Proximal operator and methods

Master 2 Data Science, Univ. Paris Saclay

Robert M. Gower

References classes today

Sébastien Bubeck (2015) Convex Optimization: Algorithms and Complexity

Amir Beck and Marc Teboulle (2009), SIAM J. IMAGING SCIENCES, A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems.

Chapter 1 and Section 5.1

Optimization Sum of Terms

A Datum Function $f_i(w) := \ell \left(h_w(x^i), y^i \right) + \lambda R(w)$

$$\frac{1}{n}\sum_{i=1}^{n}\ell\left(h_w(x^i), y^i\right) + \lambda R(w) = \frac{1}{n}\sum_{i=1}^{n}\left(\ell\left(h_w(x^i), y^i\right) + \lambda R(w)\right)$$
$$= \frac{1}{n}\sum_{i=1}^{n}f_i(w)$$

Finite Sum Training Problem $\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w)$

The Training Problem

Solving the *training problem*:

$$\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w)$$

Reference method: Gradient descent

$$\nabla\left(\frac{1}{n}\sum_{i=1}^{n}f_i(w)\right) = \frac{1}{n}\sum_{i=1}^{n}\nabla f_i(w)$$

Gradient Descent Algorithm

Set
$$w^1 = 0$$
, choose $\alpha > 0$.
for $t = 1, 2, 3, \dots, T$
 $w^{t+1} = w^t - \frac{\alpha}{n} \sum_{i=1}^n \nabla f_i(w^t)$
Output w^{T+1}

Convergence GD I

Theorem

Let f be convex and L-smooth.

$$f(w^{T}) - f(w^{*}) \le \frac{2L||w^{1} - w^{*}||_{2}^{2}}{T - 1} = O\left(\frac{1}{T}\right)$$

Where

$$w^{t+1} = w^t - \frac{1}{L}\nabla f(w^t)$$

$$\Rightarrow \text{for } \frac{f(w^T) - f(w^*)}{||w^1 - w^*||_2^2} \le \epsilon \text{ we need } T \ge \frac{2L}{\epsilon} = O\left(\frac{1}{\epsilon}\right)$$

Convergence GD I

Theorem

Let f be convex and L-smooth.

$$f(w^{T}) - f(w^{*}) \le \frac{2L||w^{1} - w^{*}||_{2}^{2}}{T - 1} = O\left(\frac{1}{T}\right)$$

Where

$$w^{t+1} = w^t - \frac{1}{L}\nabla f(w^t)$$

Is f always differentiable?

$$\Rightarrow \text{ for } \frac{f(w^T) - f(w^*)}{||w^1 - w^*||_2^2} \le \epsilon \text{ we need } T \ge \frac{2L}{\epsilon} = O\left(\frac{1}{\epsilon}\right)$$

Convergence GD |

Not true for many problems

Theorem

Let f be convex and L-smooth.

$$f(w^{T}) - f(w^{*}) \le \frac{2L||w^{1} - w^{*}||_{2}^{2}}{T - 1} = O\left(\frac{1}{T}\right)$$

Where

$$w^{t+1} = w^t - \frac{1}{L}\nabla f(w^t)$$

Is f always differentiable?

$$\Rightarrow \text{ for } \frac{f(w^T) - f(w^*)}{||w^1 - w^*||_2^2} \le \epsilon \text{ we need } T \ge \frac{2L}{\epsilon} = O\left(\frac{1}{\epsilon}\right)$$

Change notation: Keep loss and regularizor separate

Loss function

$$L(w) := \frac{1}{n} \sum_{i=1}^{n} \ell\left(h_w(x^i), y^i\right)$$

The Training problem

$$\min_{w} L(w) + \lambda R(w)$$

If L or R is not differentiable

L+R is not differentiable

If L or R is not smooth

L+R is not smooth

$$L(w) + R(w) = \frac{1}{2}||w||_{2}^{2} + ||w||_{1}$$

$$L(w) + R(w) = \frac{1}{2}||w||_{2}^{2} + ||w||_{1}$$

$$L(w) + R(w) = \frac{1}{2}||w||_{2}^{2} + ||w||_{1}$$

Need more tools

$$L(w) + R(w) = \frac{1}{2}||w||_{2}^{2} + ||w||_{1}$$

Need more tools

Assumptions for this class

The Training problem

$$\min_{w} L(w) + \lambda R(w)$$

 $L(w) \text{ is differentiable, } \mathcal{L}\text{-smooth and convex}$ R(w) is convex and "easy to optimize" What does this mean? $V \text{ prox}_{\gamma R}(y) := \arg\min_{w} \frac{1}{2} ||w - y||_{2}^{2} + \gamma R(w)$ Assume this is easy to solve

