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A Datum Function

Finite Sum Training Problem 

Optimization Sum of Terms



The Training Problem



Convergence GD I
Theorem

Let f be convex and L-smooth. 

Where



Convergence GD I
Theorem

Let f be convex and L-smooth. 

Where

Is f always 
differentiable?



Convergence GD I
Theorem

Let f be convex and L-smooth. 

Where

Not true for many 
problems 

Is f always 
differentiable?



Change notation: Keep loss and 
regularizor separate

Loss function

The Training problem

If L or R is not 
differentiable

L+R is not 
differentiable

If L or R is not 
smooth

L+R is not 
smooth
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Non-smooth Example

Does not fit. 
Not smooth
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tools



Assumptions for this class
The Training problem

What does 
this mean?

Assume 
this is easy 
to solve



Examples

SVM with soft margin

Lasso

Low Rank Matrix Recovery
Not smooth, 
but prox is 
easy

Not smooth



Convexity: Subgradient



Convexity: Subgradient

g =0



Examples: L1 norm



Optimality conditions

The Training problem



Working example: Lasso

Lasso

Difficult 
inclusion, do 
iteratively.
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The w that minimizes the upper bound gives gradient descent
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Proximal method I

The w that minimizes the upper bound gives gradient descent

But what about R(w)? Adding on +         to upper bound:

Can we minimize the 
right-hand side?



Proximal method II
Minimizing the right-hand side of

What is this 
prox operator?



EXE: Let 

Show that

Gradient Descent using 
proximal map

A gradient 
step is also a 
proximal step



Proximal Operator I

Rearranging

EXE: Is this Proximal operator well defined? Is it even a function?



Proximal Operator II: Optimality 
conditions

The Training problem

Optimal is a fixed 
point. 



Proximal Operator III: Properties

Exe:



Proximal Operator IV: 
Soft thresholding 

Exe:



Proximal Operator V: 
Singular value thresholding

Similarily, the prox of the nuclear norm for matrices:



Proximal method V
Minimizing the right-hand side of

Make iterative 
method based on 
this upper bound 
minimization



The Proximal Gradient Method



Iterative Soft Thresholding 
Algorithm (ISTA)

Lasso

Amir Beck and Marc Teboulle (2009), SIAM J. IMAGING SCIENCES,  
A Fast Iterative Shrinkage-Thresholding Algorithm
for Linear Inverse Problems.

ISTA:



Convergence of Prox-GD
Theorem (Beck Teboulle 2009)

Then

where

Amir Beck and Marc Teboulle (2009), SIAM J. IMAGING SCIENCES,  
A Fast Iterative Shrinkage-Thresholding Algorithm
for Linear Inverse Problems.



Convergence of Prox-GD
Theorem (Beck Teboulle 2009)

Then

where

Can we do better?

Amir Beck and Marc Teboulle (2009), SIAM J. IMAGING SCIENCES,  
A Fast Iterative Shrinkage-Thresholding Algorithm
for Linear Inverse Problems.



The FISTA Method



The FISTA Method

Weird, but it works



Convergence of FISTA
Theorem (Beck Teboulle 2009)

Then

Where wt are given by the FISTA algorithm

Amir Beck and Marc Teboulle (2009), SIAM J. IMAGING SCIENCES,  
A Fast Iterative Shrinkage-Thresholding Algorithm
for Linear Inverse Problems.



Convergence of FISTA
Theorem (Beck Teboulle 2009)

Then

Where wt are given by the FISTA algorithm

Is this as good as it 
gets?

Amir Beck and Marc Teboulle (2009), SIAM J. IMAGING SCIENCES,  
A Fast Iterative Shrinkage-Thresholding Algorithm
for Linear Inverse Problems.
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Introduction to Stochastic 
Gradient Descent



A Datum Function

Finite Sum Training Problem 

Optimization Sum of Terms
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Is it possible to design a method that 
uses only the gradient of a single data 
function         at each iteration?



Stochastic Gradient Descent

Is it possible to design a method that 
uses only the gradient of a single data 
function         at each iteration?

Unbiased Estimate
Let j be a random index sampled from {1, …, n} selected 
uniformly at random. Then

   



Stochastic Gradient Descent

Is it possible to design a method that 
uses only the gradient of a single data 
function         at each iteration?
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Stochastic Gradient Descent
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