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ABSTRACT

The sinusoidal modeling parameters can be regarded as control
signals, and resampling can be used for synthesis or time-scaling
purposes. However, these signals are not zero-centered, and con-
sist of a slow time varying envelope together with modulations
(vibrato, tremolo). Using directly the classic resampling method
could have disastrous effects.

We present an addition to classic resampling aimed at achiev-
ing better results on such non zero-centered signals. Applied to the
control signals of sinusoidal modeling, the method locally removes
a polynomial envelope to the signal to perform better resampling
on the residual modulations.

1. INTRODUCTION

The sinusoidal model [1] represents sounds as sums of sinusoids.
Each sinusoid is controlled in time by phase, frequency, and am-
plitude parameters, often measured at a lower rate than the original
sampling rate of the sound. These sinusoidal modeling parameters
then have to be interpolated for resynthesis. This can be done by
polynomial interpolation (see [1, 2]). Another possibility is to use
signal processing tools, such as resampling [3].

Indeed, we propose in [4] to use resampling for synthesis and
even time-scaling of the sound. However, whereas the classic re-
sampling method works well for zero-centered signals, poor atten-
tion has been paid to the more general case of non zero-centered
signals. In sinusoidal modeling, the amplitude, frequency, and
phase of each partial are examples of such complicated signals.

Considering the parameters of the partials as sums of polyno-
mials and sinusoids (see [2]), we thus designed a way to resample
the control signals without the artifacts usually present if classic
resampling is used for non-zero centered signals.

This paper is organized as follows. After an overview of the
sinusoidal modeling context in Section 2, Section 3 describes the
classic resampling technique. Then, in Section 4, we show the
drawback of the classic technique and we present an enhanced
method, taking the envelope into account. Finally, in Section 5,
we present results that clearly show the improvements.

2. SINUSOIDAL MODELING

Additive synthesis is the original spectrum modeling technique.
It is rooted in Fourier’s theorem, which states that any periodic
function can be modeled as a sum of sinusoids at various am-
plitudes and harmonic frequencies. For quasi-stationary pseudo-
periodic sounds, these amplitudes and frequencies continuously
evolve slowly with time, controlling a set of pseudo-sinusoidal os-
cillators commonly called partials. This is the well-known sinu-
soidal modeling representation used by McAulay and Quatieri [1]
for speech signals and by Serra and Smith [5] for music signals.
The audio signal s can be calculated from the additive parameters
using Equations (1) and (2), where P is the number of partials

and the functions fp, ap, and φp are the instantaneous frequency,
amplitude, and phase of the p-th partial, respectively:

s(t) =
PX

p=1

ap(t) cos(φp(t)) (1)

φp(t) = φp(0) + 2π

Z t

0

fp(u) du. (2)

Sinusoidal modeling is used in many analysis / synthesis programs
such as SMS [5] or InSpect [6] for examples.

2.1. Synthesis Using Resampling

The frequency, amplitude, and phase parameters are slow varying
functions of time. Hence, at the analysis stage, they are often mea-
sured only each H – the hop size – samples of the original audio
signal. As a consequence, since the parameters of the partials were
measured at a (H times) lower sampling rate than the one needed
for the output sound, at the synthesis stage it is necessary to find the
missing amplitude, frequency, and phase values between the ones
which were measured, in order to be able to apply Equation (1),
and also Equation (2) to reconstruct the phase if only frequency
and amplitude parameters are used.

Since the very beginning of sinusoidal modeling, polynomial
interpolation techniques were proposed [1]. Many of them have
been tested in [2], but they only work for small values of H and
do not take the global evolutions of the parameters into account.
Moreover, they hardly handle modulations like vibrato / tremolo
often present in musical signals. Indeed, a polynomial of finite
degree cannot model sinusoidal modulations of the frequency (vi-
brato) or amplitude (tremolo) parameters.