Examples

Lasso

$$\min_{w \in \mathbf{R}^{d}} \frac{1}{2n} \sum_{i=1}^{n} (y^{i} - \langle w, a^{i} \rangle)^{2} + \lambda ||w||_{1}$$
Not smooth,
but prox is
easy

$$\min_{W \in \mathbf{R}^{d \times d}} \frac{1}{n} \sum_{i=1}^{n} ||AW - Y||_{F}^{2} + \lambda ||W||_{*}$$
SVM with soft margin

$$\min_{w \in \mathbf{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} \max\{0, 1 - y^{i} \langle w, a^{i} \rangle\} + \lambda ||w||_{2}^{2}$$
Not smooth

Convexity: Subgradient

Let $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ be convex

 $\partial f(w) := \{ g \in \mathbb{R}^n : f(y) \ge f(w) + \langle g, y - w \rangle, \forall y \in \operatorname{dom}(f) \}$

Convexity: Subgradient

Let $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ be convex

 $\partial f(w) := \{ g \in \mathbb{R}^n : f(y) \ge f(w) + \langle g, y - w \rangle, \forall y \in \operatorname{dom}(f) \}$

Examples: L1 norm

Optimality conditions

The Training problem

$$w^* = \arg\min_{w \in \mathbf{R}^d} L(w) + \lambda R(w)$$

$$0 \in \partial \left(L(w^*) + \lambda R(w^*) \right) = \nabla L(w^*) + \lambda \partial R(w^*)$$
$$-\nabla L(w^*) \in \lambda \partial R(w^*)$$

Working example: Lasso

Lasso

$$\min_{w \in \mathbf{R}^d} \frac{1}{2n} ||Aw - y||_2^2 + \lambda ||w||_1$$

$$A = [a^{1}, \dots, a^{n}]^{\top} \Rightarrow \sum_{i=1}^{n} (y^{i} - \langle w, a^{i} \rangle)^{2} = ||Aw - y||_{2}^{2}$$

.

$$-\nabla L(w^*) \in \partial R(w^*)$$

$$-\frac{1}{n}A^{\top}(Aw^* - y) \in \partial ||w^*||_1$$

Difficult inclusion, do iteratively.

Using \mathcal{L} -smoothness of L:

$$L(w) \le L(y) + \langle \nabla L(y), w - y \rangle + \frac{\mathcal{L}}{2} ||w - y||^2, \quad \forall w, y \in \mathbb{R}^d$$

The w that minimizes the upper bound gives gradient descent

$$w = y - \frac{1}{\mathcal{L}}\nabla L(y)$$

Using \mathcal{L} -smoothness of L:

$$L(w) \le L(y) + \langle \nabla L(y), w - y \rangle + \frac{\mathcal{L}}{2} ||w - y||^2, \quad \forall w, y \in \mathbb{R}^d$$

The w that minimizes the upper bound gives gradient descent

$$w = y - \frac{1}{\mathcal{L}} \nabla L(y)$$

But what about R(w)? Adding on $+\lambda R(w)$ to upper bound:

Using \mathcal{L} -smoothness of L:

$$L(w) \le L(y) + \langle \nabla L(y), w - y \rangle + \frac{\mathcal{L}}{2} ||w - y||^2, \quad \forall w, y \in \mathbb{R}^d$$

The w that minimizes the upper bound gives gradient descent

$$w = y - \frac{1}{\mathcal{L}} \nabla L(y)$$

But what about R(w)? Adding on $+\lambda R(w)$ to upper bound:

$$L(w) + \lambda R(w) \le L(y) + \langle \nabla L(y), w - y \rangle + \frac{\mathcal{L}}{2} ||w - y||^2 + \lambda R(w)$$

Using \mathcal{L} -smoothness of L:

$$L(w) \le L(y) + \langle \nabla L(y), w - y \rangle + \frac{\mathcal{L}}{2} ||w - y||^2, \quad \forall w, y \in \mathbb{R}^d$$

The w that minimizes the upper bound gives gradient descent

$$w = y - \frac{1}{\mathcal{L}} \nabla L(y)$$

But what about R(w)? Adding on $+\lambda R(w)$ to upper bound:

$$L(w) + \lambda R(w) \le L(y) + \langle \nabla L(y), w - y \rangle + \frac{\mathcal{L}}{2} ||w - y||^2 + \lambda R(w)$$

Can we minimize the right-hand side?

