
Conjugate Gradients: The short and painful
explanation with oblique projections

Robert M. Gower

January 12, 2015

Abstract

Conjugate Gradient (CG) algorithm and its variants are among
the most popular methods for iteratively solving linear systems. Their
adaptation for nonlinear optimization, the nonlinear CG methods, also
enjoys wide spread notoriety. Many available essays describe the al-
gorithm in a very algorithmic way; as a series of strange scalar and
vector multiplications that achieve the desired result. It is hard to
see the mathematics behind these cake recipes. Here we emphasize
a mathematical description and leave implementation issues separate
for, well, when we need to implement. We particularly enjoy writing
the method using oblique projections. This is useful, as mathematics
has a lot to say about projections and their properties. Preconditioned
and projected CG is also covered and an additional new method for
achieving conjugate directions by restarting CG method with a pre-
conditioner that “remembers” previous conjugate directions. For most
readers, we refer to the excellent, intuitive, though rather long expla-
nation offered by J. Shewchuk [6]. This essay, rather, offers a short
and painful description of the CG method.

1



Contents

1 CG through projections 2
1.1 Affine restrictions and Preconditioning . . . . . . . . . . . . . 6

1.1.1 Linear constrained case . . . . . . . . . . . . . . . . . . 9
1.2 Restarting with remembering preconditioners . . . . . . . . . 10

2 Implementing 12

Disclaimer: This text is aimed at readers who need to quickly understand
details of the CG method. I personally wrote this essay as I needed to con-
sider a number of adaptations of the CG method to mesh with different
optimization methods. These alterations required understanding restricting
the search space, projecting the iterates, preconditioning, restarting, and a
mix of the above. Comments and suggestions are always welcome: gower-
robert@gmail.com.

1 CG through projections

The conjugate gradient method, by Hestenes and Stiefel [4], is an iterative
method for finding the solution to

min
x
φ(x) := min

x

1

2
xTAx− xT b, (1)

where x, b ∈ Rn and A ∈ Rn×n is a positive definite matrix which guarantees
that the critical point defined by ∇φ(x) = Ax− b = 0 is the unique solution.
Given a x0 ∈ Rn, the method iteratively finds xk, the minimum of φ(x)
constrained to x0 ⊕Kk, where

Kk := span({∇φ(x0), A∇φ(x0), . . . , Ak−1∇φ(x0)}),

is the kth Krylov subspace. The Krylov subspaces are nested, in that Kk ⊂
Kk+1, thus each xk+1 tends to be an improvement over the previous xk.
What is more, the solution to (1) is often encountered before reaching Kn.
This depends on the number of distinct eigenvalues of A.

Lemma 1. Let λi for i = 1, . . . , ρ be these distinct eigenvalues of A, then
Kρ is a ρ-dimensional subspace that contains the solution to (1).

2



Proof. As A is symmetric, Rn is a direct sum of the Eigenspaces of A. Thus
we can decompose ∇φ(x0) =

∑ρ
j=1 wj where wj is an eigenvector associated

to λj, for j = 1, . . . , ρ. Let x =
∑ρ

i=1 αiA
i−1∇φ(x0) ∈ Kρ it follows that

Ax =

ρ∑
i=1

αiA
i∇φ(x0)

=

ρ∑
i=1

αiA
i

ρ∑
j=1

wj

=

ρ∑
j=1

ρ∑
i=1

(αiλ
i
j)wj.

The uniqueness of the λj’s guarantees that the system
∑ρ

i=1(αiλ
i
j) = 1, for

j = 1, . . . , ρ, has a unique solution α. Thus the solution x to (1) is in Kρ.
Similar arguments show that {∇φ(x0), . . . , Aρ−1∇φ(x0)} is a basis and Kρ is
ρ-dimensional subspace.

Restricting the search for a solution to Kρ is a good idea as it can be
a smaller space then the entire Rn. But how to orderly search through the
Krylov subspaces and for k < ρ use the solution restricted toKk in calculating
the solution restricted to the next space Kk+1? The answer is to search along
a basis of Kk of conjugate vectors in relation to A. Two vectors d1, d2 ∈ Rn

are A-conjugate if they are orthogonal in relation to the inner product defined
by A,

〈d1, d2〉A := 〈d1, Ad2〉 = 0.

If the columns of Dk := [d0 · · · dk−1] ∈ Rn×k form an A-conjugate basis of
Kk, then the minimization of φ(x) over Kk can be written as xk = Dkyk +x0,
where

min
xk=Dkyk+x0

yk∈Rk

1

2
xTAx− xT b = min

y∈Rk

1

2
yTDT

kADky + yTDT
k∇φ(x0).

