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1 Introduction

This is an exercise in proving the convergence of iterative optimization methods. We
will take a simple case study: solving the linear least squares problem, and prove the
linear convergence of the gradient descent method and a variant of the stochastic gradient
descent (SGD) method with importance sampling. This variant of SGD is also known as
the randomized Kaczmarz method and the linear convergence we prove in Exe.2 was first
established in [3].

First we introduce some necessary notation.

Notation: For every x, y,∈ Rn let 〈x, y〉 def= x>y and let ‖x‖2 =
√
〈x, x〉.

Let σmin(A) and σmax(A) be the smallest and largest singular values of A defined by

σmin(A)
def
= min

x∈Rn

‖Ax‖2
‖x‖2

and σmax(A)
def
= max

x∈Rn

‖Ax‖2
‖x‖2

. (1)

Thus clearly
‖Ax‖22
‖x‖22

≤ σmax(A)2, ∀x ∈ Rn. (2)

Let ‖A‖2F
def
= Tr

(
A>A

)
denote the Frobenius norm of A. Finally, a result you will need, is

that for every symmetric positive semi-definite matrix G the L2 induced matrix norm can
be equivalently defined by

σmax(G) = max
x∈Rn

√
〈Gx, x〉2
‖x‖2

= max
x∈Rn

‖Gx‖2
‖x‖2

. (3)
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2 The Linear Least Squares Problem

Now consider the problem of solving the linear system

Ax = b, (4)

where A ∈ Rm×n and b ∈ Rm. We assume that there exists a solution to (4). We also
assume that n ≤ m and that A has full column rank so that there is a unique solution
x∗ ∈ Rn to (4). We can recast (4) as the following Least Squares optimization problem

x∗ = arg min
x∈Rn

(
1
2‖Ax− b‖

2
2
def
= f(x)

)
. (5)

3 Exercises

Ex. 1 — Consider the Gradient descent method

xt+1 = xt − α∇f(xt), (6)

where

α =
1

σmax(A)2
, (7)

is a fixed stepsize.

Part I

Show or convince yourself that

σmax(I − αA>A)2 = 1− ασmin(A)2 = 1− σmin(A)2

σmax(A)2
. (8)

Part II

Calculate the gradient ∇f(x) of (5) and re-write the iterates (6) with this gradient.

Part III

Show that the iterates (6) converge to x∗ according to

‖xt+1 − x∗‖22 ≤
(

1− σmin(A)2

σmax(A)2

)
‖xt − x∗‖22,

for all t.
Hint 1: Subtract x∗ from both sides of (6) and use the results from the previous two
exercises.
Hint 2: Remember that b = Ax∗!
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Answer (Ex. I) — First note that〈
(I − αA>A)x, x

〉
= ‖x‖22 − α‖Ax‖22
(7)

≥ ‖x‖22 −
‖Ax‖22
σmax(A)2

(2)

≥ ‖x‖22 −
σmax(A)2‖x‖22
σmax(A)2‖x‖22

= 0,

thus the matrix (I−αA>A) is positive semi-definite and only has non-negative eigenvalues.
Furthermore 〈

(I − αA>A)x, x
〉

‖x‖22
= 1− α

〈
A>Ax, x

〉
‖x‖22

. (9)

Since (I−αA>A) is symmetric positive semi-definite we can use (3) to calculate the induced
norm, thus we have

σmax(I − αA>A)2
(3)+(9)

= max
x∈Rn

(
1− α

〈
A>Ax, x

〉
‖x‖22

)

= 1− α min
x∈Rn

〈
A>Ax, x

〉
‖x‖22

= 1− ασmin(A)2.

Answer (Ex. II) — Differentiating we have

∇f(x) = A>(Ax− b) = A>A(x− x∗),

where the last equality follows since Ax∗ = b. Consequently the gradient descent method (6)
can be written as

xt+1 = xt − αA>A(xt − x∗). (10)

Answer (Ex. III) — Subtracting x∗ from both sides of (10) gives

xt+1 − x∗ = xt − x∗ − αA>A(xt − x∗) = (I − αA>A)(xt − x∗).

Taking norm squared in the above gives

‖xt+1 − x∗‖22
(2)

≤ σmax

(
I − αA>A

)2
‖xt − x∗‖22

(8)
= (1− ασmin(A)2)‖xt − x∗‖22.
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In particular for α = 1
σmax(A)2

the above shows that

‖xt+1 − x∗‖22 ≤
(

1− σmin(A)2

σmax(A)2

)
‖xt − x∗‖22.

