Student Robert Mansel Gower gowerrobert@gmail.com Advisor Margarida Pinheiro Mello margarid@ime.unicamp.br

July 25, 2011

Contents

1 Motivation

2 Computational graph

3 Gradient

- Forward Gradient
- Partial derivatives on computational graph

4 Hessian

- Forward Hessian
- Hessian on computational graph
- New Reverse Hessian algorithm
- Comparative tests

Motivation from nonlinear programming

- Second order Taylor approximations very common in nonlinear programming.
- Hessians desirable in interior-point and augmented Lagrangian methods.

Sensitivity analysis

Function Representation

Indices of matrices and vectors shifted by −n.
 y ∈ ℝ^m: y = (y_{1−n},..., y_{m−n})^T

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Function Representation

$$f(h(x_{-1}), g(x_{-1}, x_0))$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Indices of matrices and vectors shifted by −n.
 y ∈ ℝ^m: y = (y_{1−n},..., y_{m−n})^T

Function Representation

$$f(h(x_{-1}), g(x_{-1}, x_0))$$

$$v_{-1} = x_{-1}$$

$$v_0 = x_0$$

$$v_1 = h(v_{-1})$$

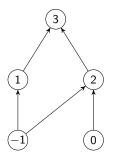
$$v_2 = g(v_{-1}, v_0)$$

$$v_3 = f(v_2, v_1)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Indices of matrices and vectors shifted by −n.
 y ∈ ℝ^m: y = (y_{1-n},..., y_{m-n})^T

Function Representation



$$f(h(x_{-1}), g(x_{-1}, x_0))$$

$$v_{-1} = x_{-1}$$

$$v_0 = x_0$$

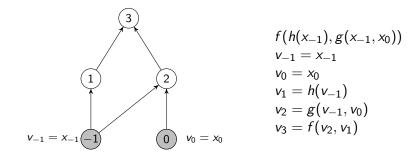
$$v_1 = h(v_{-1})$$

$$v_2 = g(v_{-1}, v_0)$$

$$v_3 = f(v_2, v_1)$$

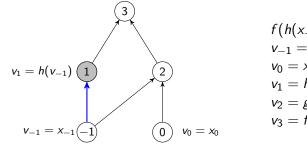
■ Indices of matrices and vectors shifted by -n. $y \in \mathbb{R}^m$: $y = (y_{1-n}, \dots, y_{m-n})^T$

Function Representation



■ Indices of matrices and vectors shifted by -n. $y \in \mathbb{R}^m$: $y = (y_{1-n}, \dots, y_{m-n})^T$

Function Representation



$$f(h(x_{-1}), g(x_{-1}, x_0))$$

$$v_{-1} = x_{-1}$$

$$v_0 = x_0$$

$$v_1 = h(v_{-1})$$

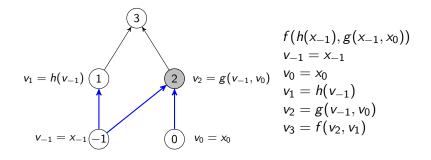
$$v_2 = g(v_{-1}, v_0)$$

$$v_3 = f(v_2, v_1)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

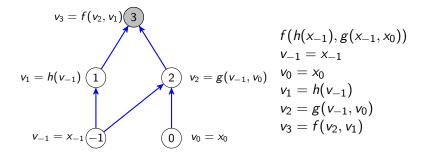
■ Indices of matrices and vectors shifted by -n. $y \in \mathbb{R}^m$: $y = (y_{1-n}, \dots, y_{m-n})^T$

Function Representation



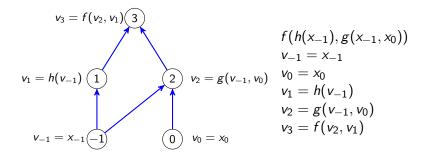
■ Indices of matrices and vectors shifted by -n. $y \in \mathbb{R}^m$: $y = (y_{1-n}, \dots, y_{m-n})^T$

Function Representation



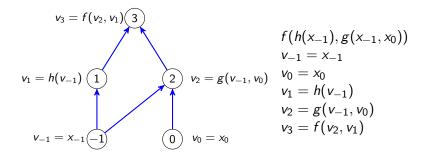
■ Indices of matrices and vectors shifted by -n. $y \in \mathbb{R}^m$: $y = (y_{1-n}, \dots, y_{m-n})^T$

Function Representation



- Indices of matrices and vectors shifted by -n. $y \in \mathbb{R}^m$: $y = (y_{1-n}, \dots, y_{m-n})^T$
- Node numbering is in order of evaluation.
- (j is a predecessor of i) $\equiv j \in P(i)$.

Function Representation



- Indices of matrices and vectors shifted by -n. $y \in \mathbb{R}^m$: $y = (y_{1-n}, \dots, y_{m-n})^T$
- Node numbering is in order of evaluation.

• (j is a predecessor of
$$i$$
) $\equiv j \in P(i)$.

(*i* is a sucessor of
$$j$$
) $\equiv i \in S(j)$.

Function Evaluation \equiv Computational Graph

Function Evaluation \equiv Computational Graph

Nodes for Independent variables:
v_{i-n} = x_{i-n}, for i = 1,..., n

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Function Evaluation \equiv Computational Graph

Nodes for Independent variables:
 v_{i-n} = x_{i-n}, for i = 1,..., n
 Independent nodes Z = {1 - n,...,0}

Function Evaluation \equiv Computational Graph

 Nodes for Independent variables: v_{i-n} = x_{i-n}, for i = 1,..., n Independent nodes Z = {1 - n,...,0}
 Nodes for Intermediate variables: v_i = φ_i(v_{P(i)}), for i = 1,..., l.

Function Evaluation \equiv Computational Graph

Nodes for Independent variables: v_{i-n} = x_{i-n}, for i = 1,..., n Independent nodes Z = {1 - n,...,0}
Nodes for Intermediate variables: v_i = φ_i(v_{P(i)}), for i = 1,..., ℓ. Intermediate nodes V = {1,..., ℓ}

Function Evaluation \equiv Computational Graph

Nodes for Independent variables: v_{i-n} = x_{i-n}, for i = 1,..., n Independent nodes Z = {1 − n,...,0}
Nodes for Intermediate variables: v_i = φ_i(v_{P(i)}), for i = 1,..., ℓ. Intermediate nodes V = {1,...,ℓ}

Function Evaluation $\equiv G = (Z \cup V, E)$

Function Evaluation \equiv Computational Graph

Nodes for Independent variables: v_{i-n} = x_{i-n}, for i = 1,..., n Independent nodes Z = {1 - n,...,0}
Nodes for Intermediate variables: v_i = φ_i(v_{P(i)}), for i = 1,..., ℓ. Intermediate nodes V = {1,...,ℓ}

Function Evaluation $\equiv G = (Z \cup V, E) \& \phi$ set of *elemental* functions with derivatives coded

Function Evaluation \equiv Computational Graph

Nodes for Independent variables: v_{i-n} = x_{i-n}, for i = 1,..., n Independent nodes Z = {1 - n,...,0}
Nodes for Intermediate variables: v_i = φ_i(v_{P(i)}), for i = 1,..., ℓ. Intermediate nodes V = {1,...,ℓ}
Function Evaluation ≡ G = (Z ∪ V, E) & φ set of elemental functions with derivatives coded TIME(eval(f(x))) = O(ℓ + n).