Minimizing the right-hand side of

$$\begin{split} L(w) + \lambda R(w) &\leq L(y) + \langle \nabla L(y), w - y \rangle + \frac{\mathcal{L}}{2} ||w - y||^2 + \lambda R(w) \\ & \arg\min_w L(y) + \langle \nabla L(y), w - y \rangle + \frac{\mathcal{L}}{2} ||w - y||^2 + \lambda R(w) \\ &= \arg\min_w \langle \nabla L(y), w - y \rangle + \frac{\mathcal{L}}{2} ||w - y||^2 + \lambda R(w) \\ &= \arg\min_w \frac{1}{2} ||w - (y - \frac{1}{\mathcal{L}} \nabla L(y))||^2 + \frac{\lambda}{\mathcal{L}} R(w) \\ &=: \operatorname{prox}_{\frac{\lambda}{\mathcal{L}}R}(y - \frac{1}{\mathcal{L}} \nabla L(y))) \end{split}$$
 What is this prox operator?

$$\operatorname{prox}_{\frac{\lambda}{\mathcal{L}}R}(v) := \arg\min_{w} \frac{1}{2} ||w - v||_{2}^{2} + \frac{\lambda}{\mathcal{L}}R(w)$$

Gradient Descent using proximal map

$$\operatorname{prox}_{\gamma R}(y) := \arg\min_{w} \frac{1}{2} ||w - y||_{2}^{2} + \gamma R(w)$$

EXE: Let

$$f(y) + \langle \nabla f(y), w - y \rangle =: \ell(y, w)$$

Show that

$$\operatorname{prox}_{\gamma\ell(y,\cdot)}(y) = y - \gamma\nabla f(y)$$

A gradient step is also a proximal step

Proximal Operator I

Let f(x) be a convex function. The proximal operator is

$$prox_{f}(v) := \arg\min_{w} \frac{1}{2} ||w - v||_{2}^{2} + f(w)$$

Let $w_v = \operatorname{prox}_f(v)$. Using optimality conditions

$$0 \in \partial\left(\frac{1}{2}||w_v - v||_2^2 + f(w)\right) = w_v - v + \partial f(w_v)$$

Rearranging

$$\operatorname{prox}_f(v) = w_v \in v - \partial f(w_v)$$

EXE: Is this Proximal operator well defined? Is it even a function?

Proximal Operator II: Optimality conditions

The Training problem

 $\min_{w} L(w) + \lambda R(w)$

Proximal Operator III: Properties

$$prox_f(v) := \arg\min_{w} \frac{1}{2} ||w - v||_2^2 + f(w)$$

Exe:
1) If
$$f(w) = \sum_{i=1}^{d} f_i(w_i)$$
 then
 $\operatorname{prox}_f(v) = (\operatorname{prox}_{f_1}(v_1), \dots, \operatorname{prox}_{f_d}(v_d))$
2) If $f(w) = I_C(w) := \begin{cases} 0 & \text{if } w \in C \\ \infty & \text{if } w \notin C \end{cases}$ where C is closed and convert
then $\operatorname{prox}_f(v) = \operatorname{proj}_C(v)$

3) If
$$f(w) = \langle b, w \rangle + c$$
 then $\operatorname{prox}_f(v) = v - b$

4) If $f(w) = \frac{\lambda}{2}w^{\top}Aw + \langle b, w \rangle$ where $A \succeq 0, A = A^{\top}, \lambda \ge 0$ then $\operatorname{prox}_{f}(v) = (I + \lambda A)^{-1}(v - b)$

Proximal Operator IV: Soft thresholding

$$\operatorname{prox}_{\lambda||w||_{1}}(v) := \arg\min_{w} \frac{1}{2} ||w - v||_{2}^{2} + \lambda||w||_{1}$$

 $S_{\lambda}(\alpha)$

 $-\lambda$

Exe:

1) Let $\alpha \in \mathbf{R}$. If $\alpha^* = \arg \min_{\alpha} \frac{1}{2} (\alpha - v)^2 + \lambda |\alpha|$ then $\alpha^* \in v - \lambda \partial |\alpha^*|$ (I) 2) If $\lambda < v$ show (I) gives $\alpha^* = v - \lambda$ 3) If $v < -\lambda$ show (I) gives $\alpha^* = v + \lambda$ 4) Show that

$$\operatorname{prox}_{\lambda|\alpha|}(v) = \begin{cases} v - \lambda & \text{if } \lambda < v \\ 0 & \text{if } -\lambda \le v \le \lambda \\ v + \lambda & \text{if } v < -\lambda. \end{cases}$$

