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Calculating Hessian matrices

Motivation

Motivation from nonlinear programming

Second order Taylor approximations very common in nonlinear
programming.

Hessians desirable in interior-point and augmented Lagrangian
methods.

Sensitivity analysis
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Computational graph

Function Representation

−1 0

1 2

3

v−1 = x−1 v0 = x0−1 0

v1 = h(v−1) 1 v2 = g(v−1, v0)2

v3 = f (v2, v1) 3

f (h(x−1), g(x−1, x0))
v−1 = x−1
v0 = x0
v1 = h(v−1)
v2 = g(v−1, v0)
v3 = f (v2, v1)

Indices of matrices and vectors shifted by −n.
y ∈ Rm : y = (y1−n, . . . , ym−n)T

Node numbering is in order of evaluation.

(j is a predecessor of i) ≡ j ∈ P(i).

(i is a sucessor of j) ≡ i ∈ S(j).
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Function Evaluation ≡ Computational Graph

Nodes for Independent variables:

vi−n = xi−n, for i = 1, . . . , n
Independent nodes Z = {1− n, . . . , 0}

Nodes for Intermediate variables:
vi = φi (vP(i)), for i = 1, . . . , `.
Intermediate nodes V = {1, . . . , `}

Function Evaluation ≡ G = (Z ∪ V ,E ) & φ set of elemental
functions with derivatives coded
TIME(eval(f (x))) = O(`+ n).
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Gradient

Forward Gradient

Forward Gradient: The first attempt

Set of elemental function = Sums, multiplication and unary
functions.

vi = φi (vP(i))

∇vi =
∑

j∈P(i)

∂φi

∂vj
∇vj .

Each j passes on ∂φi
∂vj
∇vj to each sucessor i .



Calculating Hessian matrices

Gradient

Forward Gradient

Forward Gradient: The first attempt

Set of elemental function = Sums, multiplication and unary
functions.

vi = φi (vP(i))

∇vi =
∑

j∈P(i)

∂φi

∂vj
∇vj .

Each j passes on ∂φi
∂vj
∇vj to each sucessor i .



Calculating Hessian matrices

Gradient

Forward Gradient

Forward Gradient: The first attempt

Set of elemental function = Sums, multiplication and unary
functions.

vi = φi (vP(i))

∇vi =
∑

j∈P(i)

∂φi

∂vj
∇vj .

Each j passes on ∂φi
∂vj
∇vj to each sucessor i .



Calculating Hessian matrices

Gradient

Forward Gradient

Resume of Forward gradient

For each node i one stores ∇vi = ( ∂vi
∂x1−n

, . . . , ∂vi∂x0
).

Memory complexity: O(n`).

For each node visit, perform n-dimension vector arithmetic.

Time complexity: O(n`).

Storing and calculating all ∇vi ’s is expensive and
unnecessary.
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Partial derivatives on computational graph

−1 0

1 2

3

f (x) = φ3(φ1(x−1), φ2(x−1, x0))

x−1 x0

∂f

∂x−1
=
∂φ3

∂v2

∂φ2

∂v−1
+
∂φ3

∂v1

∂φ1

∂v−1

∂f

∂xi
=

∑
p|path from i to `

(weight of path p)
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node?

Gain a deeper understanding on the problem using gradient
graph.
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Gradient’s graph has 2(`+ n) nodes:
(v1−n, . . . , v`) and (v̄1−n, . . . , v̄`).

node ̄←→ v̄j .

ī ∈ P (̄) iff j ∈ P(i).
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ī ∈ P (̄) iff j ∈ P(i).