Gradient

Forward Gradient

Forward Gradient: The first attempt

Set of elemental function = Sums, multiplication and unary functions.

Gradient

Forward Gradient

Forward Gradient: The first attempt

Set of elemental function = Sums, multiplication and unary functions.

 $\mathbf{v}_i = \phi_i(\mathbf{v}_{P(i)})$

Gradient

Forward Gradient

Forward Gradient: The first attempt

Set of elemental function = Sums, multiplication and unary functions.

$$\mathbf{v}_i = \phi_i(\mathbf{v}_{\mathcal{P}(i)})$$

$$\mathbf{v}_i = \sum_{j \in \mathcal{P}(i)} \frac{\partial \phi_i}{\partial \mathbf{v}_j} \nabla \mathbf{v}_j.$$

・ロト・日本・モート モー うへぐ

Each *j* passes on $\frac{\partial \phi_i}{\partial v_i} \nabla v_j$ to each successor *i*.

Gradient

Forward Gradient

Resume of Forward gradient

Gradient

Forward Gradient

Resume of Forward gradient

For each node *i* one stores
$$\nabla v_i = (\frac{\partial v_i}{\partial x_{1-n}}, \dots, \frac{\partial v_i}{\partial x_0}).$$

Gradient

Forward Gradient

Resume of Forward gradient

For each node *i* one stores $\nabla v_i = (\frac{\partial v_i}{\partial x_{1-n}}, \dots, \frac{\partial v_i}{\partial x_0})$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• **Memory** complexity: $O(n\ell)$.

Gradient

Forward Gradient

Resume of Forward gradient

- For each node *i* one stores $\nabla v_i = (\frac{\partial v_i}{\partial x_{1-n}}, \dots, \frac{\partial v_i}{\partial x_0})$.
- Memory complexity: $O(n\ell)$.
- For each node visit, perform *n*-dimension vector arithmetic.

Gradient

Forward Gradient

Resume of Forward gradient

- For each node *i* one stores $\nabla v_i = (\frac{\partial v_i}{\partial x_{1-n}}, \dots, \frac{\partial v_i}{\partial x_0})$.
- Memory complexity: $O(n\ell)$.
- For each node visit, perform *n*-dimension vector arithmetic.

Time complexity: $O(n\ell)$.

Gradient

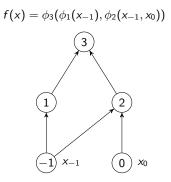
Forward Gradient

Resume of Forward gradient

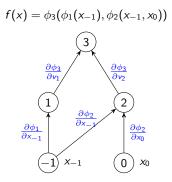
- For each node *i* one stores $\nabla v_i = (\frac{\partial v_i}{\partial x_{1-n}}, \dots, \frac{\partial v_i}{\partial x_0})$.
- Memory complexity: $O(n\ell)$.
- For each node visit, perform *n*-dimension vector arithmetic.

- **Time** complexity: $O(n\ell)$.
- Storing and calculating all ∇v_i 's is expensive and unnecessary.

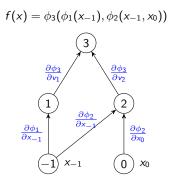
Partial derivatives on computational graph



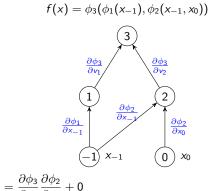
Partial derivatives on computational graph



Partial derivatives on computational graph



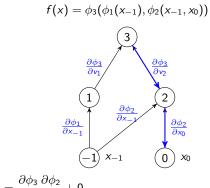
Partial derivatives on computational graph



$$\frac{\partial I}{\partial x_0} = \frac{\partial \phi_3}{\partial v_2} \frac{\partial \phi_2}{\partial x_0} + 0$$

24

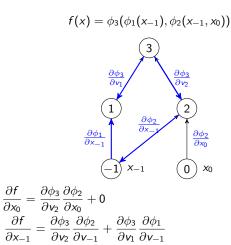
Partial derivatives on computational graph



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

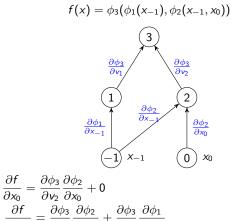
 $\frac{\partial f}{\partial x_0} = \frac{\partial \phi_3}{\partial v_2} \frac{\partial \phi_2}{\partial x_0} + 0$

Partial derivatives on computational graph



Gradient

Partial derivatives on computational graph

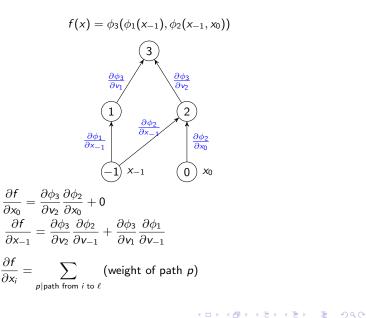


$$\frac{\partial \partial x_{-1}}{\partial x_{-1}} = \frac{\partial \partial v_2}{\partial v_2} \frac{\partial v_{-1}}{\partial v_{-1}} + \frac{\partial \partial v_1}{\partial v_{-1}} \frac{\partial v_{-1}}{\partial v_{-1}}$$

 ∂f

Gradient

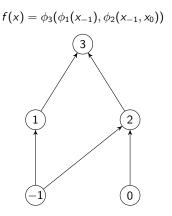
Partial derivatives on computational graph