On the other hand, we show in [4] that the parameters of the
partials can also be regarded as (control) signals. Then, we show
that finding the missing values can be regarded as uniform recon-
struction – upsampling by a constant factor H . One advantage of
considering the parameters of the partials as time signals is that
H can be set below the half of the period of the modulation (vi-
brato or tremolo), so that the Nyquist condition is respected and
the original modulations can be accurately reconstructed.

2.2. Time-Scaling Using Resampling

Using the same principles as for the synthesis we just presented,
we show in [4] a simple way to perform time-scaling using the
sinusoidal model. Indeed, we can reconstruct the sinusoidal pa-
rameters at any time, and not necessarily at the original sampling
periods of the input sound. More precisely, the technique consists
in first scaling the time axis, then reconstructing the parameters
according to this new scale, which is roughly equivalent to resam-
pling. The time evolutions of the sinusoidal parameters are then
scaled, but the values of these parameters are preserved. This way,
we perform time-scaling while preserving the pitch, intensity, and
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timbre of the original sound. Note that for the phase parameter –
considered unwrapped throughout this paper – the scaled version
also has to be multiplied by the scaling ratio in order to be con-
sistent, because of the relation between frequency and phase given
by Equation (2).

The problem is yet to be able to resample the sinusoidal pa-
rameters, which are not zero-mean signals – neither the amplitude
nor the frequency. The case of the – unwrapped – phase is even
worse, since it exhibits a quasi-linear behavior if the frequency is
quasi-stationary.

3. CLASSIC RESAMPLING

Let s(t) be a continuous signal, and let us denote by s[n] = s(nTs)
the sampled (discrete-time) version of this signal, with Ts being
the sampling period, that is the inverse of the sampling frequency
Fs. Moreover, s(t) is supposed to be bandlimited to Fs/2. Ac-
cording to the Shannon-Nyquist theorem, s(t) can be reconstructed
from its sampled form s[n] by convolving the discrete signal by a
reconstructor: a (windowed) sinc function [7]. In practice we use
an algorithm similar to the one proposed by Smith [8, 3], except
that we chose to use the Hann window instead of the family of
Kaiser windows to build the reconstructor.

In theory, we consider the impulse train made of the samples
of the discrete signal where they are known – at times multiple of
the sampling period – and 0 (zero) elsewhere. According to the
Shannon-Nyquist theorem, the continuous version of the signal s
is reconstructed simply by convolving this impulse train by the
ideal reconstructor ri, based on the cardinal sine (sinc) function:

ri = sinc(Fst) (3)

the classic reconstruction of s(t) being:

s(t) =

+∞X
n=−∞

s[n] · ri(t− nTs) (4)

that is, for the whole signal, s = s∗ri (∗ denoting the convolution).
In practice, the ideal reconstructor cannot be used because of

its infinite time support, and we need instead a reconstructor of fi-
nite support. In the remainder of this section, let us denote by N
this finite size expressed in samples. This size allows us to tune the
trade-off of reconstruction quality versus computation time in the
resampling process. We obtain this practical reconstructor by mul-
tiplying the ideal reconstructor by some window of finite support.
We chose a symmetric Hann window of odd size N = 2k + 1 (k
being some positive integer), defined by:

wN (n) =
1

2
(1− cos (2πn/(N − 1))) (5)

for n in the [0;N − 1] range, and 0 (zero) elsewhere.
The practical reconstructor is then given by:

rp(t) = w2k+1(k + Fst) · sinc(Fst). (6)

Using Equation (4), it is easy to obtain the continuous sig-
nal s(t) from its sampled version. Once we have the continuous
function, upsampling by a factor u (u ≥ 1) the signal s is straight-
forward since we can compute this function at any time, all the
more at multiples of the new sampling period Ts/u. Upsampling
is like considering the s(t/u) function. Downsampling s by a fac-
tor d (d ≥ 1) is slightly more complicated, since high frequencies
have to be filtered out in order to fulfill the Nyquist condition. We
then have to use Fm = min(Fs, F

′

s), where F ′s is the destination
sampling rate, instead of Fs in Equations (3) and (6) to define the
appropriate reconstructor. The classic reconstruction procedure is
summarized in Algorithm 1.