Proximal Operator V: Singular value thresholding

$$S_{\lambda}(v) := \arg\min_{w} \frac{1}{2} ||w - v||_{2}^{2} + \lambda ||w||_{1}$$

Similarly, the prox of the nuclear norm for matrices:

$$U\operatorname{diag}(S_{\lambda}(\operatorname{diag}(\sigma(A))))V^{\top} := \arg\min_{W \in \mathbf{R}^{d \times d}} \frac{1}{2} ||W - A||_F^2 + \lambda ||W||_*$$

where $A = U \operatorname{diag}(\sigma(A)) V^{\top}$ is a SVD decomposition.

Minimizing the right-hand side of

 $L(w) + \lambda R(w) \le L(y) + \langle \nabla L(y), w - y \rangle + \frac{\mathcal{L}}{2} ||w - y||^2 + \lambda R(w)$

$$\arg\min_{w} L(y) + \langle \nabla L(y), w - y \rangle + \frac{\mathcal{L}}{2} ||w - y||^{2} + \lambda R(w)$$

$$= \arg\min_{w} \langle \nabla L(y), w - y \rangle + \frac{\mathcal{L}}{2} ||w - y||^{2} + \lambda R(w)$$

$$= \arg\min_{w} \frac{1}{2} ||w - (y - \frac{1}{\mathcal{L}} \nabla L(y))|^{2} + \frac{\lambda}{\mathcal{L}} R(w)$$

$$= \operatorname{prox}_{\frac{\lambda}{\mathcal{L}}R} \left(y - \frac{1}{\mathcal{L}} \nabla L(w) \right)$$

Make iterative method based on this upper bound minimization

The Proximal Gradient Method

Solving the *training problem*:

 $\min_{w} L(w) + \lambda R(w)$

L(w) is differentiable, \mathcal{L} -smooth and convex

R(w) is convex and prox friendly

Proximal Gradient Descent Set $w^1 = 0$. for t = 1, 2, 3, ..., T $w^{t+1} = \operatorname{prox}_{\lambda R/\mathcal{L}} \left(w^t - \frac{1}{\mathcal{L}} \nabla L(w^t) \right)$ Output w^{T+1}

Iterative Soft Thresholding Algorithm (ISTA)

Lasso

$$\min_{w \in \mathbf{R}^d} \frac{1}{2n} ||Aw - y||_2^2 + \lambda ||w||_1$$

$$A = [a^{1}, \dots, a^{n}]^{\top} \Rightarrow \sum_{i=1}^{n} (y^{i} - \langle w, a^{i} \rangle)^{2} = ||Aw - y||_{2}^{2}$$

ISTA:
$$w^{t+1} = \operatorname{prox}_{\lambda||w||_1/\mathcal{L}} \left(w^t - \frac{1}{n\mathcal{L}} A^\top (Aw^t - y) \right)$$

$$\mathcal{L} = \frac{\sigma_{\max}(A)^2}{n}$$

$$= S_{\lambda/\mathcal{L}} \left(w^t - \frac{1}{\sigma_{\max}(A)^2} A^\top (Aw^t - y) \right)$$

Convergence of Prox-GD

Theorem (Beck Teboulle 2009)

Let $f(w) = L(w) + \lambda R(w)$ where

L(w) is differentiable, \mathcal{L} -smooth and convex

R(w) is convex and prox friendly

Then

$$f(w^T) - f(w^*) \le \frac{L||w^1 - w^*||_2^2}{2T} = O\left(\frac{1}{T}\right).$$

where

$$w^{t+1} = w^{t+1} = \operatorname{prox}_{\lambda R/\mathcal{L}} \left(w^t - \frac{1}{\mathcal{L}} \nabla L(w^t) \right)$$

Convergence of Prox-GD

Theorem (Beck Teboulle 2009)

Let $f(w) = L(w) + \lambda R(w)$ where

L(w) is differentiable, \mathcal{L} -smooth and convex

R(w) is convex and prox friendly

Can we do better?

