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1 Introduction

Ridge regression is perhaps the simplest example of a training problem in Machine Learn-
ing. Consider the task of learning a rule that maps the feature vector x ∈ Rd to outputs
y ∈ R. Furthermore you are given a set of labelled observations (xi, yi) for i = 1, . . . , n.
We restrict ourselves to linear mappings. That is, we need to find w ∈ Rd such that

x>i w ≈ yi, for i = 1, . . . , n. (1)

That is the hypothesis function is parametrized by w and is given by hw : x 7→ w>x.1 To
choose a w such that each x>i w is close to yi, we use the squared loss `(y) = y2/2 and the
squared regularizor. That is, we minimize

w∗ = arg min
w

1

n

n∑
i=1

1

2
(x>i w − yi)2 +

λ

2
‖w‖22, (2)

where λ > 0 is the regularization parameter. We now have a complete training prob-
lem (2)2.

With this simple ridge regression problem, we can illustrate many different techniques
used in machine learning, such as using crossvalidation to select λ, dimension reduction
tools, data scaling and stochastic optimization. In this exercise we will solve (2) using
gradient descent, and we will establish how fast does gradient converge.

Using the matrix notation

X
def
= [x1, . . . , xn] ∈ Rd×n, and y = [y1, . . . , yn] ∈ Rn, (3)

1We need only consider a linear mapping as opposed to the more general affine mapping xi 7→ w>xi +β,
because the zero order term β ∈ R can be incorporated by defining a new feature vectors x̂i = [x1, 1] and
new variable ŵ = [w, β] so that x̂>i ŵ = x>i w + β

2Excluding the issue of selection λ using something like crossvalidation https://en.wikipedia.org/

wiki/Cross-validation_(statistics)
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we can re-write the objective function in (2) as

f(w)
def
=

1

2n
‖X>w − y‖22 +

λ

2
‖w‖22. (4)

First we introduce some necessary notation.

Notation: For every x,w,∈ Rd let 〈x,w〉 def= x>y and let ‖x‖2 =
√
〈x, x〉. Let A ∈ Rd×d

be a matrix and let σmin(A) and σmax(A) be the smallest and largest singular values of A
defined by

σmin(A)
def
= min

x∈Rd, x 6=0

‖Ax‖2
‖x‖2

and σmax(A)
def
= max

x∈Rd, x 6=0

‖Ax‖2
‖x‖2

. (5)

Finally, a result you will need, if A is a symmetric positive semi-definite matrix the
largest singular value of A can be defined instead as

σmax(A) = max
x∈Rd, x 6=0

〈Ax, x〉2
‖x‖22

= max
x∈Rd, x 6=0

‖Ax‖2
‖x‖2

. (6)

Therefore
〈Ax, x〉2
‖x‖22

≤ σmax(A), ∀x ∈ Rd. (7)

and
〈Ax〉2
‖x‖2

≤ σmax(A), ∀x ∈ Rd. (8)

2 Gradient descent

We will now solve the following ridge regression problem

w∗ = arg min
w∈Rd

(
1

2n
‖X>w − y‖22 +

λ

2
‖w‖22

def
= f(w)

)
, (9)

using gradient descent.
Ex. 1 — Consider the Gradient descent method

wt+1 = wt − α∇f(wt), (10)

where

α =
1

σmax(A)
, (11)

is a fixed stepsize and

A
def
= 1

nXX
> + λI. (12)
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Part I

Show that the gradient ∇f(x) of (9) is given by

∇f(w) = Aw − b = A(w − w∗),

where w∗ is the solution to (9) and

b
def
= 1

nXy.

Now that we have calculated the gradient, re-write the iterates (10) using this gradient.
Part II

Show or convince yourself that A as defined in (12) is positive semi-definite, that is

〈Aw,w〉 ≥ 0, ∀w ∈ Rd, (13)

and that

σmax(I − αA) = 1− ασmin(A) = 1− σmin(A)

σmax(A)
. (14)

Part III

Show that the iterates (10) converge to w∗ according to

‖wt+1 − w∗‖2 ≤
(

1− σmin(A)

σmax(A)

)
‖wt − w∗‖2,

for all t. The number (1− σmin(A)/σmax(A)) is known as the rate of convergence.
Hint 1: Subtract w∗ from both sides of (10) and use the results from the previous two
exercises.
Hint 2: Try and show that b = Aw∗!