Calculating Hessian matrices

Hessian

Hessian on computational graph

−1 0

1 2

3

f (x) = sin(x−1)(x−1 + x0)

−1 0

1 2

3

v−1 = x−1 v̄3 = 1
v0 = x0 v̄2 = v̄3v1
v1 = sin(v−1) v̄1 = v̄3v2
v2 = (v−1 + v0) v̄0 = v̄21
v3 = v1v2 v̄−1 = v̄21 + v̄1 cos(v−1)



Calculating Hessian matrices

Hessian

Hessian on computational graph

−1 0

1 2

3

f (x) = sin(x−1)(x−1 + x0)

−1 0

1 2

3

v−1 = x−1 v̄3 = 1
v0 = x0 v̄2 = v̄3v1
v1 = sin(v−1) v̄1 = v̄3v2
v2 = (v−1 + v0) v̄0 = v̄21
v3 = v1v2 v̄−1 = v̄21 + v̄1 cos(v−1)



Calculating Hessian matrices

Hessian

Hessian on computational graph

−1 0

1 2

3

f (x) = sin(x−1)(x−1 + x0)

−1 0

1 2

3

v−1 = x−1 v̄3 = 1
v0 = x0 v̄2 = v̄3v1 ←−
v1 = sin(v−1) v̄1 = v̄3v2
v2 = (v−1 + v0) v̄0 = v̄21
v3 = v1v2 v̄−1 = v̄21 + v̄1 cos(v−1)



Calculating Hessian matrices

Hessian

Hessian on computational graph

−1 0

1 2

3

f (x) = sin(x−1)(x−1 + x0)

−1 0

1 2

3

v−1 = x−1 v̄3 = 1
v0 = x0 v̄2 = v̄3v1
v1 = sin(v−1) v̄1 = v̄3v2 ←−
v2 = (v−1 + v0) v̄0 = v̄21
v3 = v1v2 v̄−1 = v̄21 + v̄1 cos(v−1)



Calculating Hessian matrices

Hessian

Hessian on computational graph

−1 0

1 2

3

f (x) = sin(x−1)(x−1 + x0)

−1 0

1 2

3

v−1 = x−1 v̄3 = 1
v0 = x0 v̄2 = v̄3v1
v1 = sin(v−1) v̄1 = v̄3v2
v2 = (v−1 + v0) v̄0 = v̄21
v3 = v1v2 v̄−1 = v̄21 + v̄1 cos(v−1) ←−



Calculating Hessian matrices

Hessian

Hessian on computational graph

−1 0

1 2

3

f (x) = sin(x−1)(x−1 + x0)

−1 0

1 2

3

v̄−1∂2f

∂xi∂xj
=∑

p from −1 to −1̄

Weight(p)

v−1 = x−1 v̄3 = 1
v0 = x0 v̄2 = v̄3v1
v1 = sin(v−1) v̄1 = v̄3v2
v2 = (v−1 + v0) v̄0 = v̄21
v3 = v1v2 v̄−1 = v̄21 + v̄1 cos(v−1)



Calculating Hessian matrices

Hessian

Hessian on computational graph

−1 0

1 2

3

f (x) = sin(x−1)(x−1 + x0)

−1 0

1 2

3

v−1 = x−1 v̄3 = 1
v0 = x0 v̄2 = v̄3v1
v1 = sin(v−1) v̄1 = v̄3v2
v2 = (v−1 + v0) v̄0 = v̄21
v3 = v1v2 v̄−1 = v̄21 + v̄1 cos(v−1)



Calculating Hessian matrices

Hessian

Hessian on computational graph

−1 0

1 2

3

f (x) = sin(x−1)(x−1 + x0)

−1 0

1 2

3

cos(v−1)

cos(v−1)

∂φ1

∂v−1
= cos(v−1)

∂ϕ̄−1

∂v̄1
= cos(v−1)

v−1 = x−1 v̄3 = 1
v0 = x0 v̄2 = v̄3v1
v1 = sin(v−1) ←− v̄1 = v̄3v2
v2 = (v−1 + v0) v̄0 = v̄21
v3 = v1v2 v̄−1 = v̄21 + v̄1 cos(v−1) ←−



Calculating Hessian matrices

Hessian

Hessian on computational graph

−1 0

1 2

3

f (x) = sin(x−1)(x−1 + x0)