Gradient

Partial derivatives on computational graph

Reverse Gradient - Accumulating paths

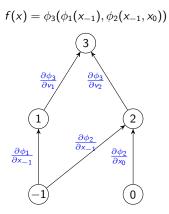


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Gradient

Partial derivatives on computational graph

Reverse Gradient - Accumulating paths

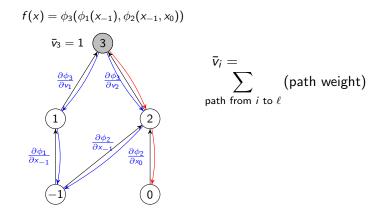


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Gradient

Partial derivatives on computational graph

Reverse Gradient - Accumulating paths

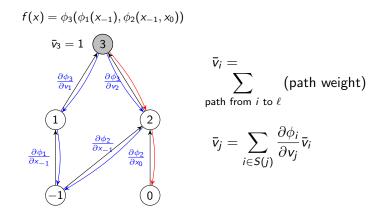


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Gradient

Partial derivatives on computational graph

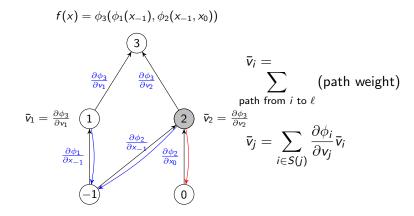
Reverse Gradient - Accumulating paths



Gradient

Partial derivatives on computational graph

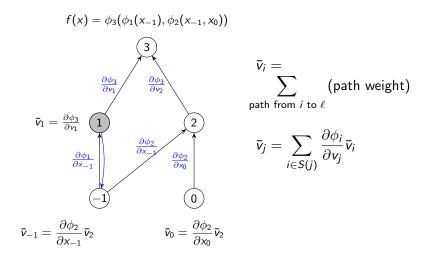
Reverse Gradient - Accumulating paths



Gradient

Partial derivatives on computational graph

Reverse Gradient - Accumulating paths

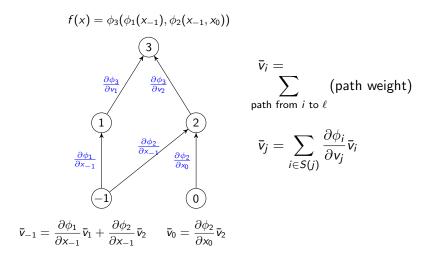


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Gradient

Partial derivatives on computational graph

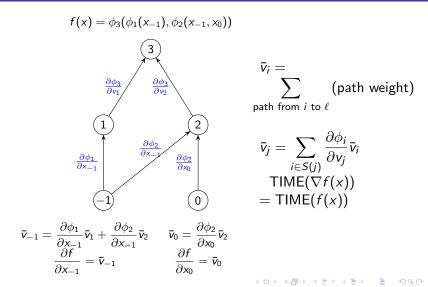
Reverse Gradient - Accumulating paths



Gradient

Partial derivatives on computational graph

Reverse Gradient - Accumulating paths



Hessian

Forward Hessian

Forward Hessian: McCormick and Jackson 1986

Hessian

Forward Hessian

Forward Hessian: McCormick and Jackson 1986

$$\mathbf{v}_i = \phi_i(\mathbf{v}_{P(i)})$$

Hessian

Forward Hessian

Forward Hessian: McCormick and Jackson 1986

$$\mathbf{v}_{i} = \phi_{i}(\mathbf{v}_{P(i)})$$

$$\mathbf{\downarrow}$$

$$\nabla \mathbf{v}_{i} = \sum_{j \in P(i)} \frac{\partial \phi_{i}}{\partial \mathbf{v}_{j}} \nabla \mathbf{v}_{j}$$

Hessian

Forward Hessian

Forward Hessian: McCormick and Jackson 1986

$$\mathbf{v}_{i} = \phi_{i}(\mathbf{v}_{P(i)})$$

$$\mathbf{\nabla}\mathbf{v}_{i} = \sum_{j \in P(i)} \frac{\partial \phi_{i}}{\partial \mathbf{v}_{j}} \nabla \mathbf{v}_{j}$$

$$\mathbf{v}_{i}'' = \sum_{j,k \in P(i)} \nabla \mathbf{v}_{j} \cdot \frac{\partial^{2} \phi_{i}}{\partial \mathbf{v}_{j} \partial \mathbf{v}_{k}} \cdot \nabla \mathbf{v}_{k}^{T} + \sum_{j \in P(i)} \frac{\partial \phi_{i}}{\partial \mathbf{v}_{j}} \cdot \mathbf{v}_{j}''$$

Hessian

Forward Hessian

Forward Hessian resume

For each node, store and calculate a $n \times n$ matrix.

Hessian

Forward Hessian

Forward Hessian resume

- For each node, store and calculate a $n \times n$ matrix.
- Is it necessary to calculate the gradient and Hessian of each node?

- Hessian

Forward Hessian

Forward Hessian resume

- For each node, store and calculate a $n \times n$ matrix.
- Is it necessary to calculate the gradient and Hessian of each node?
- Gain a deeper understanding on the problem using gradient graph.

Hessian

Forward Hessian

Calculating the Hessian using the computational graph

• Function's computational graph $+ \bar{v}_i$ nodes and dependencies = gradient computational graph.

- Hessian

Forward Hessian

Calculating the Hessian using the computational graph

- Function's computational graph $+ \bar{v}_i$ nodes and dependencies = gradient computational graph.
- Interpret partial derivative on augmented graph: Second order derivative.

- Hessian

Forward Hessian

Calculating the Hessian using the computational graph

- Function's computational graph $+ \bar{v}_i$ nodes and dependencies = gradient computational graph.
- Interpret partial derivative on augmented graph: Second order derivative.

Eliminate unnecessary symmetries on augmented graph.

Hessian

Hessian on computational graph

The adjoint variables of the Reverse Gradient satisfy

The adjoint variables of the Reverse Gradient satisfy

$$\overline{\mathbf{v}}_j = \sum_{i \in S(j)} \overline{\mathbf{v}}_i \frac{\partial \phi_i}{\partial \mathbf{v}_j} \equiv \overline{\varphi}_j.$$

Gradient's graph has $2(\ell + n)$ nodes: $(v_{1-n}, \ldots, v_{\ell})$ and $(\bar{v}_{1-n}, \ldots, \bar{v}_{\ell})$. The adjoint variables of the Reverse Gradient satisfy

$$\bar{\mathbf{v}}_j = \sum_{i \in S(j)} \bar{\mathbf{v}}_i \frac{\partial \phi_i}{\partial \mathbf{v}_j} \equiv \bar{\varphi}_j.$$

The adjoint variables of the Reverse Gradient satisfy

$$\bar{\mathbf{v}}_j = \sum_{i \in S(j)} \bar{\mathbf{v}}_i \frac{\partial \phi_i}{\partial \mathbf{v}_j} \equiv \bar{\varphi}_j.$$

- Gradient's graph has $2(\ell + n)$ nodes: $(v_{1-n}, \ldots, v_{\ell})$ and $(\bar{v}_{1-n}, \ldots, \bar{v}_{\ell})$.
- node $\overline{j} \longleftrightarrow \overline{v}_j$. ■ $\overline{i} \in P(\overline{j})$ iff $i \in P(i)$.

