Introduction to Machine Learning and Stochastic Optimization

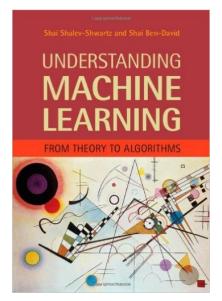
Robert M. Gower

Spring School on Optimization and Data Science, Novi Saad, March 2017 An Introduction to Supervised Learning

Some References

Graduate level

Understanding Machine Learning: From Theory to Algorithms



Undergraduate level

Stanford Machine Learning on Coursera by Andrew Ng

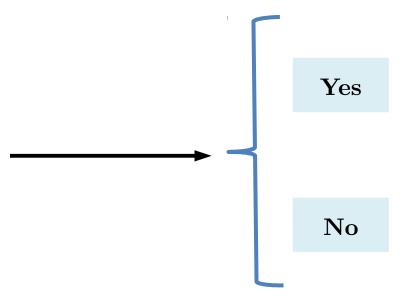
•••• Reference

Stanford University

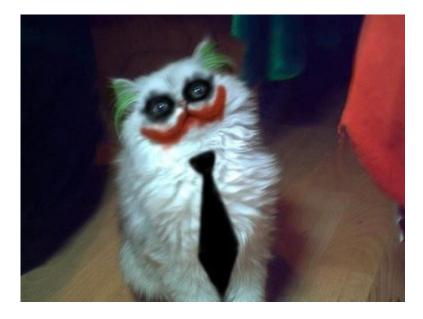
Reference

http://www.coursera.com Machine Learning (Andrew Ng)