Taking the gradient, the solution satisfies DT
kADkyk = −DT

k∇φ(x0). The
matrix DT

kADk is diagonal due to the conjugacy of the columns of Dk, so
the solution

yik = −〈di,∇φ(x0)〉
〈di, di〉A

, for i = 0, . . . , k − 1.

3



Each element yik depends only on one conjugate direction di, thus with an
additional conjugate direction dk ∈ Kk+1, the the minima of φ(x) restricted
to Kk+1 is

xk+1 = x0 +Dkyk −
〈dk,∇φ(x0)〉
〈dk, dk〉A

dk

= xk − projAdk∇φ(x0), (2)

where projAd := d(dTAd)−1dT . The matrix projAdA is an oblique projection
onto the space spanned by d, and it’s the solution to

projAdAv = arg min
y∈ span{d}

‖v − y‖A.

Conjugate directions allow us build upon previous Krylov restricted so-
lution xk by minimizing along dk to find the next solution xk+1. Though (2)
is correct, it is not the standard update formula used in the Conjugate Gra-
dient algorithms. Rather, as φ(x) is a quadratic function the solution to
arg minα φ(xk + αdk) is achieved with

αk := −〈∇φ(xk), dk〉
〈dk, dk〉A

.

Therefore

xk+1 = xk −
〈∇φ(xk), dk〉
〈dk, dk〉A

dk

= xk − projAdk∇φ(xk). (3)

The projection is a handy tool, as it is highlights that xk+1 results from a
minimization problem. The well known properties of projections can be also
be called upon, for instance, the above step from xk to xk+1 is invariant under
scaling dk.

But how to obtain a basis of A-conjugate directions? The same way
we obtain any orthogonal basis: use Gram-Schmidt procedure with the in-
ner product 〈, 〉A . Starting with a given set of linearly independent vectors
r0, . . . , rk ∈ Rn that span Kk+1 and conjugate directions d0, . . . , dk−1 that
span Kk, the next conjugate direction dk can be obtained by “projecting
out” the components of rk that are in Kk using the Gram–Schmidt process,

4



where r0 = d0 and

dk = rk −
k−1∑
j=0

〈rk, dj〉A
〈dj, dj〉A

dj

= rk −
k−1∑
j=0

1

〈dj, dj〉A
djp

T
j Ark

= (I −
k−1∑
j=0

projAdjA)rk.

This is a computationally expensive way of obtaining dk and would be sig-
nificantly cheaper if the inner product of rk with most of the Qdj vectors
are zero. Selecting: rk = −∇φ(xk) = b − Axk does just that, for xk is the
minima restricted to Kk, thus rk ∈ K⊥k ⊂ (AKk−1)⊥ and rk is orthogonal
to each {Ad0, . . . , Adk−1}. Now calculating the next conjugate direction is
reduced to performing a single projection

dk = (I − projAdk−1
A)rk. (4)

The vectors rk are known as the residuals, as ‖rk‖ is a measure how close we
are to optimality, where ‖rk‖ = 0 signifies we have encountered the solution.
The vectors dk are known as the search directions.

Finally, to efficiently calculate the rk gradients, we use

∇φ(xk + αkdk)−∇φ(xk) = rk − rk+1 = αkAdk.

This to can be written as a projection and allows for the calculating of the
rk’s iteratively with

rk+1 = rk − αkAdk

= rk − Adk
dTk rk
〈dk, dk〉A

= (I − AprojAdk)rk. (5)

Collecting the updates of xk (3), dk (4) and rk (5) we have the Conjugate
Gradient Algorithm (1.1). The calculation of the conjugate search directions
can also be written in a single formula

dk+1 = (I − projAdkA)(I − AprojAdk)rk.

5



Input: r0 = p0 = ∇φ(x0), k = 0 and tolerance ε ∈ R+.
1 repeat

2 rk+1 = (I −AprojAdk)rk
3 xk+1 = xk + projAdkrk
4 dk+1 = (I − projAdkA)rk+1

5 k = k + 1

6 until ‖rk‖ ≥ ε‖r0‖
Output: xk.