Hessian

Hessian on computational graph

$$f(x) = \sin(x_{-1})(x_{-1} + x_0)$$

$$v_{-1} = x_{-1}$$

$$v_0 = x_0$$

$$v_1 = \sin(v_{-1})$$

$$v_2 = (v_{-1} + v_0)$$

$$v_3 = v_1 v_2$$

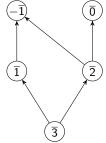
$$\begin{split} \bar{v}_3 &= 1 \\ \bar{v}_2 &= \bar{v}_3 v_1 \\ \bar{v}_1 &= \bar{v}_3 v_2 \\ \bar{v}_0 &= \bar{v}_2 1 \\ \bar{v}_{-1} &= \bar{v}_2 1 + \bar{v}_1 \cos(v_{-1}) \end{split}$$

<□ > < @ > < E > < E > E のQ @

Hessian

Hessian on computational graph

$$f(x) = \sin(x_{-1})(x_{-1} + x_0)$$



$$v_{-1} = x_{-1}$$

$$v_0 = x_0$$

$$v_1 = \sin(v_{-1})$$

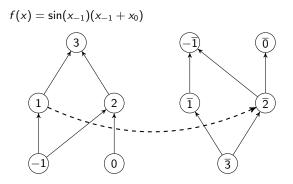
$$v_2 = (v_{-1} + v_0)$$

$$v_3 = v_1 v_2$$

$$\begin{split} \bar{v}_3 &= 1 \\ \bar{v}_2 &= \bar{v}_3 v_1 \\ \bar{v}_1 &= \bar{v}_3 v_2 \\ \bar{v}_0 &= \bar{v}_2 1 \\ \bar{v}_{-1} &= \bar{v}_2 1 + \bar{v}_1 \cos(v_{-1}) \end{split}$$

Hessian

Hessian on computational graph



$$v_{-1} = x_{-1}$$

$$v_0 = x_0$$

$$v_1 = \sin(v_{-1})$$

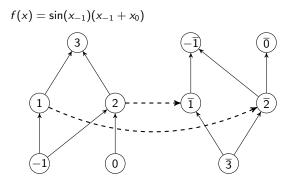
$$v_2 = (v_{-1} + v_0)$$

$$v_3 = v_1 v_2$$

$$\begin{split} \bar{v}_3 &= 1 \\ \bar{v}_2 &= \bar{v}_3 v_1 &\longleftarrow \\ \bar{v}_1 &= \bar{v}_3 v_2 \\ \bar{v}_0 &= \bar{v}_2 1 \\ \bar{v}_{-1} &= \bar{v}_2 1 + \bar{v}_1 \cos(v_{-1}) \end{split}$$

Hessian

Hessian on computational graph



$$v_{-1} = x_{-1}$$

$$v_0 = x_0$$

$$v_1 = \sin(v_{-1})$$

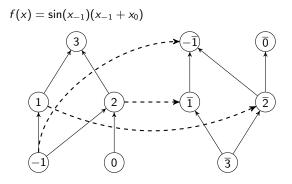
$$v_2 = (v_{-1} + v_0)$$

$$v_3 = v_1 v_2$$

$$\begin{split} \bar{v}_3 &= 1 \\ \bar{v}_2 &= \bar{v}_3 v_1 \\ \bar{v}_1 &= \bar{v}_3 v_2 &\longleftarrow \\ \bar{v}_0 &= \bar{v}_2 1 \\ \bar{v}_{-1} &= \bar{v}_2 1 + \bar{v}_1 \cos(v_{-1}) \end{split}$$

Hessian

Hessian on computational graph

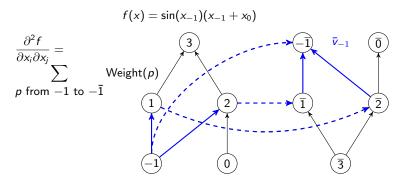


 $v_{-1} = x_{-1}$ $v_0 = x_0$ $v_1 = \sin(v_{-1})$ $v_2 = (v_{-1} + v_0)$ $v_3 = v_1 v_2$
$$\begin{split} \bar{v}_3 &= 1 \\ \bar{v}_2 &= \bar{v}_3 v_1 \\ \bar{v}_1 &= \bar{v}_3 v_2 \\ \bar{v}_0 &= \bar{v}_2 1 \\ \bar{v}_{-1} &= \bar{v}_2 1 + \bar{v}_1 \cos(v_{-1}) \end{split} \longleftarrow$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Hessian

Hessian on computational graph



$$v_{-1} = x_{-1}$$

$$v_0 = x_0$$

$$v_1 = \sin(v_{-1})$$

$$v_2 = (v_{-1} + v_0)$$

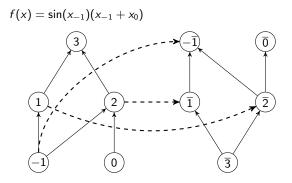
$$v_3 = v_1 v_2$$

$$\begin{split} \bar{v}_3 &= 1 \\ \bar{v}_2 &= \bar{v}_3 v_1 \\ \bar{v}_1 &= \bar{v}_3 v_2 \\ \bar{v}_0 &= \bar{v}_2 1 \\ \bar{v}_{-1} &= \bar{v}_2 1 + \bar{v}_1 \cos(v_{-1}) \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Hessian

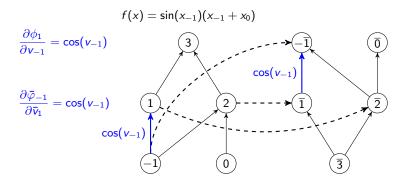
Hessian on computational graph



 $v_{-1} = x_{-1}$ $v_{0} = x_{0}$ $v_{1} = \sin(v_{-1})$ $v_{2} = (v_{-1} + v_{0})$ $v_{3} = v_{1}v_{2}$
$$\begin{split} \bar{v}_3 &= 1 \\ \bar{v}_2 &= \bar{v}_3 v_1 \\ \bar{v}_1 &= \bar{v}_3 v_2 \\ \bar{v}_0 &= \bar{v}_2 1 \\ \bar{v}_{-1} &= \bar{v}_2 1 + \bar{v}_1 \cos(v_{-1}) \end{split}$$