Clustering Chapter



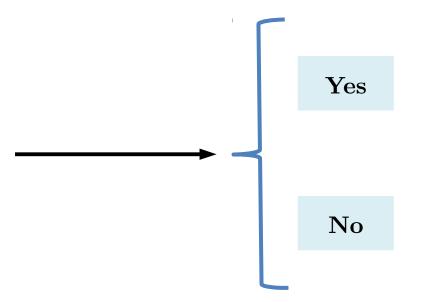
Yes



Yes

 \mathbf{No}

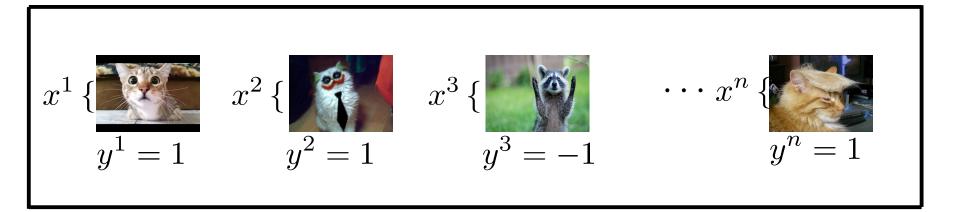
Yes

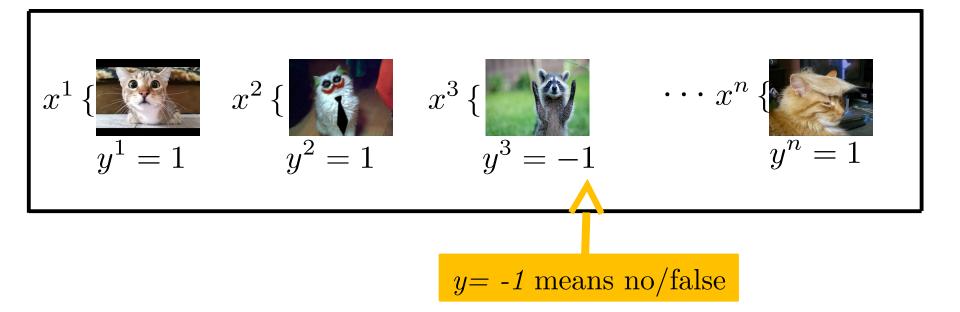


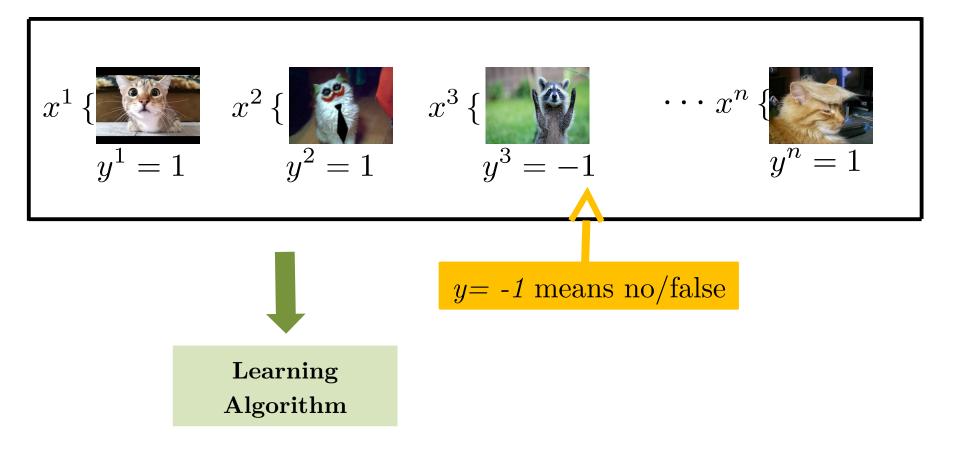
x: Input/Feature

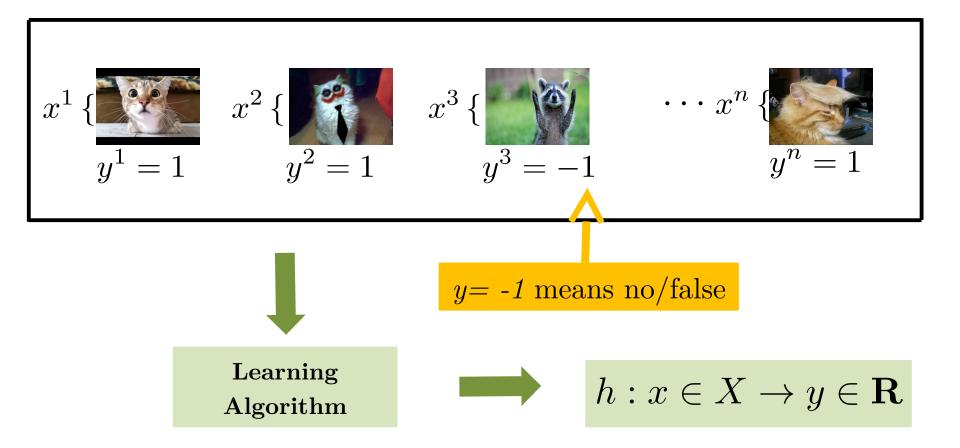
y: Output/Target

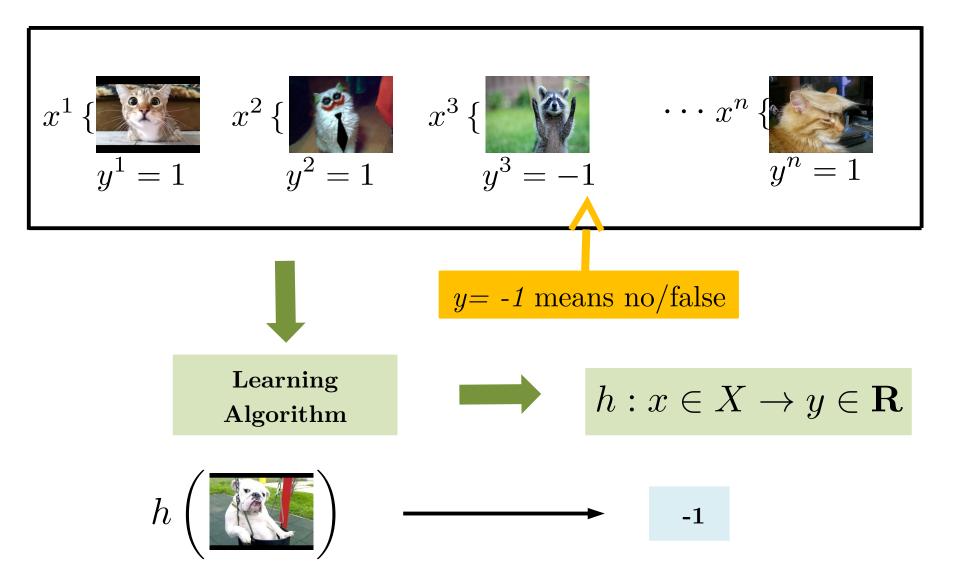
Find mapping h that assigns the "correct" target to each input $h: x \in X \longrightarrow y \in \mathbf{R}$











Example: Linear Regression for Height

Labeled data	$x \in \mathbf{R}^2, y$	$\mathbf{v} \in \mathbf{R}_+$			
$x_1^1 \left\{ egin{array}{c} {\sf Sex} \end{array} ight.$	Male		$x_1^n \{$ Sex	Female	
x_2^1 { Age	30		x_2^n { Age	70	
y^{1} { Height	1,72 cm		$y^n \left\{ egin{array}{c} {\sf Heig} ight.$		
		I			-