−1 0

1 2

3

cos(v−1)

cos(v−1)
∂ϕ̄j

∂v̄k
= ckj =

∂φk

∂vj

v−1 = x−1 v̄3 = 1
v0 = x0 v̄2 = v̄3v1
v1 = sin(v−1) ←− v̄1 = v̄3v2
v2 = (v−1 + v0) v̄0 = v̄21
v3 = v1v2 v̄−1 = v̄21 + v̄1 cos(v−1) ←−



Calculating Hessian matrices

Hessian

Hessian on computational graph

−1 0

1 2

3

f (x) = sin(x−1)(x−1 + x0)

−1 0

1 2

3

v̄3

v̄3

v−1 = x−1 v̄3 = 1
v0 = x0 v̄2 = v̄3v1 ←−
v1 = sin(v−1) v̄1 = v̄3v2 ←−
v2 = (v−1 + v0) v̄0 = v̄21
v3 = v1v2 v̄−1 = v̄21 + v̄1 cos(v−1)



Calculating Hessian matrices

Hessian

Hessian on computational graph

−1 0

1 2

3

f (x) = sin(x−1)(x−1 + x0)

−1 0

1 2

3

v̄3

v̄3

∂ϕ̄1

∂v2
= v̄3

∂ϕ̄2

∂v1
= v̄3

v−1 = x−1 v̄3 = 1
v0 = x0 v̄2 = v̄3v1 ←−
v1 = sin(v−1) v̄1 = v̄3v2 ←−
v2 = (v−1 + v0) v̄0 = v̄21
v3 = v1v2 v̄−1 = v̄21 + v̄1 cos(v−1)



Calculating Hessian matrices

Hessian

Hessian on computational graph

−1 0

1 2

3

f (x) = sin(x−1)(x−1 + x0)

−1 0

1 2

3

∂ϕ̄j

∂v̄k
= c̄kj =

∂ϕ̄k

∂v̄j

v−1 = x−1 v̄3 = 1
v0 = x0 v̄2 = v̄3v1
v1 = sin(v−1) v̄1 = v̄3v2
v2 = (v−1 + v0) v̄0 = v̄21
v3 = v1v2 v̄−1 = v̄21 + v̄1 cos(v−1)



Calculating Hessian matrices

Hessian

Hessian on computational graph

−1 0

1 2

3

f (x) = sin(x−1)(x−1 + x0)

−1 0

1 2

3

∂ϕ̄j

∂v̄k
= c̄kj =

∂ϕ̄k

∂v̄j

c̄kj =
∑

i∈S(k)∩S(j)

v̄i
∂2φi

∂vj∂vk

v−1 = x−1 v̄3 = 1
v0 = x0 v̄2 = v̄3v1
v1 = sin(v−1) v̄1 = v̄3v2
v2 = (v−1 + v0) v̄0 = v̄21
v3 = v1v2 v̄−1 = v̄21 + v̄1 cos(v−1)



Calculating Hessian matrices

Hessian

Hessian on computational graph

−1 0

1 2

3

f (x) = sin(x−1)(x−1 + x0) = φ3(φ1(x−1), φ2(x−1, x0))

−1 0

1 2

3

v−1 = x−1 v̄3 = 1
v0 = x0 v̄2 = v̄3v1
v1 = sin(v−1) v̄1 = v̄3v2
v2 = (v−1 + v0) v̄0 = v̄21
v3 = v1v2 v̄−1 = v̄21 + v̄1 cos(v−1)



Calculating Hessian matrices

Hessian

Hessian on computational graph

−1 0

1 2

3

f (x) = sin(x−1)(x−1 + x0) = φ3(φ1(x−1), φ2(x−1, x0))

−1 0

1 2

3

∂2f
∂x2−1

= c1−1c̄21c2−1

v−1 = x−1 v̄3 = 1
v0 = x0 v̄2 = v̄3v1
v1 = sin(v−1) v̄1 = v̄3v2
v2 = (v−1 + v0) v̄0 = v̄21
v3 = v1v2 v̄−1 = v̄21 + v̄1 cos(v−1)



