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ﬁggﬁ“ Music representations
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ﬁggﬁ“ Low-rank approximations
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ﬁggﬁ“ High Resolution (HR) spectral analysis
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ﬁggﬁ“ High Resolution (HR) spectral analysis
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iﬁiml Nonnegative Matrix Factorization (NMF)
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iggﬁ“ Nonnegative Matrix Factorization (NMF)
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ﬁggﬁ“ Applications

B Applications of High Resolution methods
= Spectral analysis (modal analysis, spectroscopy)
= Array processing (beamforming, direction of arrival (DOA)
estimation)
= Digital communications (channel identification)
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ﬁﬁmi Applications

B Applications of High Resolution methods
= Spectral analysis (modal analysis, spectroscopy)
= Array processing (beamforming, direction of arrival (DOA)
estimation)
= Digital communications (channel identification)
®m Applications of NMF

= Image analysis (face recognition)
= Text mining, spectroscopy, finance, etc.
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ﬁﬁgﬁ“ Applications

B Applications of High Resolution methods
= Spectral analysis (modal analysis, spectroscopy)
= Array processing (beamforming, direction of arrival (DOA)
estimation)
= Digital communications (channel identification)
®m Applications of NMF
= Image analysis (face recognition)
= Text mining, spectroscopy, finance, etc.
m Applications to audio signal processing

= Source separation, audio coding
= Pitch and tempo estimation, automatic transcription
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ﬁﬁiml Exponential Sinusoidal Model (ESM)

® Real-valued model: s(t) = > _; ax e %' cos(2mut + ¢x)
= ax € R} and ¢ €] — 7, 7] are the amplitude and phase

* ) e Rand i €] — %, %] are the damping factor and frequency
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ﬁggﬁ“ Exponential Sinusoidal Model (ESM)

® Real-valued model: s(t) = > _; ax e %' cos(2mut + ¢x)

= ax € R} and ¢ €] — 7, 7] are the amplitude and phase

* ) e Rand i €] — 2, 2] are the damping factor and frequency
m Complex-valued model: s(t) = > _; ax z'!

= ax = ag e'% € C* is a complex amplitude

= 7 = e %H2™i ¢ C* js a complex pole
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ﬁﬁﬁ' Exponential Sinusoidal Model (ESM)

® Real-valued model: s(t) = > _; ax e %' cos(2mut + ¢x)
= ax € R} and ¢ €] — 7, 7] are the amplitude and phase
* ) e Rand i €] — %, %] are the damping factor and frequency
m Complex-valued model: s(t) = > _; ax z'!
= ax = ag e'% € C* is a complex amplitude
= 7, = e~ %H2™ c C* is a complex pole

® Noisy model: x(t) = s(t) + b(t) (b(t) is a white Gaussian noise)
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ﬁﬁgﬁ“ Exponential Sinusoidal Model (ESM)

® Real-valued model: s(t) = > _; ax e %' cos(2mut + ¢x)
= ax € R} and ¢ €] — 7, 7] are the amplitude and phase
* ) e Rand i €] — %, %] are the damping factor and frequency
m Complex-valued model: s(t) = > _; ax z'!
* oy = ay e'% € C* is a complex amplitude
= 7, = e~ %H2™ c C* is a complex pole
® Noisy model: x(t) = s(t) + b(t) (b(t) is a white Gaussian noise)
B Model estimation
= Data vector: s(t) = [s(t),...,s(t +n—21)]T withn >r
= Fourier analysis: spectral resolution of the order of %
= Subspace analysis: high spectral resolution
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ﬁggﬁ“ Subspace analysis

s(t)
Data vector
of dimension n

t
( ) =7z + oz,

Signal subspace
of dimensionr = 2

Q>

Wednesday, February 13, 2013
TELECOM
Tech
Page 9/37 C4DM Seminar Roland Badeau




ﬁggﬁ“ Subspace analysis

n)

VMY

s(t+1)
Data vector
of dimension n

t
( ) =7z + oz,

Signal subspace
of dimensionr = 2

Q>

Wednesday, February 13, 2013
TELECOM
Tech
Page 9/37 C4DM Seminar Roland Badeau




ﬁggﬁ“ Subspace analysis
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ﬁggﬁ“ Model estimation