Example: Linear Regression for Height

Labeled data	$x \in \mathbf{R}^2, y$	$\mathbf{r} \in \mathbf{R}_+$			
$x_1^1 \left\{ egin{array}{c} {\sf Sex} \end{array} ight.$	Male		x_1^n { Sex	Female	
x_2^1 { Age	30	• • •	x_2^n { Age	70	
y^{1} { Height	1,72 cm		y^{n} $\{$ Height	1,52 cm	

Example Hypothesis: Linear Model $h_w(x_1, x_2) = w_0 + x_1 w_1 + x_2 w_2 \stackrel{x_0=1}{=} \langle w, x \rangle$

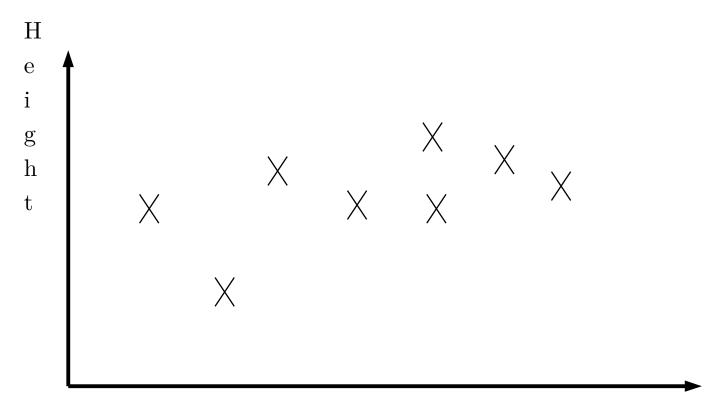
Example: Linear Regression for Height

Labeled data	$x \in \mathbf{R}^2, y$	$\mathbf{v} \in \mathbf{R}_+$			
x_1^1 { Sex	Male		x_1^n { Sex	Female	
x_2^1 { Age	30	• • •	x_2^n { Age	70	
y^{1} { Height	1,72 cm		y^n { Height	1,52 cm	

Example Hypothesis: Linear Model $h_w(x_1, x_2) = w_0 + x_1 w_1 + x_2 w_2 \stackrel{x_0=1}{=} \langle w, x \rangle$

Example Training Problem: $\min_{w \in \mathbf{R}^3} \frac{1}{n} \sum_{i=1}^n \left(h_w(x_1^i, x_2^i) - y^i \right)^2$