Hessian

Hessian on computational graph



$$v_{-1} = x_{-1}$$

$$v_0 = x_0$$

$$v_1 = \sin(v_{-1}) \longleftarrow$$

$$v_2 = (v_{-1} + v_0)$$

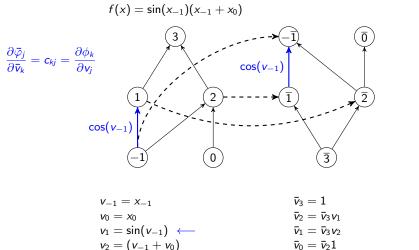
$$v_3 = v_1 v_2$$

$$\begin{split} \bar{v}_3 &= 1 \\ \bar{v}_2 &= \bar{v}_3 v_1 \\ \bar{v}_1 &= \bar{v}_3 v_2 \\ \bar{v}_0 &= \bar{v}_2 1 \\ \bar{v}_{-1} &= \bar{v}_2 1 + \bar{v}_1 \cos(v_{-1}) \end{split} \longleftarrow$$

Hessian

Hessian on computational graph

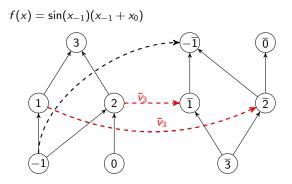
 $v_3 = v_1 v_2$



$$\overline{v}_{-1} = \overline{v}_2 1 + \overline{v}_1 \cos(v_{-1}) \leftarrow$$

Hessian

Hessian on computational graph



$$v_{-1} = x_{-1}$$

$$v_0 = x_0$$

$$v_1 = \sin(v_{-1})$$

$$v_2 = (v_{-1} + v_0)$$

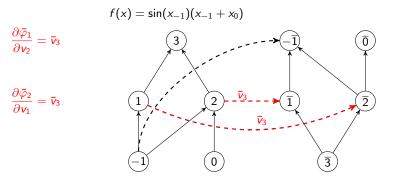
$$v_3 = v_1 v_2$$

$$\begin{split} \bar{v}_3 &= 1 \\ \bar{v}_2 &= \bar{v}_3 v_1 &\longleftarrow \\ \bar{v}_1 &= \bar{v}_3 v_2 &\longleftarrow \\ \bar{v}_0 &= \bar{v}_2 1 \\ \bar{v}_{-1} &= \bar{v}_2 1 + \bar{v}_1 \cos(v_{-1}) \end{split}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

Hessian

Hessian on computational graph



$$v_{-1} = x_{-1}$$

$$v_0 = x_0$$

$$v_1 = \sin(v_{-1})$$

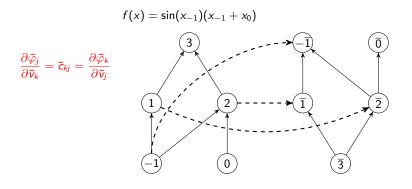
$$v_2 = (v_{-1} + v_0)$$

$$v_3 = v_1 v_2$$

$$\begin{split} \bar{v}_3 &= 1 \\ \bar{v}_2 &= \bar{v}_3 v_1 &\longleftarrow \\ \bar{v}_1 &= \bar{v}_3 v_2 &\longleftarrow \\ \bar{v}_0 &= \bar{v}_2 1 \\ \bar{v}_{-1} &= \bar{v}_2 1 + \bar{v}_1 \cos(v_{-1}) \end{split}$$

Hessian

Hessian on computational graph



$$v_{-1} = x_{-1}$$

$$v_0 = x_0$$

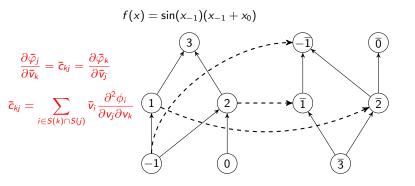
$$v_1 = \sin(v_{-1})$$

$$v_2 = (v_{-1} + v_0)$$

$$v_3 = v_1 v_2$$

$$\begin{split} \bar{v}_3 &= 1 \\ \bar{v}_2 &= \bar{v}_3 v_1 \\ \bar{v}_1 &= \bar{v}_3 v_2 \\ \bar{v}_0 &= \bar{v}_2 1 \\ \bar{v}_{-1} &= \bar{v}_2 1 + \bar{v}_1 \cos(v_{-1}) \end{split}$$

Hessian on computational graph

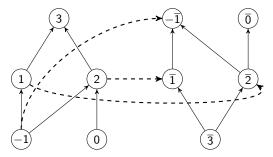


 $v_{-1} = x_{-1}$ $v_0 = x_0$ $v_1 = \sin(v_{-1})$ $v_2 = (v_{-1} + v_0)$ $v_3 = v_1 v_2$
$$\begin{split} \bar{v}_3 &= 1 \\ \bar{v}_2 &= \bar{v}_3 v_1 \\ \bar{v}_1 &= \bar{v}_3 v_2 \\ \bar{v}_0 &= \bar{v}_2 1 \\ \bar{v}_{-1} &= \bar{v}_2 1 + \bar{v}_1 \cos(v_{-1}) \end{split}$$

Hessian

Hessian on computational graph

$$f(x) = \sin(x_{-1})(x_{-1} + x_0) = \phi_3(\phi_1(x_{-1}), \phi_2(x_{-1}, x_0))$$



$$v_{-1} = x_{-1}$$

$$v_0 = x_0$$

$$v_1 = \sin(v_{-1})$$

$$v_2 = (v_{-1} + v_0)$$

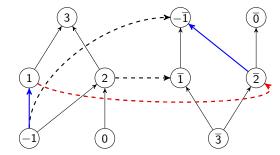
$$v_3 = v_1 v_2$$

$$\bar{v}_{3} = 1 \bar{v}_{2} = \bar{v}_{3} v_{1} \bar{v}_{1} = \bar{v}_{3} v_{2} \bar{v}_{0} = \bar{v}_{2} 1 \bar{v}_{-1} = \bar{v}_{2} 1 + \bar{v}_{1} \cos(v_{-1})$$