B Choose a window (v;),en (exponential, rectangular, hybrid)
B Compute a "correlation” matrix

Cux(t) =D oy X(t —7)x(t —7)H
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ﬁggﬁ“ Model estimation

B Choose a window (v;)-en (exponential, rectangular, hybrid)
B Compute a "correlation” matrix
Cxx(t) = Ztrzo Y X (t = T)x(t —7)"
B Estimate the model parameters
Cx(t) r Z(t) & ()

Estimation Computation of Computation of

of order r complex poles omplex amplitudeg

Ordinar
AIC, MDL... Subspace 4
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ﬁﬁmi Model estimation

B Choose a window (v;)-en (exponential, rectangular, hybrid)
B Compute a "correlation” matrix

Cxx(t) = X4 g X (t = 7) x(t = 7)"
B Estimate the model parameters

Cxx (t) r (t) Zi(t) ak(t)

Estimation Computation of] Computation of Computation of Computation of
of order r ignal subspac spectral matrix complex poles omplex amplitude:

I " Ordinary I L Ordinary
AIC, MDL... Diagonalisation Diagonalisation
iteri of Cxx (1) least of & (1) least
criteria xx squares r squares

ESPRIT method [Roy and Kailath, 1989]
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ﬁggﬁ“ Subspace analysis
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ﬁﬁmi Model estimation

B Choose a window (v;)-en (exponential, rectangular, hybrid)
B Compute a "correlation” matrix

Cxx(t) = X4 g X (t = 7) x(t = 7)"
B Estimate the model parameters

Cxx (t) r (t) Zi(t) ak(t)

Estimation Computation of] Computation of Computation of Computation of
of order r ignal subspac spectral matrix complex poles omplex amplitude:

I " Ordinary I L Ordinary
AIC, MDL... Diagonalisation Diagonalisation
iteri of Cxx (1) least of & (1) least
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ﬁﬁgﬁ“ Time-frequency analysis

x(t) Wi (t) @ (1) 7 (t) ay(t)
Estimation Tracking of the Tracking of the Tracking of the Tracking of the
of order r ignal subspac spectral matrix complex poles complex amplitudes
FAPI [2]

SWASVD [3]
YAST [4

Adaptive
least [7]
squares

ESTER
criterion [1]

Adaptive

ESPRIT [5] HRHATRAC [6]

[1] Roland Badeau, Bertrand David, and Gaél Richard. "A new perturbation analysis for signal enumeration in rotational invariance
techniques". IEEE Transactions on Signal Processing, 54(2): 450—-458, February 2006.

[2] Roland Badeau, Bertrand David, and Gaél Richard. "Fast Approximated Power Iteration Subspace Tracking". IEEE Transactions
on Signal Processing, 53(8): 2931-2941, August 2005.

[3] Roland Badeau, Gaél Richard, and Bertrand David. "Sliding window adaptive SVD algorithms". IEEE Transactions on Signal
Processing, 52(1): 1-10, January 2004.

[4] Roland Badeau, Gaél Richard, and Bertrand David. "Fast and stable YAST algorithm for principal and minor subspace tracking".
|EEE Transactions on Signal Processing, 56(8): 3437-3446, August 2008.

[5] Roland Badeau, Gaél Richard, and Bertrand David. "Fast adaptive ESPRIT algorithm". In Proc. of IEEE Workshop on Statistical
Signal Processing (SSP), Bordeaux, France, July 2005.

[6] Bertrand David, Roland Badeau, and Gaél Richard. "HRHATRAC Algorithm for Spectral Line Tracking of Musical Signals". In
Proc. of IEEE ICASSP, volume 3, pages 45-48, Toulouse, France, May 2006.