Linear Regression for Height

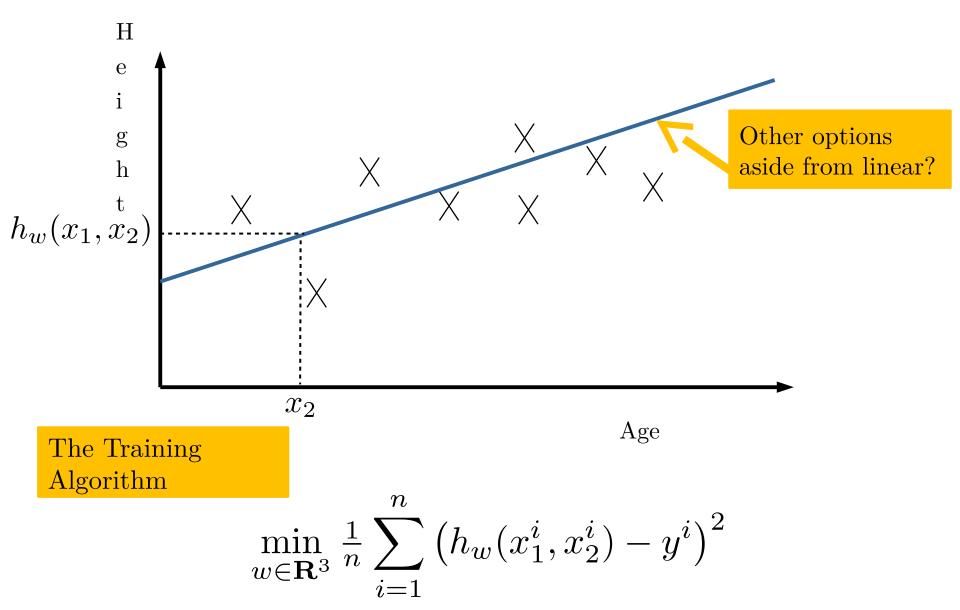


Age

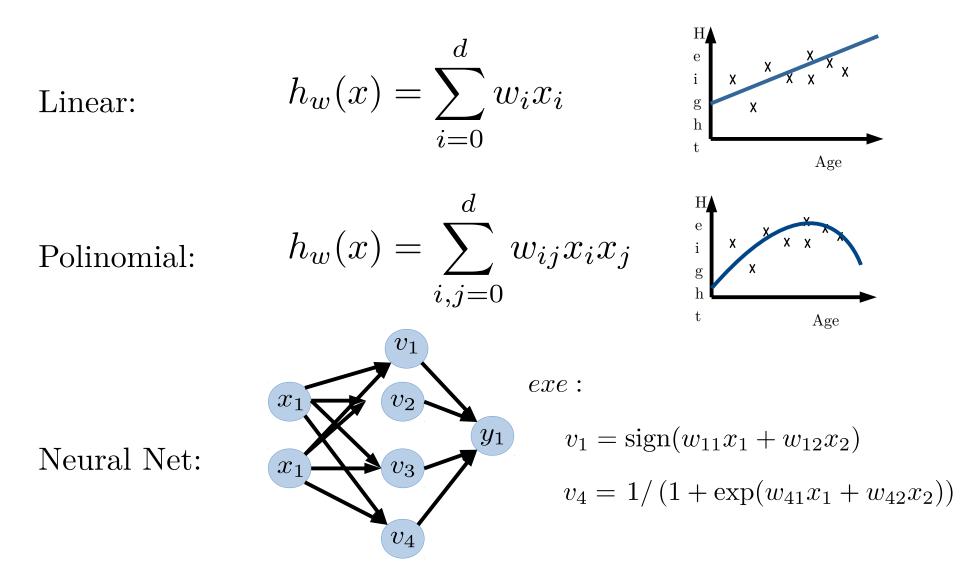
Linear Regression for Height



Linear Regression for Height



Parametrizing the Hypothesis



$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \left(h_w(x^i) - y^i \right)^2 \qquad \text{Why a Squared} \\ \text{Loss?}$$

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \left(h_w(x^i) - y^i \right)^2 \checkmark \qquad \text{Why a Squared} \\ \text{Loss?}$$

Let
$$y_h := h_w(x)$$

Loss Functions

$$\ell: \mathbf{R} \times \mathbf{R} \to \mathbf{R}_+$$

 $(y_h, y) \to \ell(y_h, y)$

The Training Problem
$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right)$$

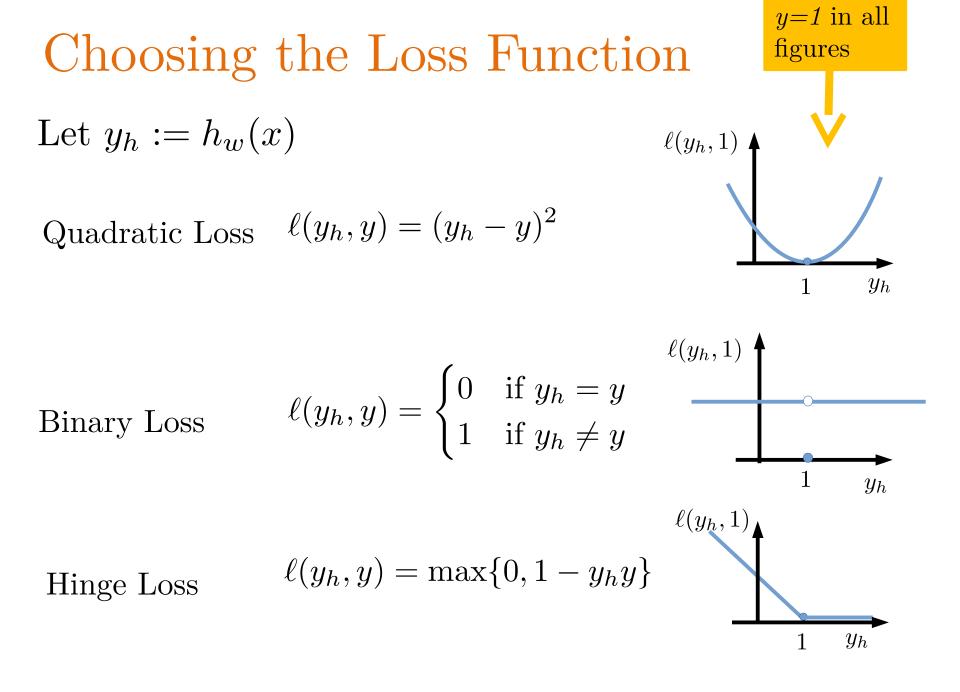
$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \left(h_w(x^i) - y^i \right)^2 \checkmark \qquad \text{Why a Squared} \\ \text{Loss?}$$