Algorithm 1.1: CG: Conjugate Gradient Method

1.1 Affine restrictions and Preconditioning

How do we minimize φ(x) but restricted to an affine space x0 ⊕ Z, where
x0 ∈ Rn and Z ⊂ Rn is a subspace? This situation arises when we have to
minimize φ(x) subject to linear constraints, say, Bx = d where B ∈ Rm×n

and d ∈ Rm.
Let P : Rn → Z be any surjective linear function. Our restricted problem

is equivalent to

min
x∈x0⊕PRn

φ(x) = min
x̄∈Rn

x̄TP TAPx̄/2 + x̄TP T∇φ(x0) =: φ(x̄), (6)

We could now apply the standard CG method to φ̄(x̄) to obtain a conver-
gent sequence {x̄k}k, but for most applications of interest, P is only known
implicitly and calculating P TAP is expensive. Thus we will examine what
happens when we apply the CG method to φ(x̄), then try to lift these results
to the untransformed space xk = Px̄k + x0. Let dk and rk be the search
directions and residuals at iteration k of the CG method applied to φ(x̄),
and x̄0 = 0 the initial point. The CG method is initiated with r0 = −∇φ(0)
and p0 = r0. Left multiplying the x̄k update (3) by P and summing x0 to
both sides

xk+1 = Px̄k+1 + x0

= Px̄k + x0 + PprojP
TAP

dk
rk

= xk + Pdk(d
T

kP
TAPdk)

−1d
T

k rk.

Suggestively, defining dk = Pdk and rk = P T rk allows us to apply a standard

6



CG step in xk

xk+1 = xk + dk(d
T
kAdk)

−1d
T

kP
T rk

= xk + projAdkrk.

The rk’s are also residuals in the untransformed space

P T rk = rk

= −P T (APx̄k +∇φ(x0))

= −P T (∇φ(x0 + Px̄k)).

The dk’s and rk’s have some of the same properties as they would in the
standard CG method. The dk’s are A−conjugate

dTkAdi = d
T

kP
TAPdi = 0, if i < k.

The rk’s are orthogonal to previous search directions

rTk di = rTk Pdi

= rTk di = 0, for i < k.

In contrast to standard CG properties, the rk’s are mutually PP T -conjugate
instead of simply orthogonal

rTk PP
T ri = rTk ri = 0, for i < k. (7)

To calculate the dk’s, left multiplying by P the update to dk

Pdk+1 = P (I − projP
TAP

dk
P TAP )rk+1

= (I − PprojP
TAP

dk
PA)Prk+1

= (I − projAdkA)PP T rk.

Thus by substituting line 4 in the Conjugate Gradients Algorithm 1.1 for

dk+1 = (I − projAdkA)PP T rk, (8)

results in the PCG method (the projected conjugate gradients method) in
Algorithm 1.2. The stopping criteria is now based on a relative decrease of

7



Input: PP T ∈ Rn×n, r0 = p0 = PP T∇φ(x0), k = 0 and tolerance ε ∈ R+.
1 repeat

2 rk+1 = (I −AprojAdk)rk
3 xk+1 = xk + projAdkrk
4 dk+1 = (I − projAdkA)PP T rk+1

5 k = k + 1

6 until ‖rk‖PPT ≥ ε‖r0‖PPT

Output: xρ.
Algorithm 1.2: The PCG method: Projected Conjugate Gradients

the projected residual. It would not do to use the residual as a stopping
criteria, as there is no longer any guarantee of ‖rk‖ converging to zero!

As a single equation

dk+1 = (I − projAdkA)PP T (I − AprojAdk)rk

which is remarkably similar to the BFGS search direction [2], where PP T is
a given previous approximation to a Hessian matrix, then the next BFGS
search direction is

dBFGSk+1 = −projAdkrk + (I − projAdkA)PP T (I − AprojAdk)rk.

In the case that S = Rn, then P is a change of coordinates and is cho-
sen to precondition the system. When Z is a proper subspace, P acts as
a submersion. In either case, PP T can be chosen to improve the spectral
properties of P TAP because λ(P TAP ) ∪ {0} = λ(PP TA), where λ(A) de-
notes the set of eigenvalues of A. The number of iteration required by the
Conjugate Gradient Algorithm 1.1 to reach the exact solution is equal to, at
most, the number of distinct eigenvalues in λ(P TAP ). Thus ideally we would
like PP T to be an approximate inverse of A so that PP TA has eigenvalues
concentrated around one, and PP T is referred to a the preconditioning ma-
trix. Often the notation is M−1 = PP T , emphasizing that it is some sort of
estimate of the inverse.

When Z is a proper subspace, slightly abusing notation, let Z ∈ Rn×q be
a matrix who’s columns form a basis of the subspace Z. As P is a linear
submersion, it must be of the form P = ZH where H ∈ Rq×q is nonsingular.
As ZTAZ is also nonsingular

λ(P TAP ) = λ(HTZTAZH) = λ(HHTZTAZ).