[7] Bertrand David and Roland Badeau. "Fast sequential LS estimation for sinusoidal modeling and decomposition of audio
signals”. In Proc. of IEEE WASPAA, pages 211-214, New Paltz, New York, USA, October 2007.
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ﬁggﬁ“ Power iteration method

B Power iteration method (recursive computation of W, (t))
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ﬁggﬁ“ Power iteration method

B Power iteration method (recursive computation of W (t))
1) Cyy(t) = CxxW,(t — 1) (compression of Cyy)
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ﬁggﬁ“ Power iteration method

B Power iteration method (recursive computation of W (t))
1) Cyy(t) = CxxW,(t — 1) (compression of Cyy)
2) W, (t)R(t) = Cxy(t) (orthonormalisation of Cyy(t))
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ﬁggﬁ“ Power iteration method

B Power iteration method (recursive computation of W (t))
1) Cyy(t) = CxxW,(t — 1) (compression of Cyy)
2) W, (t)R(t) = Cxy(t) (orthonormalisation of Cyy(t))
= Span(W,(t)) exponentially converges to the signal subspace

Wednesday, February 13, 2013
TELECOM
_ _ _ mT
Page 14 /37 CADM Seminar Roland Badeau =
[~ i |




ﬁﬁmi Power iteration method

B Power iteration method (recursive computation of W (t))
1) Cyy(t) = CxxW,(t — 1) (compression of Cy)
2) W, (t)R(t) = Cyy(t) (orthonormalisation of Cyy(t))
= Span(W,(t)) exponentially converges to the signal subspace
= If 2) is an orthogonal-triangular (QR) decomposition, W (t)
converges to the r principal eigenvectors of Cyy

Wednesday, February 13, 2013
- - TELECOM
ParisTech
Page 14 /37

[~ i |



ﬁﬁmi Power iteration method

B Power iteration method (recursive computation of W (t))
1) Cyy(t) = CxxW,(t — 1) (compression of Cy)
2) W, (t)R(t) = Cyy(t) (orthonormalisation of Cyy(t))
= Span(W,(t)) exponentially converges to the signal subspace
= If 2) is an orthogonal-triangular (QR) decomposition, W (t)
converges to the r principal eigenvectors of Cyy

B Signal subspace tracking if Cx(t) is time-varying
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ﬁﬁgﬁ“ Power iteration method

B Power iteration method (recursive computation of W (t))
1) Cyy(t) = CxxW,(t — 1) (compression of Cy)
2) W, (t)R(t) = Cyy(t) (orthonormalisation of Cyy(t))
= Span(W,(t)) exponentially converges to the signal subspace
= If 2) is an orthogonal-triangular (QR) decomposition, W (t)
converges to the r principal eigenvectors of Cyy
B Signal subspace tracking if Cx(t) is time-varying

® Fast algorithm [Strobach, 1996] (complexity of nr? instead of n?r)
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ﬁggﬁ“ Subspace tracking
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ﬁggﬁ“ Subspace tracking
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ﬁggﬁ“ Subspace tracking
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ﬁggﬁ“ Subspace tracking
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ﬁggﬁ“ Natural power method

® Natural power method

on Signal Processing, 53(8): 2931-’2941 August 2005

[1] Roland Badeau, Bertrand David, and Gaél Richard. "Fast Approximated Power Iteration Subspace Tracking". IEEE Transactions
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ﬁggﬁ“ Natural power method

® Natural power method

1) Cy(t)

Cxx (1)W, (t — 1) (compression of Cyy)

on Signal Processing, 53(8): 2931-’2941 August 2005

[1] Roland Badeau, Bertrand David, and Gaél Richard. "Fast Approximated Power Iteration Subspace Tracking". IEEE Transactions
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ﬁggﬁ“ Natural power method

® Natural power method
1) Cyy(t) = Cxx(t)W,(t — 1) (compression of Cyx)
2) W, (t) = Cyy(t) (Cxy(t)HCyxy (t))_% (orthonormalisation of Cyy(t))

[1] Roland Badeau, Bertrand David, and Gaél Richard. "Fast Approximated Power Iteration Subspace Tracking". IEEE Transactions
on Signal Processing, 53(8): 2931-2941, August 2005. J
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ﬁggﬁ“ Natural power method

® Natural power method

1) Cyy(t) = Cxx(t)W,(t — 1) (compression of Cyx)

2) W, (t) = Cyy(t) (Cxy(t)HCyxy (t))_% (orthonormalisation of Cyy(t))
® FAPI algorithm [1] (complexity of 3nr instead of nr?)