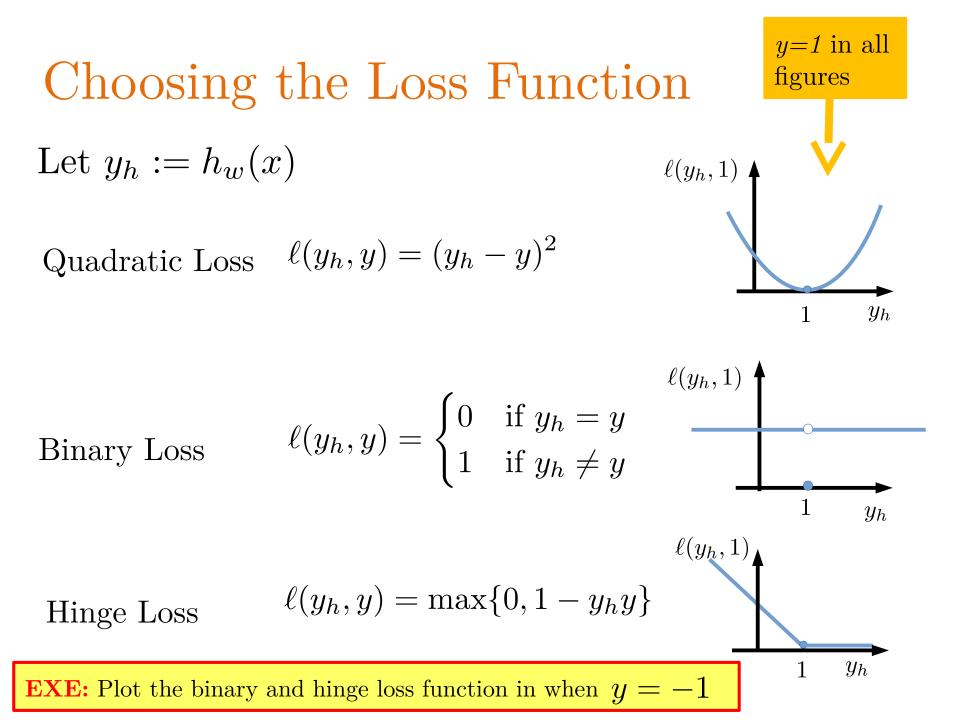
Let
$$y_h := h_w(x)$$

Loss Functions $\ell: \mathbf{R} \times \mathbf{R} \to \mathbf{R}_+$ $(y_h, y) \to \ell(y_h, y)$ Typically a convex function

The Training Problem $\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right)$

Choosing the Loss Function Let $y_h := h_w(x)$ $\ell(y_h, 1)$ $\ell(y_h, y) = (y_h - y)^2$ Quadratic Loss y_h 1 $\ell(y_h, 1)$ $\ell(y_h, y) = \begin{cases} 0 & \text{if } y_h = y \\ 1 & \text{if } y_h \neq y \end{cases}$ **Binary Loss** 1 y_h $\ell(y_h, 1)$ $\ell(y_h, y) = \max\{0, 1 - y_h y\}$ Hinge Loss y_h 1





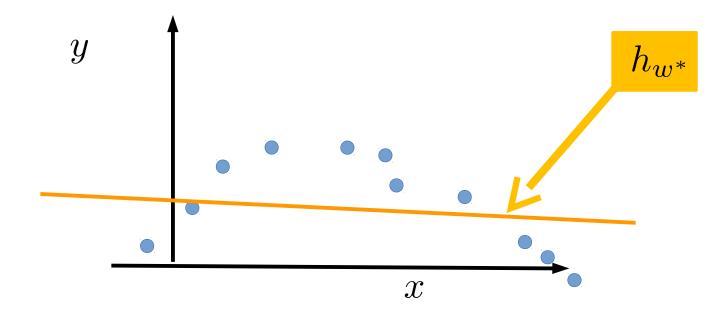
Is a notion of Loss enough?

What happens when we do not have enough data?

The Training Problem
$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right)$$

Is a notion of Loss enough?