Algorithm 1 classic reconstruct(s,t)

1: Center rp on time t
2: Compute an approximation of s(t) by using rp instead of ri

in Equation (4)
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Figure 1: The classic resampling technique is not adapted for the
resampling of non zero-centered signals. Here is an example of the
resampling of a constant signal at 10000 (represented by a dashed
line). The resampling ratio is 256. The result of this resampling is
given as a solid line, far from the constant we would have expected.

4. ENHANCED RESAMPLING

4.1. Drawback of the Finite Reconstructor

In theory, resampling works on every kind of signal. However,
in practice, only careful resampling can give good results. Practi-
cal resampling, as explained earlier, is based on a windowed sinc
function. With this finite version of the cardinal sine, artifacts may
appear if the signal to resample is not zero-centered. Indeed, an
infinite number of samples of the signal are left out of the compu-
tation of the resampled signal by the finite version of the cardinal
sine.

In fact, while the ideal (infinite) cardinal sine reconstructor
considers the values of the entire signal to compute new samples,
the practical (finite) reconstructor uses only the values closest to a
given new sample. Hence, when using the practical reconstructor,
the influence of the signal samples that are not included for the
reconstruction is neglected. Of course, the shape of the cardinal
sine function makes the center sample far more important, and the
further from the center the samples, the less significance and influ-
ence they have for the newly computed sample. When the signal
to resample is zero-centered, the left out samples can indeed be ne-
glected. However, for a discrete-time s[n] = c (c is a constant), we
would expect a reconstructed (continuous) s(n) = c. As shown
on Figure 1, for signals with a large offset (here c = 10000, which
is a typical value for the frequency parameter – in Hz – of par-
tials in sinusoidal modeling), it is not the case. In the latter case,
if we had added a sinusoidal modulation with an amplitude of 5
on the constant signal, the resampling would have shown a disas-
trous effect, completely loosing the modulation in the artifacts of
the resampling.

The sinusoidal modeling parameters are control signals that
fall into this category of signals that are not zero-centered, and
are often modulated (for example vibrato for the frequency control
signal). Hence, the classic resampling technique is not adapted to
our synthesis / time-scaling purposes.
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4.2. Enhancing the Resampling Technique

The sinusoidal modeling parameters are slow time varying. More
precisely, we have shown in [4, 9] that each parameter consists of
modulations below 20 Hz (e.g. tremolo or vibrato) together with an
envelope, whose time evolution is slow – with a frequency content
below 3 Hz.

Whereas the modulations are zero-centered, this is not the case
for the envelope. In order to enhance the resampling, we propose
to remove the envelope of the signal by modeling it as a piecewise
polynomial. The idea is to perform the centering on parts of the
signal that are about to be used for the reconstruction of a given
sample. This means that we apply the centering on the samples that
fall under the span of the practical reconstructor. The enhanced
reconstruction procedure we use is summarized in Algorithm 2.

Algorithm 2 enhanced reconstruct(s,t)

1: Center rp on time t
2: Compute Πd on the span of rp

3: m← classic reconstruct(s−Πd,t)
4: Return m + Πd(t)

Here, Πd represents a polynomial of degree d, computed us-
ing the well-known least-square method (see for example [9] for
details). Hence, removing polynomials of different degrees will
have different effects.

Removing a null polynomial before performing the reconstruc-
tion is the classic resampling technique, which works very well
for (zero-mean) PCM audio signals, but has the drawback we ex-
plained earlier. Removing the local mean seems to significantly
enhance the result of the resampling, as shown on Figure 2. This
is equivalent to removing a constant polynomial (d = 0), the
constant being the mean, well suited for the frequency parame-
ters when the sound is stationary. Removing a linear polynomial
(d = 1) works well with the (unwrapped) phase parameters of
stationary sounds. In the case where the frequency is based on a
linear envelope, a quadratic polynomial (d = 2) is necessary to
resample the corresponding unwrapped phase; and for quadratic
frequency envelopes, we need cubic polynomials (d = 3) for the
unwrapped phases.