[1] Roland Badeau, Bertrand David, and Gaél Richard. "Fast Approximated Power Iteration Subspace Tracking". IEEE Transactions
on Signal Processing, 53(8): 2931-2941, August 2005. J
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ﬁggﬁ“ Natural power method

® Natural power method
1) Cyy(t) = Cxx(t)W,(t — 1) (compression of Cyx)
2) W, (t) = Cyy(t) (Cxy(t)HCyxy (t))_% (orthonormalisation of Cyy(t))
® FAPI algorithm [1] (complexity of 3nr instead of nr?)
= reaches the complexity lower bound (3nr)

[1] Roland Badeau, Bertrand David, and Gaél Richard. "Fast Approximated Power Iteration Subspace Tracking". IEEE Transactions
on Signal Processing, 53(8): 2931-2941, August 2005. J
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ﬁggﬁ“ Natural power method

® Natural power method

1) Cyy(t) = Cxx(t)W,(t — 1) (compression of Cyx)

2) W, (t) = Cyy(t) (Cxy(t)HCyxy (t))_% (orthonormalisation of Cyy(t))
® FAPI algorithm [1] (complexity of 3nr instead of nr?)

= reaches the complexity lower bound (3nr)
= converges faster than PAST and its variants

[1] Roland Badeau, Bertrand David, and Gaél Richard. "Fast Approximated Power Iteration Subspace Tracking". IEEE Transactions
on Signal Processing, 53(8): 2931-2941, August 2005. J
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ﬁﬁmi Natural power method

® Natural power method

1) Cyxy(t) = Cxx(t)W,(t — 1) (compression of Cyx)

2) Wi (t) = Cyy(t) (Cxy(t)"Cyy (t))_% (orthonormalisation of Cy (t))
® FAPI algorithm [1] (complexity of 3nr instead of nr?)

= reaches the complexity lower bound (3nr)
= converges faster than PAST and its variants
= guarantees the orthonormality of W(t) and the numerical stability

[1] Roland Badeau, Bertrand David, and Gaél Richard. "Fast Approximated Power Iteration Subspace Tracking". IEEE Transactions
on Signal Processing, 53(8): 2931-2941, August 2005. J
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ﬁﬁmi Applications of High Resolution analysis

B Analysis / Synthesis

= High resolution time-frequency representation
= Analysis of the sympathetic string modes in a concert harp
= Audio coding

B Automatic transcription

= Pitch estimation of piano notes
= Musical tempo estimation

B Other applications

= Channel estimation in digital communications
= Adaptive multilinear SVD for structured tensors
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ﬁggﬁ“ Applications of High Resolution analysis

B Analysis / Synthesis

= High resolution time-frequency representation
= Analysis of the sympathetic string modes in a concert harp
= Audio coding

= Musical tempo estimation
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iﬁgﬁ“ Decomposition of a piano sound
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[1] Roland Badeau and Bertrand David. "Adaptive subspace methods for high resolution analysis of music signals". In Acous-
tics'08, Paris, France, July 2008.

[2] Bertrand David, Gaél Richard, and Roland Badeau. "An EDS modelling tool for tracking and modifying musical signals"”. In
Proc. of Stockholm Music Acoustics Conference (SMAC), volume 2, pages 715-718, Stockholm, Sweden, August 2003.

[3] Roland Badeau, Rémy Boyer, and Bertrand David. "EDS parametric modeling and tracking of audio signals". In Proc. of the
5th International Conference on Digital Audio Effects (DAFx), pages 139-144, Hamburg, Germany, September 2002.
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[1] Roland Badeau and Bertrand David. "Adaptive subspace methods for high resolution analysis of music signals". In Acous-
tics'08, Paris, France, July 2008.

[2] Bertrand David, Gaél Richard, and Roland Badeau. "An EDS modelling tool for tracking and modifying musical signals"”. In
Proc. of Stockholm Music Acoustics Conference (SMAC), volume 2, pages 715-718, Stockholm, Sweden, August 2003.

