starting matrix X0 = I, see Figures 5 and 6. We did not include the
Newton-Schultz method in these figures because it diverged on all experiments when initiated from
X0 = I. Again we observe that, as the dimension grows, only the two variants of the AdaRBFGS
are capable of inverting the matrix to the desired 10−2 precision in a reasonable amount of time.
Furthermore, the AdaRBFGS gauss variant had the overall best best performance.

39

0 0.05 0.1 0.15

time (s)

10-2

10-1

100

e
r
r
o
r

0 2 4 6

flops #107

MR
AdaRBFGS_cols
AdaRBFGS_gauss

(a) aloi

0 0.05 0.1 0.15 0.2

time (s)

10-3

10-2

10-1

100

e
r
r
o
r

0 1 2 3

flops #109

MR
AdaRBFGS_cols
AdaRBFGS_gauss

(b) protein

0 5 10 15

time (s)

10-2

10-1

100

e
r
r
o
r

0 1 2 3

flops #1012

MR
AdaRBFGS_cols
AdaRBFGS_gauss

(c) gisette scale

0 500 1000 1500

time (s)

10-2

10-1

100

e
r
r
o
r

0 5 10 15

flops #1013

MR
AdaRBFGS_cols
AdaRBFGS_gauss

(d) real sim

Figure 5: The performance of Newton-Schulz, MR, AdaRBFGS gauss and AdaRBFGS cols meth-
ods on the Hessian matrix of four LIBSVM test problems: (a) aloi: (m;n) = (108, 000; 128)
(b) protein: (m;n) = (17, 766; 357) (c) gisette scale: (m;n) = (6000; 5000) (d) real-sim:
(m;n) = (72, 309; 20, 958). The starting matrix X0 = I was used for all methods.

40

0 5 10 15

time (s)

10-2

10-1

100

e
r
r
o
r

0 2 4 6

flops #1011

MR
AdaRBFGS_cols
AdaRBFGS_gauss

(a) Bates/Chem97ZtZ

0 10 20 30

time (s)

10-3

10-2

10-1

100

e
r
r
o
r

0 2 4 6 8

flops #1011

MR
AdaRBFGS_cols
AdaRBFGS_gauss

(b) FIDAP/ex9

0 20 40 60

time (s)

10-2

10-1

100

e
r
r
o
r

0 0.5 1 1.5 2

flops #1012

MR
AdaRBFGS_cols
AdaRBFGS_gauss

(c) Nasa/nasa4704

0 200 400 600 800

time (s)

10-2

10-1

100

e
r
r
o
r

0 2 4 6

flops #1013

MR
AdaRBFGS_cols
AdaRBFGS_gauss

(d) HB/bcsstk18

0 500 1000 1500

time (s)

10-2

10-1

100

e
r
r
o
r

0 5 10 15

flops #1013

MR
AdaRBFGS_cols
AdaRBFGS_gauss

(e) Pothen/bodyy4

0 500 1000 1500

time (s)

10-2

10-1

100

e
r
r
o
r

0 2 4 6 8

flops #1013

MR
AdaRBFGS_cols
AdaRBFGS_gauss

(f) ND/nd6k

0 500 1000 1500

time (s)

10-1

100

e
r
r
o
r

0 0.5 1 1.5 2

flops #1014

MR
AdaRBFGS_cols
AdaRBFGS_gauss

(g) GHS psdef/wathen100

Figure 6: The performance of Newton-Schulz, MR, AdaRBFGS gauss and AdaRBFGS cols on
(a) Bates-Chem97ZtZ: n = 2 541, (b) FIDAP/ex9: n = 3, 363, (c) Nasa/nasa4704: n = 4 , 704,
(d) HB/bcsstk18: n = 11, 948, (e) Pothen/bodyy4: n = 17, 546 (f) ND/nd6k: n = 18, 000 (g)
GHS psdef/wathen100: n = 30, 401. The starting matrix X0 = I was used for all methods.

41