Calculating Hessian matrices

Hessian

Hessian on computational graph

−1 0

1 2

3

f (x) = sin(x−1)(x−1 + x0) = φ3(φ1(x−1), φ2(x−1, x0))

−1 0

1 2

3

∂2f
∂x2−1

= c1−1c̄21c2−1 + c2−1c̄21c1−1

v−1 = x−1 v̄3 = 1
v0 = x0 v̄2 = v̄3v1
v1 = sin(v−1) v̄1 = v̄3v2
v2 = (v−1 + v0) v̄0 = v̄21
v3 = v1v2 v̄−1 = v̄21 + v̄1 cos(v−1)



Calculating Hessian matrices

Hessian

Hessian on computational graph

−1 0

1 2

3

f (x) = sin(x−1)(x−1 + x0) = φ3(φ1(x−1), φ2(x−1, x0))

−1 0

1 2

3

∂2f
∂x2−1

= c1−1c̄21c2−1 + c2−1c̄21c1−1 + c̄−1−1

v−1 = x−1 v̄3 = 1
v0 = x0 v̄2 = v̄3v1
v1 = sin(v−1) v̄1 = v̄3v2
v2 = (v−1 + v0) v̄0 = v̄21
v3 = v1v2 v̄−1 = v̄21 + v̄1 cos(v−1)



Calculating Hessian matrices

Hessian

Hessian on computational graph

−1 0

1 2

3

∂2f
∂x2−1

= c1−1c̄21c2−1
∂2f
∂x2−1

= c1−1c̄21c2−1 + c2−1c̄21c1−1
∂2f
∂x2−1

= c1−1c̄21c2−1 + c2−1c̄21c1−1 + c̄−1−1

Fold mirror subgraph.

More symmetry

k 99K j iff k L99 j

c̄kj = c̄jk



Calculating Hessian matrices

Hessian

Hessian on computational graph

−1 0

1 2

3

∂2f
∂x2−1

= c1−1c̄21c2−1

∂2f
∂x2−1

= c1−1c̄21c2−1 + c2−1c̄21c1−1
∂2f
∂x2−1

= c1−1c̄21c2−1 + c2−1c̄21c1−1 + c̄−1−1

Fold mirror subgraph.

More symmetry

k 99K j iff k L99 j

c̄kj = c̄jk



Calculating Hessian matrices

Hessian

Hessian on computational graph

−1 0

1 2

3

∂2f
∂x2−1

= c1−1c̄21c2−1

∂2f
∂x2−1

= c1−1c̄21c2−1 + c2−1c̄21c1−1

∂2f
∂x2−1

= c1−1c̄21c2−1 + c2−1c̄21c1−1 + c̄−1−1

Fold mirror subgraph.

More symmetry

k 99K j iff k L99 j

c̄kj = c̄jk



Calculating Hessian matrices

Hessian

Hessian on computational graph

−1 0

1 2

3

∂2f
∂x2−1

= c1−1c̄21c2−1
∂2f
∂x2−1

= c1−1c̄21c2−1 + c2−1c̄21c1−1

∂2f
∂x2−1

= c1−1c̄21c2−1 + c2−1c̄21c1−1 + c̄−1−1

Fold mirror subgraph.

More symmetry

k 99K j iff k L99 j

c̄kj = c̄jk



Calculating Hessian matrices

Hessian

Hessian on computational graph

−1 0

1 2

3

∂2f
∂x2−1

= c1−1c̄21c2−1
∂2f
∂x2−1

= c1−1c̄21c2−1 + c2−1c̄21c1−1
∂2f
∂x2−1

= c1−1c̄21c2−1 + c2−1c̄21c1−1 + c̄−1−1

Fold mirror subgraph.

More symmetry

k 99K j iff k L99 j

c̄kj = c̄jk



Calculating Hessian matrices

Hessian

Hessian on computational graph

−1 0

1 2

3

∂2f
∂x2−1

= c1−1c̄21c2−1
∂2f
∂x2−1

= c1−1c̄21c2−1 + c2−1c̄21c1−1
∂2f
∂x2−1

= c1−1c̄21c2−1 + c2−1c̄21c1−1 + c̄−1−1

Fold mirror subgraph.