[3] Roland Badeau, Rémy Boyer, and Bertrand David. "EDS parametric modeling and tracking of audio signals". In Proc. of the
5th International Conference on Digital Audio Effects (DAFx), pages 139-144, Hamburg, Germany, September 2002.
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ﬁggﬁ“ Sinusoids and noise separation

B Principle: projection onto the signal or the noise subspace [1,2]
Instrument | Original | Sinusoids Noise

T

Piano

Guitar

Violin
Flute
Saxophone
Bell

£ L 4L 4L 4L &
£ L 4L 4L 4L &
A S S

£ L L L

5th International Conference on Digital Audio Effects (DAFX), pp. 139-144, Hamburg, Germany, September 2002.
[2] Bertrand David, Gaél Richard, and Roland Badeau. "An EDS modelling tool for tracking and modifying musical signals". In

[1] Roland Badeau, Rémy Boyer, and Bertrand David. "EDS parametric modeling and tracking of audio signals". In Proc. of the
Proc. of Stockholm Music Acoustics Conference (SMAC), volume 2, pp. 715-718, Stockholm, Sweden, August 2003. J




ﬁggﬁ“ Drum separation and beat estimation

B Drum source separation [1]

= Original (Aerosmith): ¢
= Separated drums: ¢

= Remix - more drums: 4)
= Remix - less drums: <

[1] Olivier Gillet and Gaél Richard. Transcription and separation of drum signals from polyphonic music. IEEE Transactions on
Audio, Speech, and Language Processing, 16(3): 529-540, March 2008.

[2] Miguel Alonso Arevalo, Roland Badeau, Bertrand David, and Gaél Richard. "Musical tempo estimation using noise subspace
projections". In Proc. of IEEE WASPAA, pages 95-98, New Paltz, New York, USA, October 2003.
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ﬁggﬁ“ Drum separation and beat estimation

B Drum source separation [1]

= Original (Aerosmith): ¢
= Separated drums: ¢

= Remix - more drums: 4)
= Remix - less drums: <
B Beat tracking [2]

- Pink Floyd: ¢
= Brad Mehldau: ¢

[1] Olivier Gillet and Gaél Richard. Transcription and separation of drum signals from polyphonic music. IEEE Transactions on
Audio, Speech, and Language Processing, 16(3): 529-540, March 2008.

[2] Miguel Alonso Arevalo, Roland Badeau, Bertrand David, and Gaél Richard. "Musical tempo estimation using noise subspace
projections". In Proc. of IEEE WASPAA, pages 95-98, New Paltz, New York, USA, October 2003.
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ﬁggﬁ“ Sympathetic string modes in a concert harp

Modelling sympathetic string modes in a concert harp [1]

Beam equivalent
to the soundboard

o Clamped
Experimental protocol Physical model

[1] Jean-Loic Le Carrou, Frangois Gautier, and Roland Badeau. "Sympathetic string modes in the concert harp". Acta Acustica
united with Acustica, 95(4): 744-752, July/August 2009.
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ﬁﬁmi Audio coding

B Parametric coder based on the ESM model [1]

— exponential modulations @

Input Subband Temporal Subband L Entropy
. N o | . parameters — Quantisation | I
signal decomposition segmentation L coding
estimation
Attack
detection

B Joint scalar quantisation with entropy constraint [2,3]

[1] Olivier Derrien, Gaél Richard, and Roland Badeau. "Damped sinusoids and subspace based approach for lossy audio coding".
In Acoustics’08, Paris, France, July 2008.

[2] Olivier Derrien, Roland Badeau, and Gaél Richard. "Entropy-constrained quantization of exponentially damped sinusoids
parameters". In Proc. of IEEE ICASSP, Prague, Czech Republic, May 2011.

[3] Olivier Derrien, Roland Badeau, and Gaél Richard. "Calculation of an entropy-constrained quantizer for exponentially damped
sinudoids parameters". Technical report, Laboratoire de Mécanique et d’Acoustique, Marseille, France, June 2010.
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ﬁggﬁ“ Audio coding

Original sound: ¢

MDCT ESM
9 bits/spl | € | 8.9 bits/spl | ¥
8 bits/spl | ¢

7 bits/spl | € | 6.8 bits/spl | €
6 bits/spl | € | 6.4 bits/spl | ¥
5 bits/spl | € | 4.7 bitsispl | €
4 bits/spl | € | 4.4 pits/spl | €
3 bits/spl | € | 3.2 bitsispl | €
2 bits/spl | € | 2.1 bits/spl | €

C4DM Seminar Roland Badeau
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Nonnegative decompositions
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iﬁiml Nonnegative Matrix Factorization (NMF)
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iggﬁ“ Nonnegative Matrix Factorization (NMF)
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ﬁggﬁ“ [S-divergence and multiplicative rules