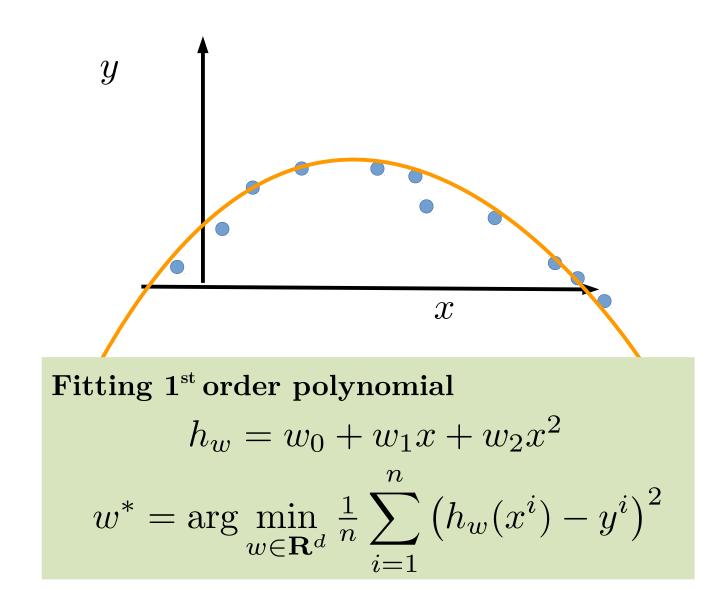
What happens when we do not have enough data?

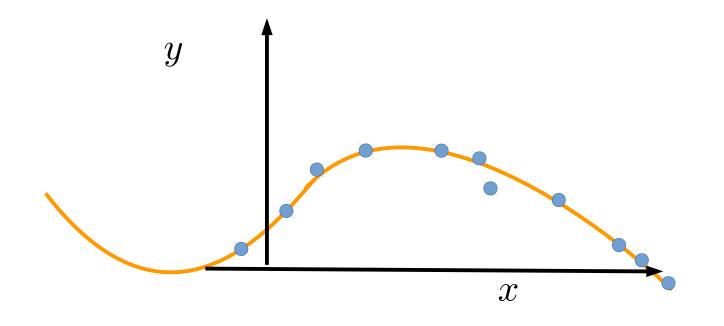


Fitting 1st order polynomial

$$h_w = \langle w, x \rangle$$

 $w^* = \arg \min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \left(h_w(x^i) - y^i \right)^2$

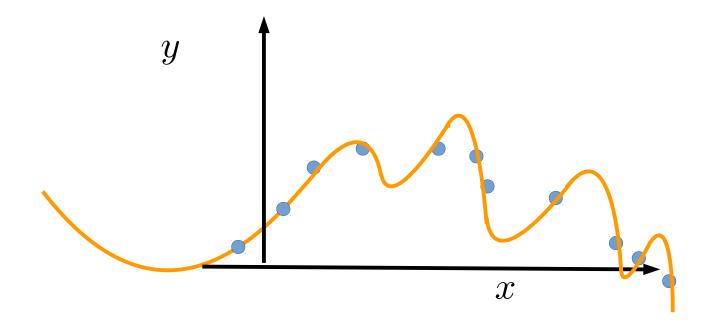




Fitting 3rd order polynomial

$$h_w = \sum_{i=0}^3 w_i x^i$$

 $w^* = \arg \min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n (h_w(x^i) - y^i)^2$



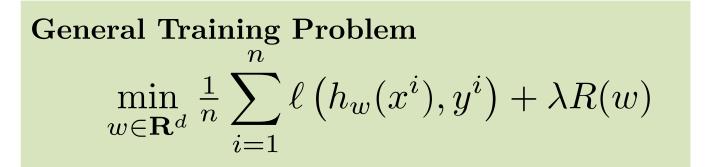
Fitting 9th order polynomial

$$h_w = \sum_{i=0}^9 w_i x^i$$

$$w^* = \arg \min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \left(h_w(x^i) - y^i \right)^2$$