By performing these subtractions to the signal, the envelope
is removed and only the modulations are kept. These modulations
are zero-centered and thus well resampled using the classic resam-
pling techniques.

5. RESULTS

The effect of the removal of a constant is shown on Figure 2. We
can see that the overall quality of the resampling in significantly
improved. However, the steep parts of the signal are problematic.

In our experiments, the polynomials we have removed are con-
stant, linear (first degree), quadratic (second degree) and cubic
(third degree). The comparison of the performances of all these
resampling techniques on a sinusoidal signal is shown on Figures
3 and 4. The results of resampling on a sine signal with a quadratic
envelope are shown on Figure 5.

It has to be noted that the error of the resampling technique
using a higher degree polynomial is lower only for low frequency
signals, while being almost identical for higher frequency signals.
This is explained by the fact that from a given frequency, the sinu-
soidal signal is no longer an envelope to be removed but a modu-
lation, which is thus no longer captured by the polynomial.

This enhancement is thus significant for our purpose of re-
sampling the control signals since they contain slowly evolving
envelopes that are well taken into account by the polynomials.
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Figure 2: Resampling a simple low-frequency sine function us-
ing classic resampling and the local mean-centering resampling
method. The target signal was downsampled, then resampled back
to the original rate. The resampling ratio does not influence the
maximal error signal. The error depends on the amplitude of the
signal to resample for the first method, while it depends only on
the derivative of the signal for the second method. The resampling
errors at the boundaries have not been shown on this figure. The
reconstructor has a size of N = 21 samples.

Moreover, during informal listening tests, it appeared obvious
that the classic resampling of control signals produced unwanted
artifacts (adding another tone to the sound), whereas using our new
method the artifacts were removed.

One last point is about the windowing of the reconstructor
function. As said earlier, the sinc reconstructor has to be win-
dowed in order to be applicable in the finite case. Thus, we have
compared the Kaiser-windowed sinc that is used in Matlab against
the Hann-windowed sinc we use in our version of the resampler.
The results are shown in the Figure 6. For our purpose (resampling
low frequency signals), the Hann-window reconstructor performs
best. It has to be noted that the maximal error values seem to be
describing the Kaiser and the Hann windows respectively, and that
the width of the bumps seems to be related to the window size.

6. CONCLUSION

We have presented a new way to resample signals when dealing
with non zero-centered signals. The method is quite simple and yet
efficient. The results are significantly improved, from the points of
view of error measures and informal listening tests.

This new technique has been presented here in the context of
additive synthesis. The results also confirm the validity of the si-
nusoidal plus polynomial model for the parameters of sinusoidal
modeling. However, it could be applied to other types of signals.
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Figure 3: Maximal resampling error using various resampling
techniques plotted against the frequency of the sinusoid they have
been applied on. Here, the signal is already zero-centered.
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Figure 4: Maximal resampling error using various resampling
techniques plotted against the frequency of the sinusoid they have
been applied on. We have zoomed on the lower frequency to
show that higher order polynomials help enhancing the resam-
pling. Mean (constant) centering has not been plotted since it is
very similar to linear centering.
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Figure 5: Maximal resampling error using various resampling
techniques plotted against the frequency of the sinusoid they have
been applied on. The test signal is a sinusoid of given frequency
added to a second degree polynomial (here x2). Here, the linear-
centering method is not as good as on the previous figure, while the
quadratic method still performs very well (for low frequencies).
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Figure 6: Maximal resampling error using various resampling
techniques. Here, Matlab’s resampling technique using a Kaiser-
windowed (β = 5) cardinal sine as reconstructor is compared
to the technique using a Hann-windowed reconstructor over sin-
gle sinusoids of various frequencies. The reconstructor contains
k = 10 wings (lobes) on each side.
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