® Minimisation of the criterion D(V|WH) = S"N_, S°F_ . d (v [V5n)
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ﬁﬁmi p-divergence and multiplicative rules

® Minimisation of the criterion D(V|WH) = SN S°F . d (Vi [9n )
] ﬂ—divergence [Eguchi and Kano, 2001]:

ds(alb) = gy (@° + (8 — 1)b” — pab”~1)

= 4 = 2 corresponds to Euclidean distance (EUC),

= 5 =1 corresponds to Kullback-Leibler divergence (KL),
= 8 = 0 corresponds to Itakura-Saito divergence (IS),

= dg(alb) is convex w.r.t b if and only if 3 € [1, 2],
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ﬁﬁim‘l B-divergence and multiplicative rules

® Minimisation of the criterion D(V|WH) = SN S°F . d (Vi [9n )
] ﬂ—divergence [Eguchi and Kano, 2001]:

ds(alb) = gy (@° + (8 — 1)b” — pab”~1)

= 4 = 2 corresponds to Euclidean distance (EUC),

= 5 =1 corresponds to Kullback-Leibler divergence (KL),
= 8 = 0 corresponds to Itakura-Saito divergence (IS),

= dg(alb) is convex w.r.t b if and only if 3 € [1, 2],

B Multiplicative update rules [Kompass, 2007]:

(VOWH)P~)HT

T B—2
H o« HeWetm) s

D(V|WH) is non-increasing if and only if 3 € [1, 2].
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ﬁggﬁ“ Stability of multiplicative update rules

B |ntroduction of an exponentiation step n into NMF multiplicative
update rules designed for minimizing the s-divergence [1]:

V@(WH)A=2)HT \7
W W (LEMEERRT ()

WT(V(WH)A=2)\7
H o« Ho (Yhetr )t (2)

nonnegative matrix factorization". IEEE Transactions on Neural Networks, vol.21, no. 12, pp. 1869-1881, December 2010.
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ﬁﬁmi Stability of multiplicative update rules

B [ntroduction of an exponentiation step n into NMF multiplicative
update rules designed for minimizing the s-divergence [1]:

VRWH)A=2)HT\7
W W ((EMBERRT)T ()

WT(Ve(WH)E—2)\"
H o« He (Retelr) (2

B Monotonic decrease of the criterion if 5 € [1,2] and n €]0, 1]

[1] Roland Badeau, Nancy Bertin, and Emmanuel Vincent. “Stability analysis of multiplicative update algorithms and application to
nonnegative matrix factorization". IEEE Transactions on Neural Networks, vol.21, no. 12, pp. 1869-1881, December 2010. J

weanesaay, Fepruary 13, ZUl3
- - TELECOM
_ T
Page 28 /37 =
[~ i |




ﬁﬁmi Stability of multiplicative update rules

B [ntroduction of an exponentiation step n into NMF multiplicative
update rules designed for minimizing the s-divergence [1]:

VRWH)A=2)HT\7
W W ((EMBERRT)T ()

WT(Ve(WH)E—2)\"
Hoo He (M) @

B Monotonic decrease of the criterion if 5 € [1,2] and n €]0, 1]

B Exponential or asymptotic stability of both rules (1) and (2) if
n €]0,n*[, where V5 € R, n* €]0,2] and if 8 € [1,2], n* = 2
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ﬁﬁim‘l Stability of multiplicative update rules

B [ntroduction of an exponentiation step n into NMF multiplicative
update rules designed for minimizing the s-divergence [1]:

VRWH)A=2)HT\7
W W ((EMBERRT)T ()

WT(Ve(WH)E—2)\"
Hoo He (M) @

B Monotonic decrease of the criterion if 5 € [1,2] and n €]0, 1]

B Exponential or asymptotic stability of both rules (1) and (2) if
n €]0,n*[, where V3 € R, n* €]0,2] and if 5 € [1,2], n* = 2
B nstability if n ¢ [0,2] V5 € R

[1] Roland Badeau, Nancy Bertin, and Emmanuel Vincent. “Stability analysis of multiplicative update algorithms and application to
nonnegative matrix factorization". IEEE Transactions on Neural Networks, vol.21, no. 12, pp. 1869-1881, December 2010. J
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ﬁﬁgﬁ“ Stability of multiplicative update rules