Hessian

Hessian on computational graph

$$f(x) = \sin(x_{-1})(x_{-1} + x_0) = \phi_3(\phi_1(x_{-1}), \phi_2(x_{-1}, x_0))$$



$$\frac{\partial^2 f}{\partial x_{-1}^2} = c_{1-1} \overline{c}_{21} c_{2-1}$$

$$v_{-1} = x_{-1}$$

$$v_0 = x_0$$

$$v_1 = \sin(v_{-1})$$

$$v_2 = (v_{-1} + v_0)$$

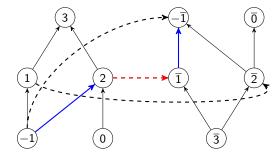
$$v_3 = v_1 v_2$$

$$\bar{v}_3 = 1 \bar{v}_2 = \bar{v}_3 v_1 \bar{v}_1 = \bar{v}_3 v_2 \bar{v}_0 = \bar{v}_2 1 \bar{v}_{-1} = \bar{v}_2 1 + \bar{v}_1 \cos(v_{-1})$$

Hessian

Hessian on computational graph

$$f(x) = \sin(x_{-1})(x_{-1} + x_0) = \phi_3(\phi_1(x_{-1}), \phi_2(x_{-1}, x_0))$$



$$\frac{\partial^2 f}{\partial x_{-1}^2} = c_{1-1} \bar{c}_{21} c_{2-1} + c_{2-1} \bar{c}_{21} c_{1-1}$$

$$\begin{array}{ll} v_{-1} = x_{-1} & \bar{v}_3 = 1 \\ v_0 = x_0 & \bar{v}_2 = \bar{v}_3 v_1 \\ v_1 = \sin(v_{-1}) & \bar{v}_1 = \bar{v}_3 v_2 \\ v_2 = (v_{-1} + v_0) & \bar{v}_0 = \bar{v}_2 1 \\ v_3 = v_1 v_2 & \bar{v}_{-1} = \bar{v}_2 1 + \bar{v}_1 \cos(v_{-1}) \\ \end{array}$$

Hessian

Hessian on computational graph

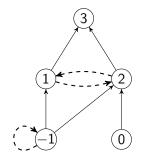
$$f(x) = \sin(x_{-1})(x_{-1} + x_0) = \phi_3(\phi_1(x_{-1}), \phi_2(x_{-1}, x_0))$$



$$\frac{\partial^2 f}{\partial x_{-1}^2} = c_{1-1} \bar{c}_{21} c_{2-1} + c_{2-1} \bar{c}_{21} c_{1-1} + \bar{c}_{-1-1}$$

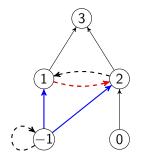
 $\begin{array}{ll} v_{-1} = x_{-1} & \bar{v}_3 = 1 \\ v_0 = x_0 & \bar{v}_2 = \bar{v}_3 v_1 \\ v_1 = \sin(v_{-1}) & \bar{v}_1 = \bar{v}_3 v_2 \\ v_2 = (v_{-1} + v_0) & \bar{v}_0 = \bar{v}_2 1 \\ v_3 = v_1 v_2 & \bar{v}_{-1} = \bar{v}_2 1 + \bar{v}_1 \cos(v_{-1}) \\ \end{array}$

Hessian on computational graph



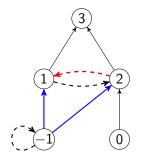
Fold mirror subgraph.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>



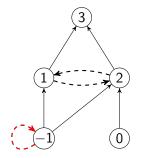
 $\frac{\partial^2 f}{\partial x_{-1}^2} = c_{1-1} \overline{c}_{21} c_{2-1}$

Fold mirror subgraph.



Fold mirror subgraph.

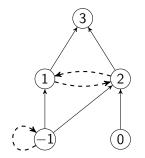
$$\frac{\partial^2 f}{\partial x_{-1}^2} = c_{1-1} \bar{c}_{21} c_{2-1} + c_{2-1} \bar{c}_{21} c_{1-1}$$



Fold mirror subgraph.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

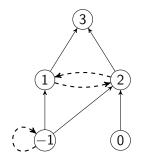
$$\frac{\partial^2 f}{\partial x_{-1}^2} = c_{1-1} \bar{c}_{21} c_{2-1} + c_{2-1} \bar{c}_{21} c_{1-1} + \bar{c}_{-1-1}$$



Fold mirror subgraph.

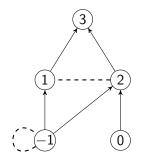
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

More symmetry



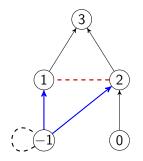
- Fold mirror subgraph.
- More symmetry

$$\bar{c}_{kj} = \bar{c}_{jk}$$



- Fold mirror subgraph.
- More symmetry

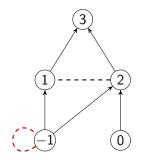
$$\bar{c}_{kj} = \bar{c}_{jk}$$



$$\frac{\partial^2 f}{\partial x_{-1}^2} = 2c_{1-1}\overline{c}_{21}c_{2-1}$$

- Fold mirror subgraph.
- More symmetry

$$\bar{c}_{kj} = \bar{c}_{jk}$$



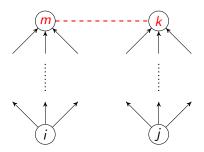
 $\frac{\partial^2 f}{\partial x_{-1}^2} = 2c_{1-1}\bar{c}_{21}c_{2-1} + \bar{c}_{-1-1}$

- Fold mirror subgraph.
- More symmetry

$$\bar{c}_{kj} = \bar{c}_{jk}$$

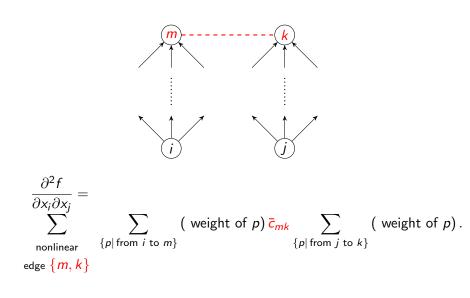
– Hessian

Hessian on computational graph



(ロ)、(型)、(E)、(E)、 E) の(の)

Hessian on computational graph



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Hessian

└─ New Reverse Hessian algorithm

Building shortcuts

•
$$P(m) = \{i, j\}.$$

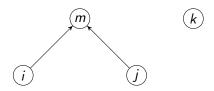


Figure: Pushing the edge $\{m, k\}$

Hessian

└─ New Reverse Hessian algorithm

Building shortcuts

■ $P(m) = \{i, j\}.$ ■ $(m, k) \in Path$

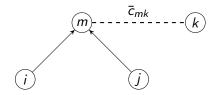


Figure: Pushing the edge $\{m, k\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Hessian

└─ New Reverse Hessian algorithm

Building shortcuts

- $P(m) = \{i, j\}.$
- $(m, k) \in Path$
- \Rightarrow path \ni (i, m, k) or path \ni (j, m, k)