8



Thus HHT should be chosen to act as a preconditioner of the matrix ZTAZ.
For this special matrix, precondtioners of the form HHT = (ZTGZ)−1 ≈
(ZTAZ)−1 have shown to be successful [Keller2000], where G ∈ Rn×n.
In this case PP T = Z(ZTGZ)−1Z = projGZ which is similar to an oblique
projection, in that PP T (GZ) = Z. Note that in this development, nor A
nor G need be positive definite, but instead, only ZTAZ and ZTGZ need be
positive definite.

1.1.1 Linear constrained case

Let x0 ⊕ Z = {x |Bx = d}. The initial point x0 is feasible point: Bx0 = d.
The objective is to minimize φ(x) restricted to x0 ⊕Ker(B).

Note that to execute Algorithm 1.2, we do not need the whole ma-
trix PP T , but instead, we only need to know how to apply PP T to the
residual vectors rk. As shown by Gould, Hribar and Nocedal [3], when
the affine subspace is defined by a linear constraint Bx = d, we can im-
plicitly apply PP T = projGZ without calculating Z = Ker(B). In fact, as
PP T r = PP TGG−1r, which is a projection of G−1r given by

PP T r = arg min
x∈Z

1

2
‖x−G−1r‖2

G

= arg min
Bx=0

1

2
xTGx− xT r.

To solve the above, we form the associated Lagrangian

L(x, µ) =
1

2
xTGx− xT r + xTBTµ,

where µ ∈ Rm. Differentiating in µ and x[
G BT

B 0

] [
x
µ

]
=

[
r
0

]
. (9)

This system, also known as a KKT system, can be solved in a number of
efficient ways so long as G is positive definite and by factorizing B, see [5].
Of course, one could model our original problem (6) as a KKT system. But
if A is not positive definite, but only ZTAZ � 0, then solving the KKT
system is expensive. In this case, using the Projected CG Algorithm 1.2
where PP T rk+1 is calculated by solving (9) becomes worthwhile.

9



1.2 Restarting with remembering preconditioners

In certain circumstances, it can be advantageous to stop the CG iterations
and restart on a given point x̄0. In other words, apply the standard CG
method to

A(x− x̄0) = b⇔ Ax = b+ Ax̄0 =: b̄.

This can switch the search to a different set of Krylov subspaces. We have
used this property in an article “Action constrained quasi-Newton meth-
ods”. Let d0 . . . dp and r0, . . . , rp be a set of conjugate and residual directions.
Suppose we have a point x̄0 ∈ Rn with a gradient r̄0 = ∇φ(x̄0) such that
r̄0 ∈ K⊥p+1 =span{r0, . . . , rp}. Furthermore, suppose we have a symmetric
preconditioner M−1 that “remembers” all previous conjugate directions

dTj AM
−1 = dTj , for j = 1, . . . , p. (10)

In quasi-Newton methods, this property is referred to the quadratic hered-
itary property and is satisfied by all metric matrices of the Broyden family
after p iterations [1] on convex quadratic functions. By then starting the
PCG iterations with r̄0 and d̄0 = M−1r̄0 we generate vectors d̄0, . . . , d̄q such
that d0 . . . dp−1, d̄0, . . . , d̄q are a conjugate set.
proof: The proof is by induction on dTj Ad̄i = 0 and dTj r̄i = 0 for 1 ≤ j ≤ p
and 1 ≤ i ≤ q. For i = 0, the spectral properties of M−1 and r̄0 ∈ K⊥p+1

guarantee that

dTj Ad̄0 = dTj AM
−1r̄0

= dTj r̄0 = 0, for j = 1, . . . , p.

Supposing the induction hypothesis is true for i and all 0 ≤ j ≤ p, us-
ing (5) to calculate the next residual r̄i+1, then by induction

dTj r̄i+1 = dTj (I − AprojAd̄i)r̄i

= dTj r̄i
(
by induction dTj Ad̄i = 0

)
= 0.

(
by induction dTj r̄i = 0

)

10



Using (8) to substitute d̄i+1

dTj Ad̄i+1 = dTj A(I − projAd̄iA)M−1r̄i+1

= dTj AM
−1r̄i+1

(
by induction dTj Ad̄i = 0

)
= dTj r̄i+1 by (10)

= 0.

The conjugate directions that result from using a remembering precon-
ditioner are not necessary the same as those generated by the CG method.
Though they still serve as search directions that can be used to iteratively
minimize φ(x) as in Algorithm 1.3. On iteration k, the subroutine update remember

on line 7 updates the preconditioner M−1 so (10) holds for all search direc-
tions di, i = 1, . . . k.