B [ntroduction of an exponentiation step n into NMF multiplicative
update rules designed for minimizing the s-divergence [1]:

VRWH)A=2)HT\7
W W ((EMBERRT)T ()

WT(Ve(WH)E—2)\"
Hoo He (M) @

B Monotonic decrease of the criterion if 5 € [1,2] and n €]0, 1]
B Exponential or asymptotic stability of both rules (1) and (2) if
n €]0,n*[, where V5 € R, n* €]0,2] and if 8 € [1,2], n* = 2

B nstability if n ¢ [0,2] V5 € R
B Step n permits to control the convergence rate

[1] Roland Badeau, Nancy Bertin, and Emmanuel Vincent. “Stability analysis of multiplicative update algorithms and application to
nonnegative matrix factorization". IEEE Transactions on Neural Networks, vol.21, no. 12, pp. 1869-1881, December 2010. J
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ﬁggﬁ“ Avoiding local minima

® The three divergences EUC, KL, and IS have local minima [1]
D(V|WH)

[1] Nancy Bertin and Roland Badeau
factorization'

In Acoustics’08, Paris, France, July 2008

(W, H)

Initialization, distances and local minima in audio applications of the nonnegative matrix

)
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ﬁggﬁ“ Avoiding local minima

B The three divergences EUC, KL, and IS have local minima [1]

D(V|WH)

(W, H)

[1] Nancy Bertin and Roland Badeau. “Initialization, distances and local minima in audio applications of the nonnegative matrix
factorization". In Acoustics’08, Paris, France, July 2008.
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ﬁggﬁ“ Avoiding local minima

B The three divergences EUC, KL, and IS have local minima [1]

D(V|WH)

(W, H)

[1] Nancy Bertin and Roland Badeau. “Initialization, distances and local minima in audio applications of the nonnegative matrix
factorization". In Acoustics’08, Paris, France, July 2008.

Wednesday, February 13, 2013
TELECOM
_ _ mT
Page 29/37 CADM Seminar Roland Badeau =
[~ i |




ﬁggﬁ“ Avoiding local minima

B The three divergences EUC, KL, and IS have local minima [1]

D(V|WH)

(W, H)

[1] Nancy Bertin and Roland Badeau. “Initialization, distances and local minima in audio applications of the nonnegative matrix
factorization". In Acoustics’08, Paris, France, July 2008.

Wednesday, February 13, 2013
TELECOM
_ _ mT
Page 29/37 CADM Seminar Roland Badeau =
[~ i |




ﬁggﬁ“ Avoiding local minima

B The three divergences EUC, KL, and IS have local minima [1]

D(V|WH)

(W, H)

[1] Nancy Bertin and Roland Badeau. “Initialization, distances and local minima in audio applications of the nonnegative matrix
factorization". In Acoustics’08, Paris, France, July 2008.
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ﬁggﬁ“ Avoiding local minima

B The three divergences EUC, KL, and IS have local minima [1]

D(V|WH)

(W, H)

[1] Nancy Bertin and Roland Badeau. “Initialization, distances and local minima in audio applications of the nonnegative matrix
factorization". In Acoustics’08, Paris, France, July 2008.
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ﬁggﬁ“ Avoiding local minima

B The three divergences EUC, KL, and IS have local minima [1]

D(V|WH)

(W, H)

[1] Nancy Bertin and Roland Badeau. “Initialization, distances and local minima in audio applications of the nonnegative matrix
factorization". In Acoustics’08, Paris, France, July 2008.
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ﬁﬁiml Avoiding local minima

B Strategies for initialising the algorithm [1]

[1] Nancy Bertin and Roland Badeau. "Initialization, distances and local minima in audio applications of the nonnegative matrix

factorization". In Acoustics’08, Paris, France, July 2008.
[2] Nancy Bertin, Cédric Févotte, and Roland Badeau. "A tempering approach for Itakura-Saito nonnegative matrix factorization.