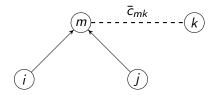


Figure: Pushing the edge $\{m, k\}$

- Hessian

└─ New Reverse Hessian algorithm

Building shortcuts

- $P(m) = \{i, j\}.$
- $(m, k) \in Path$
- \Rightarrow path \ni (i, m, k) or path \ni (j, m, k)

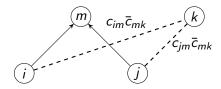
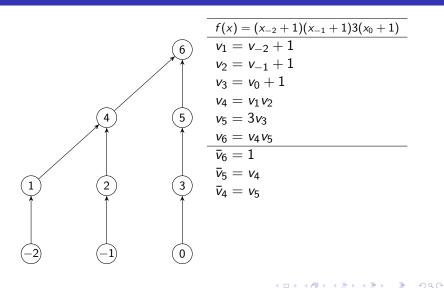


Figure: Pushing the edge $\{m, k\}$

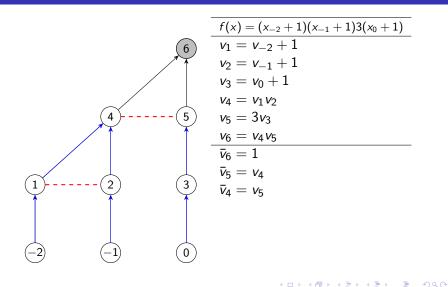
Hessian

└─New Reverse Hessian algorithm



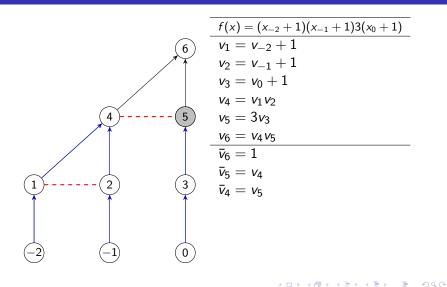
Hessian

└─New Reverse Hessian algorithm



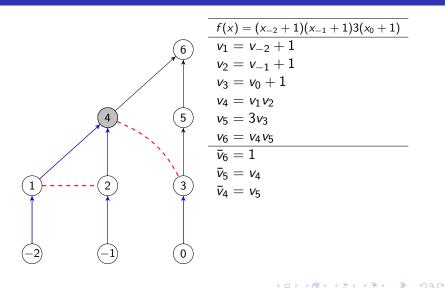
Hessian

└─New Reverse Hessian algorithm



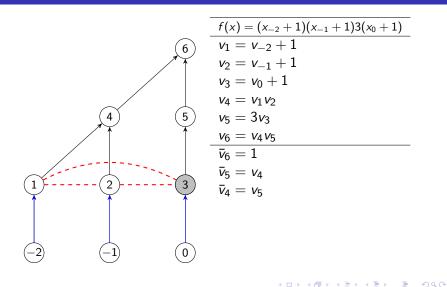
Hessian

└─New Reverse Hessian algorithm



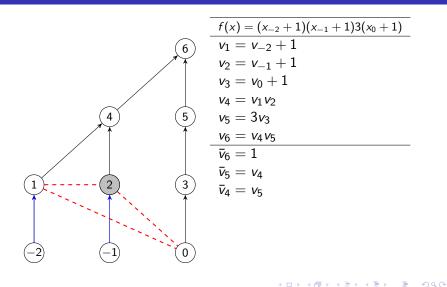
Hessian

└─New Reverse Hessian algorithm



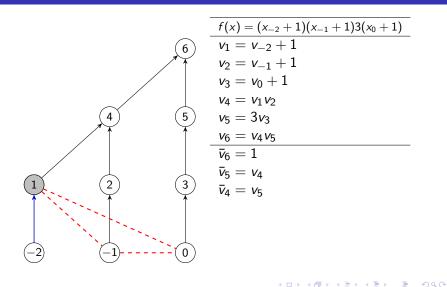
Hessian

└─New Reverse Hessian algorithm



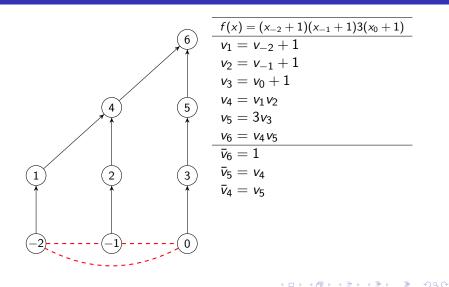
Hessian

└─New Reverse Hessian algorithm



Hessian

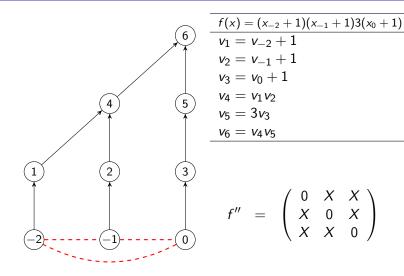
└─New Reverse Hessian algorithm



Hessian

└─New Reverse Hessian algorithm

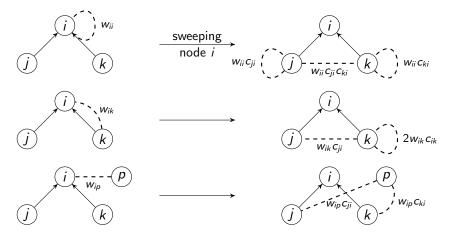
Simple example of edge_pushing execution



- Hessian

└─ New Reverse Hessian algorithm

pushing of nonlinear edges



▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへ⊙

- Hessian

└─New Reverse Hessian algorithm

The pseudo-code of edge_pushing

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

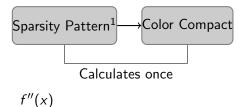
- Hessian

Comparative tests

Competitor for edge_pushing: Graph coloring

- edge_pushing implementation aimed at large sparse Hessians.
- state-of-the-art competitor: graph coloring methods Gebremedhin, Manne, Pothen, Walther, Tarafdar
 - Efficient Computation of Sparse Hessians Using Coloring and Automatic Differentiation(2009)
 - What Color Is Your Jacobian? Graph Coloring for Computing Derivatives(2005)