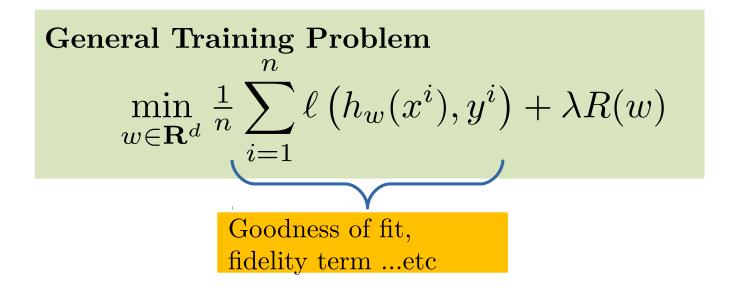
Regularization

Regularizor Functions $R: \mathbf{R}^d \to \mathbf{R}_+$ $w \to R(w)$



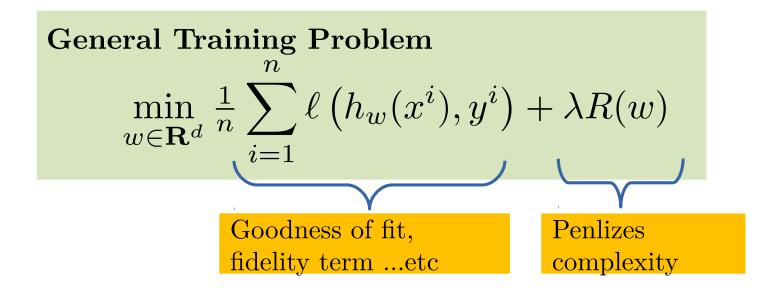
Regularization

Regularizor Functions $R: \mathbf{R}^d \to \mathbf{R}_+$ $w \to R(w)$

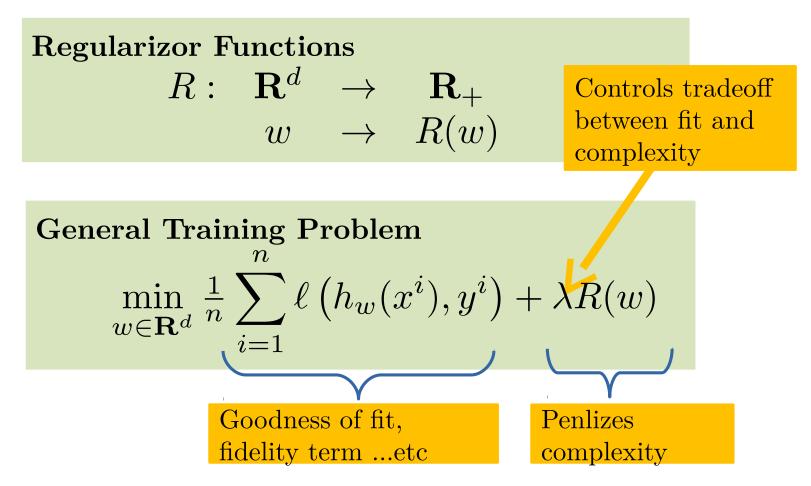


Regularization

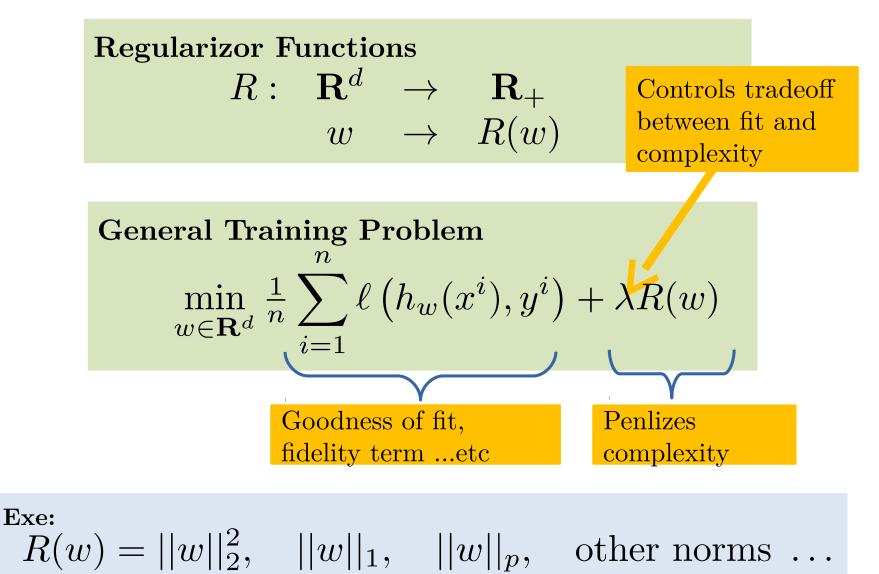
Regularizor Functions $R: \mathbf{R}^d \to \mathbf{R}_+$ $w \to R(w)$