More symmetry

k 99K j iff k L99 j

c̄kj = c̄jk



Calculating Hessian matrices

Hessian

Hessian on computational graph

−1 0

1 2

3

∂2f
∂x2−1

= c1−1c̄21c2−1
∂2f
∂x2−1

= c1−1c̄21c2−1 + c2−1c̄21c1−1
∂2f
∂x2−1

= c1−1c̄21c2−1 + c2−1c̄21c1−1 + c̄−1−1

Fold mirror subgraph.

More symmetry

k 99K j iff k L99 j

c̄kj = c̄jk



Calculating Hessian matrices

Hessian

Hessian on computational graph

−1 0

1 2

3

∂2f
∂x2−1

= c1−1c̄21c2−1
∂2f
∂x2−1

= c1−1c̄21c2−1 + c2−1c̄21c1−1
∂2f
∂x2−1

= c1−1c̄21c2−1 + c2−1c̄21c1−1 + c̄−1−1

∂2f
∂x2−1

= 2c1−1c̄21c2−1

Fold mirror subgraph.

More symmetry

k 99K j iff k L99 j

c̄kj = c̄jk



Calculating Hessian matrices

Hessian

Hessian on computational graph

−1 0

1 2

3

∂2f
∂x2−1

= c1−1c̄21c2−1
∂2f
∂x2−1

= c1−1c̄21c2−1 + c2−1c̄21c1−1
∂2f
∂x2−1

= c1−1c̄21c2−1 + c2−1c̄21c1−1 + c̄−1−1

∂2f
∂x2−1

= 2c1−1c̄21c2−1 + c̄−1−1

Fold mirror subgraph.

More symmetry

k 99K j iff k L99 j

c̄kj = c̄jk



Calculating Hessian matrices

Hessian

Hessian on computational graph

m k

i j

∂2f

∂xi∂xj
=∑

nonlinear

edge {m, k}

∑
{p| from i to m}

( weight of p) c̄mk

∑
{p| from j to k}

( weight of p) .



Calculating Hessian matrices

Hessian

Hessian on computational graph

m k

i j

∂2f

∂xi∂xj
=∑

nonlinear

edge {m, k}

∑
{p| from i to m}

( weight of p) c̄mk

∑
{p| from j to k}

( weight of p) .



Calculating Hessian matrices

Hessian

New Reverse Hessian algorithm

Building shortcuts

P(m) = {i , j}.

(m, k) ∈ Path

⇒ path 3 (i ,m, k) or path 3 (j ,m, k)

i j

m k

c̄mk

cjmc̄mk

cimc̄mk

Figure: Pushing the edge {m, k}



Calculating Hessian matrices

Hessian

New Reverse Hessian algorithm

Building shortcuts

P(m) = {i , j}.
(m, k) ∈ Path

⇒ path 3 (i ,m, k) or path 3 (j ,m, k)

i j

m k
c̄mk

cjmc̄mk

cimc̄mk

Figure: Pushing the edge {m, k}



Calculating Hessian matrices

Hessian

New Reverse Hessian algorithm

Building shortcuts

P(m) = {i , j}.
(m, k) ∈ Path

⇒ path 3 (i ,m, k) or path 3 (j ,m, k)

i j

m k
c̄mk

cjmc̄mk

cimc̄mk

Figure: Pushing the edge {m, k}



Calculating Hessian matrices

Hessian

New Reverse Hessian algorithm

Building shortcuts

P(m) = {i , j}.
(m, k) ∈ Path

⇒ path 3 (i ,m, k) or path 3 (j ,m, k)

i j

m k

c̄mk

cjmc̄mk

cimc̄mk

Figure: Pushing the edge {m, k}



Calculating Hessian matrices

Hessian

New Reverse Hessian algorithm

Simple example of edge pushing execution

−2 −1 0

1 2

4

3

5

6

f (x) = (x−2 + 1)(x−1 + 1)3(x0 + 1)

v1 = v−2 + 1
v2 = v−1 + 1
v3 = v0 + 1
v4 = v1v2
v5 = 3v3
v6 = v4v5
v̄6 = 1
v̄5 = v4
v̄4 = v5