└─ Comparative tests

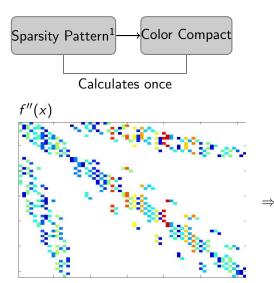


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 \Rightarrow

¹Uses Walther's 2008 algorithm

└─ Comparative tests

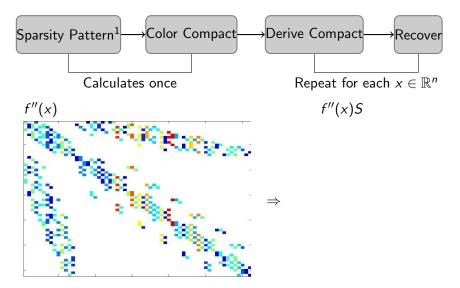


f''(x)S

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

¹Uses Walther's 2008 algorithm

Comparative tests

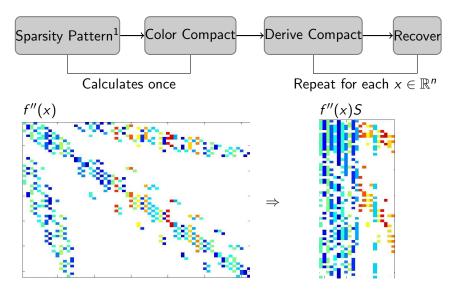


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

¹Uses Walther's 2008 algorithm

- Hessian

Comparative tests



Comparative tests

• Invests a large initial time in 1st run \Rightarrow fast subsequent runs.

<□ > < @ > < E > < E > E のQ @

- \blacksquare Invests a large initial time in 1st run \Rightarrow fast subsequent runs.
- Two different coloring methods with different recoveries: Star and Acyclic.

Comparative tests

Test set chosen from CUTE

	n = 50'000.					
		# colors				
Name	Pattern	Star	Acyclic			
cosine	B 1	3	2			
chainwoo	B 2	3	3			
bc4	B 1	3	2			
cragglevy	B 1	3	2			
pspdoc	B 2	5	3			
scon1dls	B 2	5	3			
morebv	B 2	5	3			
augmlagn	5 imes 5 diagonal blocks	5	5			
Iminsurf	В 5	11	6			
brybnd	В 5	13	7			
arwhead	arrow	2	2			
nondquar	arrow + B 1	4	3			
sinquad	frame $+$ diagonal	3	3			
bdqrtic	arrow + B 3	8	5			
noncvxu2	irregular	12	7			
ncvxbqp1	irregular	12	7			

Comparative tests

Numeric Results <code>edge_pushing</code> \times Colouring methods

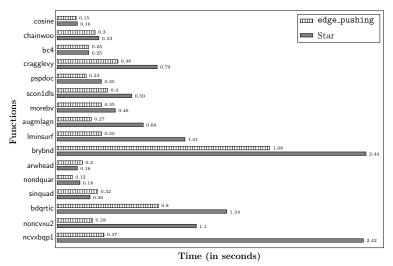
	Star		Acyclic		
Name	1st	2nd	1st	2nd	e_p
cosine	9.93	0.16	9.68	2.52	0.15
chainwoo	35.07	0.33	33.24	5.08	0.30
bc4	10.02	0.25	10.00	2.56	0.25
cragglevy	28.17	0.79	28.15	2.60	0.48
pspdoc	10.31	0.35	10.27	4.39	0.23
scon1dls	11.00	0.59	10.97	4.96	0.40
morebv	10.36	0.46	10.33	4.49	0.35
augmlagn	15.99	0.68	8.36	16.74	0.27
Iminsurf	9.30	1.01	9.24	3.89	0.35
brybnd	11.87	2.44	11.73	12.63	1.68
arwhead	176.50	0.16	45.86	0.24	0.20
nondquar	166.59	0.18	28.64	2.57	0.12
sinquad	606.72	0.26	888.57	1.51	0.32
bdqrtic	262.64	1.34	96.87	7.80	0.80
noncvxu2	29.69	1.10	29.27	7.76	0.28
ncvxbqp1	13.51	2.42	_	-	0.37
Averages	87.98	0.78	82.08	5.32	0.41
Variances	25083.44	0.54	50313.10	19.32	0.14

<u>▲□▶▲圖▶</u>★필▶★필▶ _ 필 _ 釣�@

Hessian

Comparative tests

Graphical comparison: Star 2nd run versus edge_pushing.



▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Hessian

Comparative tests

Summing up

• Graph representation:

Hessian

Comparative tests

Summing up

- Graph representation:
 - New algorithm.

Hessian

Comparative tests

Summing up

- Graph representation:
 - New algorithm.
 - New perspective.

Hessian

Comparative tests

Summing up

- Graph representation:
 - New algorithm.
 - New perspective.
 - Propagate from known contributions (nonlinear edges).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Hessian

Comparative tests

Summing up

- Graph representation:
 - New algorithm.
 - New perspective.
 - Propagate from known contributions (nonlinear edges).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Algebraic representation:

Hessian

Comparative tests

Summing up

- Graph representation:
 - New algorithm.
 - New perspective.
 - Propagate from known contributions (nonlinear edges).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Algebraic representation:
 - New correctness.

Hessian

Comparative tests

Summing up

- Graph representation:
 - New algorithm.
 - New perspective.
 - Propagate from known contributions (nonlinear edges).

- Algebraic representation:
 - New correctness.
 - New algorithms.

Hessian

Comparative tests

Summing up

- Graph representation:
 - New algorithm.
 - New perspective.
 - Propagate from known contributions (nonlinear edges).

- Algebraic representation:
 - New correctness.
 - New algorithms.
- edge_pushing

Hessian

Comparative tests

Summing up

- Graph representation:
 - New algorithm.
 - New perspective.
 - Propagate from known contributions (nonlinear edges).

- Algebraic representation:
 - New correctness.
 - New algorithms.
- edge_pushing
 - Exploits the symmetry and sparsity.

Hessian

Comparative tests

Summing up

- Graph representation:
 - New algorithm.
 - New perspective.
 - Propagate from known contributions (nonlinear edges).

- Algebraic representation:
 - New correctness.
 - New algorithms.
- edge_pushing
 - Exploits the symmetry and sparsity.
 - Promising test results.

- Hessian

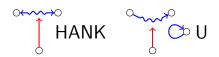
Comparative tests

Summing up

- Graph representation:
 - New algorithm.
 - New perspective.
 - Propagate from known contributions (nonlinear edges).
- Algebraic representation:
 - New correctness.
 - New algorithms.
- edge_pushing
 - Exploits the symmetry and sparsity.
 - Promising test results.
 - Lives up to Griewank 16th rule.

The calculation of gradients by nonincremental reverse makes the corresponding computational graph symmetric, a property that should be exploited and maintained in accumulating Hessians.

Comparative tests



(ロ)、

Comparative tests