Regularization

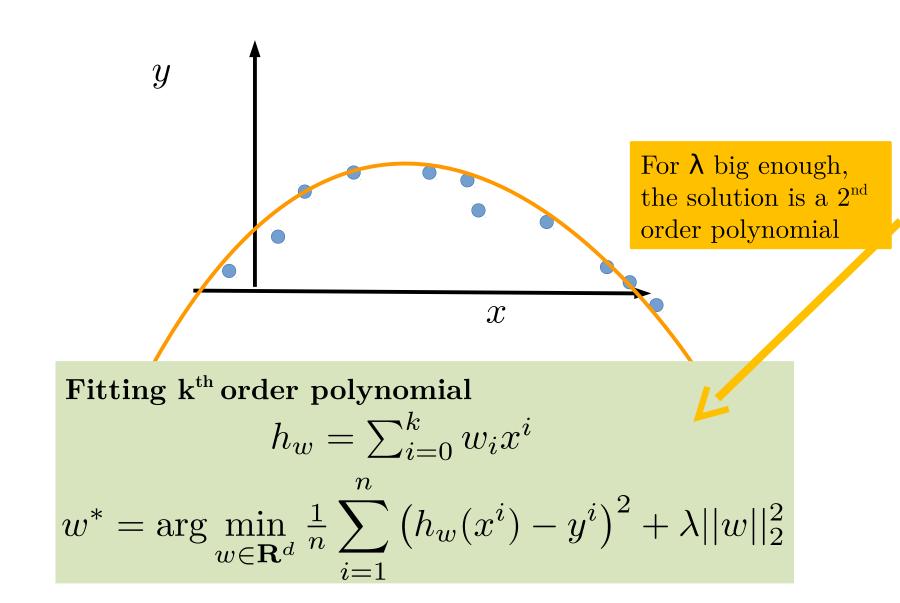


Regularization



Overfitting and Model Complexity \boldsymbol{y} \mathcal{X} Fitting kth order polynomial $h_w = \sum_{i=0}^k w_i x^i$ n $w^* = \arg\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^{n} \left(h_w(x^i) - y^i \right)^2 + \lambda ||w||_2^2$ i = 1

Overfitting and Model Complexity



Exe: Ridge Regression

Linear hypothesis $h_w(x) = \langle w, x \rangle$

L2 regularizor $R(w) = ||w||_2^2$

L2 loss
$$\ell(y_h, y) = (y_h - y)^2$$

Ridge Regression

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n (y^i - \langle w, x^i \rangle)^2 + \lambda ||w||_2^2$$

Exe: Support Vector Machines

Linear hypothesis $h_w(x) = \langle w, x \rangle$

$$\mathbf{L}\mathbf{2}$$
 regularizor
 $R(w) = ||w||_2^2$

Hinge loss $\ell(y_h, y) = \max\{0, 1 - y_h y\}$

SVM with soft margin
$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \max\{0, 1 - y^i \langle w, x^i \rangle\} + \lambda ||w||_2^2$$

Exe: Logistic Regression

Linear hypothesis $h_w(x) = \langle w, x \rangle$

$$L^{2}$$
 regularizor
 $R(w) = ||w||_{2}^{2}$

Logistic loss $\ell(y_h, y) = \max\{0, 1 - y_h y\}$

Logistic Regression $\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ln(1 + e^{-y^i \langle w, x^i \rangle}) + \lambda ||w||_2^2$

(1) Get the labeled data: $(x^1, y^1), \ldots, (x^n, y^n)$

(1) Get the labeled data: $(x^1, y^1), \ldots, (x^n, y^n)$

(2) Choose a parametrization for hypothesis: $h_w(x)$

- (1) Get the labeled data: $(x^1, y^1), \ldots, (x^n, y^n)$
- (2) Choose a parametrization for hypothesis: $h_w(x)$
- (3) Choose a loss function: $\ell(h_w(x), y) \ge 0$

- (1) Get the labeled data: $(x^1, y^1), \ldots, (x^n, y^n)$
- (2) Choose a parametrization for hypothesis: $h_w(x)$
- (3) Choose a loss function: $\ell(h_w(x), y) \ge 0$
- (4) Solve the training problem:

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right) + \lambda R(w)$$

(1) Get the labeled data: $(x^1, y^1), \ldots, (x^n, y^n)$

- (2) Choose a parametrization for hypothesis: $h_w(x)$
- (3) Choose a loss function: $\ell(h_w(x), y) \ge 0$
- (4) Solve the training problem:

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right) + \lambda R(w)$$

(5) Test and cross-validate. If fail, go back a few steps

(1) Get the labeled data: $(x^1, y^1), \ldots, (x^n, y^n)$

- (2) Choose a parametrization for hypothesis: $h_w(x)$
- (3) Choose a loss function: $\ell(h_w(x), y) \ge 0$

(4) Solve the training problem:

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right) + \lambda R(w)$$

(5) Test and cross-validate. If fail, go back a few steps