Part IV

Let

κ(A)
def
=
σmax(A)

σmin(A)
,

which is known as the condition number of A. What happens to κ as λ→∞ and λ→ 0,
respectively? What does this imply about the speed at which gradient descent converges
to the solution?
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Part V

Let us consider the extreme case where λ = 0. Consider the coordinate change ŵ = P−1w,
where P ∈ Rd×d is invertible. With this coordinate change we can solve the problem in ŵ
given by

ŵ∗ = arg min
ŵ∈Rd

(
1

2n
‖X>Pŵ − y‖22 +

λ

2
‖Pŵ‖22

)
, (15)

then switch back the coordinate system to get the solution in w∗ given by

w∗ = P−1ŵ∗. (16)

If we use gradient descent to solve (15), at what rate does it converge? To get the fastest
rate possible, what should P be? Does the choice

P = diag(XX>)−1, (17)

make sense?
Extra question: Lookup and read about “batch normalization”. Is it somehow related
to preconditioning? Discuss with your colleagues.
Remark: The matrix P is known as the preconditioner and the particular choice given
by (17) is a standard choice known as “feature scaling” and it is often used in machine
learning.

Answer (Ex. I) — Differentiating we have

∇f(w) =
(

1
nXX

> + λI
)
w −Xy = Aw − y = A(w − w∗),

where the last equality follows sinceAw∗ = b. Consequently the gradient descent method (10)
can be written as

wt+1 = wt − αA(wt − w∗). (18)

Answer (Ex. II) — First note that

〈(I − αA)x, x〉 = ‖x‖22 − α 〈Ax, x〉2
(11)+(13)

≥ ‖x‖22 −
〈Ax, x〉2
σmax(A)

(7)

≥ ‖x‖22 −
σmax(A)‖x‖22
σmax(A)‖x‖22

= 0,

thus the matrix (I − αA) is positive semi-definite and only has non-negative eigenvalues.
Furthermore

〈(I − αA)x, x〉
‖x‖22

= 1− α〈Ax, x〉
‖x‖22

. (19)

4



Since (I − αA) is symmetric positive semi-definite we can use (6) to calculate the largest
singular value, thus we have

σmax(I − αA)
(6)+(19)

= max
x∈Rn

(
1− α〈Ax, x〉

‖x‖22

)
= 1− α min

x∈Rn

〈Ax, x〉
‖x‖22

= 1− ασmin(A).

Answer (Ex. III) — Subtracting w∗ from both sides of (18) gives

wt+1 − w∗ = wt − w∗ − αA(wt − w∗) = (I − αA)(wt − w∗).

Taking norm in the above gives

‖wt+1 − w∗‖2
(8)

≤ σmax (I − αA) ‖wt − w∗‖2
(14)
= (1− ασmin(A))‖wt − w∗‖2.

In particular for α = 1
σmax(A)

the above shows that

‖wt+1 − w∗‖2 ≤
(

1− σmin(A)

σmax(A)

)
‖wt − w∗‖2.

Answer (Ex. IV) — We can re-write the largest singular value of A as

σmax(A) = max
w 6=0

〈Aw,w〉
‖w‖22

(12)
= max

w 6=0

〈
( 1
nXX

> + λI)w,w
〉

‖w‖22
= max

w 6=0

‖X>w‖22
‖w‖22

+λ = σmax(X)2+λ.

And similarly
σmax(A) = σmin(X)2 + λ.

Consequently

κ(A) =
σmax(X)2 + λ

σmin(X)2 + λ
. (20)

Ergo
lim
λ→∞

κ(A) = 1,

and
lim
λ→0

κ(A) = κ(X)2.
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