Ex. 2 — The least squares problem (5) can be re-written as

min
x

1
2‖Ax− b‖

2
2 = min

x

1
2

m∑
i=1

(Ai:x− bi)2
def
= min

x

1
2

m∑
i=1

fi(x) (11)

where fi(x) = (Ai:x − bi)2, Ai: denotes the ith row of A and bi denotes the ith element
of b. Given this sum of terms structure in (11) we can implement the stochastic gradient
method as follows. From a given x0 ∈ Rn, consider the iterates

xt+1 = xt − αj∇fj(xt), (12)

where

αj =
1

‖Aj:‖22
, (13)

and j is a random index chosen from {1, . . . ,m} such that for every i ∈ {1, . . . ,m} the

probability that j = i is given by
‖Ai:‖22
‖A‖2F

. In other words, P(j = i) =
‖Ai:‖22
‖A‖2F

for all i ∈
{1, . . . ,m}.

Part I

Show that

Pj
def
= αjA

>
j:Aj: =

A>j:Aj:

‖Aj:‖22
, (14)

is a projection operator which projects orthogonally onto Range (Aj:) . In other words,
show that

PjPj = Pj and (I − Pj)(I − Pj) = I − Pj . (15)

Furthermore, verify that

E [Pj ] =
m∑
i=1

P(j = i)Pi =
A>A

‖A‖2F
. (16)

Part II
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Using analogous techniques from the previous exercise, show that the iterates (12) converge
according to

E
[
‖xt+1 − x∗‖22

]
≤

(
1− σmin(A)2

‖A‖2F

)
E
[
‖xt − x∗‖22

]
. (17)

This is an amazing and recent result [3], since it shows that SGD converges exponentially
fast despite the fact that the iterates (12) only require access to a single row of A at a time!
This result can be extended to any matrix A, including rank deficient matrices. Indeed,
so long as there exists a solution to (4), the iterates (12) converge to the solution of least

norm and at rate of
(

1− σ+
min(A)

2

‖A‖2F

)
where σ+min(A) is the smallest nonzero singular value

of A [1]. Thus the assumption that A has full column rank is not necessary. These results
have also been extended to a general class of methods [2].

Part III

When is this stochastic gradient method (12) faster than the gradient descent method (6)?
Note that the each iteration of SGD costs O(n) floating point operations while an iteration
of the GD method costs O(nm) floating point operations. What happens if m is very big?
What if ‖A‖2F is very large? Discuss this.

Answer (Ex. I) — Verify by most all claim by direct computation. For instances

E [Pj ] =

m∑
i=1

P(j = i)Pi =

m∑
i=1

‖Ai:‖22
‖A‖2F

A>i:Ai:
‖Ai:‖22

=

m∑
i=1

A>i:Ai:
‖A‖2F

=
A>A

‖A‖2F
.

Answer (Ex. II) — First note that

∇fj(xt) = A>j:(Aj:x− bj) = A>j:Aj:(x− x∗).
Using the above and subtracting x∗ from both sides of (12) we have

xt+1 − x∗ = xt − x∗ − αjA>j:Aj:(xt − x∗)

(13)
=

(
I −

A>j:Aj:

‖Aj:‖22

)
(xt − x∗).

Taking norm squared in the above we have that

‖xt+1 − x∗‖22 = ‖

(
I −

A>j:Aj:

‖Aj:‖22

)
(xt − x∗)‖22

(15)
=

〈(
I −

A>j:Aj:

‖Aj:‖22

)
(xt − x∗), xt − x∗

〉

= ‖xt − x∗‖22 −

〈
A>j:Aj:

‖Aj:‖22
(xt − x∗), xt − x∗

〉
.

5



Taking expectation conditioned on xt in the above gives

E
[
‖xt+1 − x∗‖22 |xt

]
= ‖xt − x∗‖22 −

〈
E

[
A>j:Aj:

‖Aj:‖22

]
(xt − x∗), xt − x∗

〉
(16)
= ‖xt − x∗‖22 −

1

‖A‖2F

〈
A>A(xt − x∗), xt − x∗

〉
(1)

≤ ‖xt − x∗‖22 −
σmin(A)2

‖A‖2F
‖xt − x∗‖22

=

(
1− σmin(A)2

‖A‖2F

)
‖xt − x∗‖22.

It remains to take expectation in the above.

Answer (Ex. III) — ...
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