Calculating Hessian matrices

Hessian

New Reverse Hessian algorithm

Simple example of edge pushing execution

−2 −1 0

1 2

4

3

5

66

f (x) = (x−2 + 1)(x−1 + 1)3(x0 + 1)

v1 = v−2 + 1
v2 = v−1 + 1
v3 = v0 + 1
v4 = v1v2
v5 = 3v3
v6 = v4v5
v̄6 = 1
v̄5 = v4
v̄4 = v5



Calculating Hessian matrices

Hessian

New Reverse Hessian algorithm

Simple example of edge pushing execution

−2 −1 0

1 2

4

3

5

6

5

f (x) = (x−2 + 1)(x−1 + 1)3(x0 + 1)

v1 = v−2 + 1
v2 = v−1 + 1
v3 = v0 + 1
v4 = v1v2
v5 = 3v3
v6 = v4v5
v̄6 = 1
v̄5 = v4
v̄4 = v5



Calculating Hessian matrices

Hessian

New Reverse Hessian algorithm

Simple example of edge pushing execution

−2 −1 0

1 2

4

3

5

6

4

f (x) = (x−2 + 1)(x−1 + 1)3(x0 + 1)

v1 = v−2 + 1
v2 = v−1 + 1
v3 = v0 + 1
v4 = v1v2
v5 = 3v3
v6 = v4v5
v̄6 = 1
v̄5 = v4
v̄4 = v5



Calculating Hessian matrices

Hessian

New Reverse Hessian algorithm

Simple example of edge pushing execution

−2 −1 0

1 2

4

3

5

6

3

f (x) = (x−2 + 1)(x−1 + 1)3(x0 + 1)

v1 = v−2 + 1
v2 = v−1 + 1
v3 = v0 + 1
v4 = v1v2
v5 = 3v3
v6 = v4v5
v̄6 = 1
v̄5 = v4
v̄4 = v5



Calculating Hessian matrices

Hessian

New Reverse Hessian algorithm

Simple example of edge pushing execution

−2 −1 0

1 2

4

3

5

6

2

f (x) = (x−2 + 1)(x−1 + 1)3(x0 + 1)

v1 = v−2 + 1
v2 = v−1 + 1
v3 = v0 + 1
v4 = v1v2
v5 = 3v3
v6 = v4v5
v̄6 = 1
v̄5 = v4
v̄4 = v5



Calculating Hessian matrices

Hessian

New Reverse Hessian algorithm

Simple example of edge pushing execution

−2 −1 0

1 2

4

3

5

6

1

f (x) = (x−2 + 1)(x−1 + 1)3(x0 + 1)

v1 = v−2 + 1
v2 = v−1 + 1
v3 = v0 + 1
v4 = v1v2
v5 = 3v3
v6 = v4v5
v̄6 = 1
v̄5 = v4
v̄4 = v5



Calculating Hessian matrices

Hessian

New Reverse Hessian algorithm

Simple example of edge pushing execution

−2 −1 0

1 2

4

3

5

6
f (x) = (x−2 + 1)(x−1 + 1)3(x0 + 1)

v1 = v−2 + 1
v2 = v−1 + 1
v3 = v0 + 1
v4 = v1v2
v5 = 3v3
v6 = v4v5
v̄6 = 1
v̄5 = v4
v̄4 = v5



Calculating Hessian matrices

Hessian

New Reverse Hessian algorithm

Simple example of edge pushing execution

−2 −1 0

1 2

4

3

5

6
f (x) = (x−2 + 1)(x−1 + 1)3(x0 + 1)

v1 = v−2 + 1
v2 = v−1 + 1
v3 = v0 + 1
v4 = v1v2
v5 = 3v3
v6 = v4v5

f ′′ =

 0 X X
X 0 X
X X 0


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New Reverse Hessian algorithm

pushing of nonlinear edges
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New Reverse Hessian algorithm