Input: M−1 ∈ Rn×n, r0 = p0 = M−1∇φ(x0), k = 0,m = 1,M ∈ N,
ε ∈ R+,D = {∅},AD = {∅}

1 repeat

2 αk =
〈rk, rk〉M−1

〈dk, dk〉A
3 rk+1 = rk − αkAdk
4 xk+1 = xk + αkdk
5 D ← dk+1, AD ← Adk+1

6 if m = M then
7 M−1 =update remember(M−1,D,AD)
8 dk+1 = M−1rk+1

9 m = 0, D = {∅}, AD = {∅}
10 else

11 dk+1 = M−1rk+1 +
〈rk+1, rk+1〉M−1

〈rk, rk〉M−1

dk

12 end
13 k = k + 1,m = m+ 1

14 until ‖rk‖ ≥ ε‖r0‖
Output: xp−1.

Algorithm 1.3: Restarting Conjugate Gradients method

11



2 Implementing

We focus on implementing the PCG Algorithm 1.2 as this covers all cases,
in that, with PP T = I it is the standard CG method, with PP T = M−1,
where M−1 is an approximate inverse, it is the Preconditioned CG method.

First we say goodbye to our projection notation, for v ∈ Rn

projAdkv =
dTk v

〈dk, dk〉A
dk.

To further simplify computations, we need two identities. For the first, recall
that rk ∈ K⊥k−1 thus using (8)

〈rk, dk〉 =
〈
rk, (I − projAdk−1

A)PP T rk

〉
= 〈rk, rk〉PPT − 〈rk, dk−1〉︸ ︷︷ ︸

=0

dTk−1PP
T rk

〈dk−1dk−1〉A

= 〈rk, rk〉PPT . (11)

This identity applied to the rk update (5) and xk update (3) results in lines 3
and 4 of the implemented PCG method in Algorithm 2.1.

The second identity relies rearranging (5) to see that

rk+1 = rk −
〈rk, dk〉
〈dk, dk〉A

Adk

= rk −
〈rk, rk〉PPT

〈dk, dk〉A
Adk. (12)

Equivalently

Adk =
rk − rk+1

αk
,

where αk =
〈rk,rk〉PPT

〈dk,dk〉A
.Using this to substituteAdk and recalling that 〈rk, rk+1〉PPT =

0 (see (7)), the second identity is

〈rk+1, Adk〉PPT

〈dk, dk〉A
= −〈rk+1, rk+1〉PPT

〈dk, dk〉A

(
〈dk, dk〉A
〈rk, rk〉PPT

)
= −〈rk+1, rk+1〉PPT

〈rk, rk〉PPT

. (13)

12



This identity

dk+1 = (I − projAdkA)PP T rk

= PP T rk +
〈rk+1, rk+1〉PPT

〈rk, rk〉PPT

dk. (14)

The search directions are updated using the above on line (6) of Algo-
rithm (2.1).

Input: PP T ∈ Rn×n, r0 = p0 = PP T∇φ(x0), k = 0 and tolerance ε ∈ R+.
1 repeat

2 αk =
〈rk, rk〉PPT

〈dk, dk〉A
3 rk+1 = rk − αkAdk
4 xk+1 = xk + αkdk

5 dk+1 = PP T rk+1 +
〈rk+1, rk+1〉PPT

〈rk, rk〉PPT

dk

6 k = k + 1

7 until ‖rk‖PPT ≥ ε‖r0‖PPT

Output: xp−1.
Algorithm 2.1: Implemented Projected Conjugate Gradients

References

[1] C. Broyden. “Quasi-Newton methods and their application to function
minimisation”. In: Mathematics of Computation (1967), pp. 368–381.
url: http://www.jstor.org/stable/2003239.

[2] B. R. Fletcher and M. J. D. Powell. “A rapidly convergent descent
method for minimization”. In: The Computer Journal 6.2 (1963), pp. 163–
168.

[3] N. I. M. Gould and M. E. Hribar. “On the Solution of Equality Con-
strained Quadratic Programming Problems Arising in Optimization”.
In: (2000).

[4] M. R. Hestenes and E. Stiefel. “Methods of Conjugate Gradients for
Solving Linear Systems”. In: Journal of research of the National Bureau
of Standards 49.6 (1952).

13



[5] J Nocedal and S. J. Wright. Numerical Optimization. Ed. by P. Glynn
and S. M. Robinson. Vol. 43. Springer Series in Operations Research 2.
Springer, 1999. Chap. 5, pp. 164–75. isbn: 0387987932. doi: 10.1002/
lsm.21040. url: http://www.ncbi.nlm.nih.gov/pubmed/21643320.

[6] J. R. Shewchuk. An Introduction to the Conjugate Gradient Method
Without the Agonizing Pain. Tech. rep. School of Computer Science
Carnegie Mellon University, 1994.

14