Then

$$f(w^T) - f(w^*) \le \frac{L||w^1 - w^*||_2^2}{2T} = O\left(\frac{1}{T}\right)$$

where

$$w^{t+1} = w^{t+1} = \operatorname{prox}_{\lambda R/\mathcal{L}} \left(w^t - \frac{1}{\mathcal{L}} \nabla L(w^t) \right)$$

The FISTA Method

Solving the *training problem*:

 $\min_{w} L(w) + \lambda R(w)$

The FISTA Method

Solving the *training problem*:

 $\min_{w} L(w) + \lambda R(w)$

Convergence of FISTA

Theorem (Beck Teboulle 2009)

Let $f(w) = L(w) + \lambda R(w)$ where

L(w) is differentiable, \mathcal{L} -smooth and convex

R(w) is convex and prox friendly

Then

$$f(w^{T}) - f(w^{*}) \le \frac{2L||w^{1} - w^{*}||_{2}^{2}}{(T+1)^{2}} = O\left(\frac{1}{T^{2}}\right)$$

Where w^t are given by the FISTA algorithm

Convergence of FISTA

Theorem (Beck Teboulle 2009)

Let $f(w) = L(w) + \lambda R(w)$ where

L(w) is differentiable, \mathcal{L} -smooth and convex

R(w) is convex and prox friendly

Is this as good as it gets?

Then

$$f(w^{T}) - f(w^{*}) \le \frac{2L||w^{1} - w^{*}||_{2}^{2}}{(T+1)^{2}} = O\left(\frac{1}{(T+1)^{2}}\right)$$

Where w^t are given by the FISTA algorithm

Lab Session 01.10

Bring your laptop!

Lab Session 01.10

Bring your laptop!

Introduction to Stochastic Gradient Descent

Optimization Sum of Terms

A Datum Function $f_i(w) := \ell \left(h_w(x^i), y^i \right) + \lambda R(w)$

$$\frac{1}{n}\sum_{i=1}^{n}\ell\left(h_w(x^i), y^i\right) + \lambda R(w) = \frac{1}{n}\sum_{i=1}^{n}\left(\ell\left(h_w(x^i), y^i\right) + \lambda R(w)\right)$$
$$= \frac{1}{n}\sum_{i=1}^{n}f_i(w)$$

Finite Sum Training Problem
$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w) =: f(w)$$

The Training Problem

Solving the *training problem*:

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w)$$

Reference method: Gradient descent

$$\nabla\left(\frac{1}{n}\sum_{i=1}^{n}f_i(w)\right) = \frac{1}{n}\sum_{i=1}^{n}\nabla f_i(w)$$

Gradient Descent Algorithm

Set
$$w^0 = 0$$
, choose $\alpha > 0$.
for $t = 1, 2, 3, \dots, T$
 $w^{t+1} = w^t - \frac{\alpha}{n} \sum_{i=1}^n \nabla f_i(w^t)$
Output w^{T+1}

The Training Problem

Solving the *training problem*:

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w)$$

Problem with Gradient Descent:

Each iteration requires computing a gradient $\nabla f_i(w)$ for each data point. One gradient for each cat on the internet!

Gradient Descent Algorithm Set $w^0 = 0$, choose $\alpha > 0$. for $t = 1, 2, 3, \dots, T$ $w^{t+1} = w^t - \frac{\alpha}{n} \sum_{i=1}^n \nabla f_i(w^t)$ Output w^{T+1}

Is it possible to design a method that uses only the gradient of a **single** data function $f_i(w)$ at each iteration?

Is it possible to design a method that uses only the gradient of a **single** data function $f_i(w)$ at each iteration?

Unbiased Estimate

Let j be a random index sampled from $\{1, ..., n\}$ selected uniformly at random. Then

$$\mathbb{E}_j\left[\nabla f_j(w)\right] = \frac{1}{n} \sum \nabla f_i(w) = \nabla f(w)$$

Is it possible to design a method that uses only the gradient of a **single** data function $f_i(w)$ at each iteration?

Unbiased Estimate

Let j be a random index sampled from $\{1, ..., n\}$ selected uniformly at random. Then

$$\mathbb{E}_j\left[\nabla f_j(w)\right] = \frac{1}{n} \sum \nabla f_i(w) = \nabla f(w)$$

Stochastic Gradient Descent Algorithm
Set
$$w^0 = 0$$
, choose $\alpha > 0$.
for $t = 1, 2, 3, \dots, T$
Sample $j \in \{1, \dots, n\}$
 $w^{t+1} = w^t - \alpha \nabla f_j(w^t)$
Output w^{T+1}