The pseudo-code of edge pushing

Input: x ∈ Rn,
for i = `, . . . , 1 do

Create nonlinear edges if φi is nonlinear ;
Push nonlinear edges adjacent to i ;

end
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Comparative tests

Competitor for edge pushing: Graph coloring

edge pushing implementation aimed at large sparse Hessians.

state-of-the-art competitor: graph coloring methods
Gebremedhin, Manne, Pothen, Walther, Tarafdar

Efficient Computation of Sparse Hessians Using Coloring and
Automatic Differentiation(2009)
What Color Is Your Jacobian? Graph Coloring for Computing
Derivatives(2005)
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⇒
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Comparative tests

Test set chosen from CUTE

n = 50′000.
# colors

Name Pattern Star Acyclic

cosine B 1 3 2
chainwoo B 2 3 3
bc4 B 1 3 2
cragglevy B 1 3 2
pspdoc B 2 5 3
scon1dls B 2 5 3
morebv B 2 5 3
augmlagn 5× 5 diagonal blocks 5 5
lminsurf B 5 11 6
brybnd B 5 13 7
arwhead arrow 2 2
nondquar arrow + B 1 4 3
sinquad frame + diagonal 3 3
bdqrtic arrow + B 3 8 5
noncvxu2 irregular 12 7
ncvxbqp1 irregular 12 7
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Comparative tests

Numeric Results edge pushing × Colouring methods

Star Acyclic
Name 1st 2nd 1st 2nd e p

cosine 9.93 0.16 9.68 2.52 0.15
chainwoo 35.07 0.33 33.24 5.08 0.30
bc4 10.02 0.25 10.00 2.56 0.25
cragglevy 28.17 0.79 28.15 2.60 0.48
pspdoc 10.31 0.35 10.27 4.39 0.23
scon1dls 11.00 0.59 10.97 4.96 0.40
morebv 10.36 0.46 10.33 4.49 0.35
augmlagn 15.99 0.68 8.36 16.74 0.27
lminsurf 9.30 1.01 9.24 3.89 0.35
brybnd 11.87 2.44 11.73 12.63 1.68
arwhead 176.50 0.16 45.86 0.24 0.20
nondquar 166.59 0.18 28.64 2.57 0.12
sinquad 606.72 0.26 888.57 1.51 0.32
bdqrtic 262.64 1.34 96.87 7.80 0.80
noncvxu2 29.69 1.10 29.27 7.76 0.28
ncvxbqp1 13.51 2.42 – – 0.37

Averages 87.98 0.78 82.08 5.32 0.41

Variances 25 083.44 0.54 50 313.10 19.32 0.14

1
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Comparative tests

Graphical comparison: Star 2nd run versus edge pushing.

0.16

0.33

0.25

0.79

0.35

0.59

0.46

0.68

1.01

2.44

0.16

0.18

0.26

1.34

1.1

2.42

0.15

0.3

0.25

0.48

0.23

0.4

0.35

0.27

0.35

1.68

0.2

0.12

0.32

0.8

0.28

0.37

cosine

chainwoo

bc4

cragglevy

pspdoc

scon1dls

morebv

augmlagn

lminsurf

brybnd

arwhead

nondquar

sinquad

bdqrtic

noncvxu2

ncvxbqp1

edge pushing

Star

Time (in seconds)

F
u
n
ct
io
n
s

1



Calculating Hessian matrices

Hessian

Comparative tests

Summing up

Graph representation:

New algorithm.
New perspective.
Propagate from known contributions (nonlinear edges).

Algebraic representation:

New correctness.
New algorithms.

edge pushing
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Promising test results.
Lives up to Griewank 16th rule.

The calculation of gradients by nonincremental
reverse makes the corresponding computational
graph symmetric, a property that should be
exploited and maintained in accumulating Hes-
sians.
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