With application to music transcription”. In Proc. of IEEE ICASSP, pages 1545-1548, Taipei, Taiwan, April 2009.
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ﬁggﬁ“ Avoiding local minima

B Strategies for initialising the algorithm [1]
= Failure of algorithms from automatic classification

[1] Nancy Bertin and Roland Badeau. "Initialization, distances and local minima in audio applications of the nonnegative matrix

factorization". In Acoustics’08, Paris, France, July 2008.
[2] Nancy Bertin, Cédric Févotte, and Roland Badeau. "A tempering approach for Itakura-Saito nonnegative matrix factorization.

With application to music transcription”. In Proc. of IEEE ICASSP, pages 1545-1548, Taipei, Taiwan, April 2009.
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ﬁﬁﬁ' Avoiding local minima

B Strategies for initialising the algorithm [1]
= Failure of algorithms from automatic classification
B "Simulated cooling” algorithm for IS-NMF [2]

= Parameter 5 becomes a function of the iteration index p:
B(p)
2 I N convexity area of djy

P

[1] Nancy Bertin and Roland Badeau. “Initialization, distances and local minima in audio applications of the nonnegative matrix

factorization". In Acoustics’08, Paris, France, July 2008.
[2] Nancy Bertin, Cédric Févotte, and Roland Badeau. "A tempering approach for Itakura-Saito nonnegative matrix factorization.

With application to music transcription”. In Proc. of IEEE ICASSP, pages 1545-1548, Taipei, Taiwan, April 2009.
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ﬁﬁgﬁ“ Avoiding local minima

B Strategies for initialising the algorithm [1]
= Failure of algorithms from automatic classification
B "Simulated cooling” algorithm for IS-NMF [2]
= Parameter 5 becomes a function of the iteration index p:

B(p)
i """"" convexity areaof dg
0 P

= The best transcription is not obtained by finding the lowest minimum
of the criterion, but rather by constraining the decomposition

[1] Nancy Bertin and Roland Badeau. “Initialization, distances and local minima in audio applications of the nonnegative matrix

factorization". In Acoustics’08, Paris, France, July 2008.
[2] Nancy Bertin, Cédric Févotte, and Roland Badeau. "A tempering approach for Itakura-Saito nonnegative matrix factorization.

With application to music transcription”. In Proc. of IEEE ICASSP, pages 1545-1548, Taipei, Taiwan, April 2009.
TELECOM
ParisTech
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ﬁggﬁ“ Harmonicity and spectral smoothness

® Model [1]: Vi, = Zk 1 Wik (6)hyn where wy (0) = Zm 1 €mk Pim ()

Pia(f) Pim (f)

[1] Emmanuel Vincent, Nancy Bertin, and Roland Badeau. "Adaptive harmonic spectral decomposition for multiple pitch estima-
tion". IEEE Transactions on Audio, Speech, and Language Processing, 18(3): 528- 537, March 2010. J
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ﬁggﬁ“ Harmonicity and spectral smoothness

® Model [1]: Vi, = Zk 1 Wik (6)hyn where wy (0) = Zm 1 €mk Pim ()

Pia(f) Pim (f)

B Pyn(f) is a predefined harmonic spectral pattern

[1] Emmanuel Vincent, Nancy Bertin, and Roland Badeau. "Adaptive harmonic spectral decomposition for multiple pitch estima-
tion". IEEE Transactions on Audio, Speech, and Language Processing, 18(3): 528- 537, March 2010. J
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ﬁggﬁ“ Harmonicity and spectral smoothness

® Model [1]: Vi, = Zk 1 Wik (6)hyn where wy (0) = Zm 1 €mk Pim ()

Pia(f) Pim (f)

B Pyn(f) is a predefined harmonic spectral pattern
B e and hy, are estimated by means of a multiplicative algorithm

[1] Emmanuel Vincent, Nancy Bertin, and Roland Badeau. "Adaptive harmonic spectral decomposition for multiple pitch estima-
tion". IEEE Transactions on Audio, Speech, and Language Processing, 18(3): 528- 537, March 2010. J
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ﬁggﬁ“ Temporal smoothness

B MAP estimator: C(©) = L(0®) + log(p(®)) ot ©® = {emk, hkn}

[1] Nancy Bertin, Roland Badeau, and Emmanuel Vincent. "Enforcing Harmonicity and Smoothness in Bayesian Nonnegative
Matrix Factorization Applied to Polyphonic Music Transcription". IEEE Transactions on Audio, Speech, and Language Processing,
18(3): 538-549, March 2010.

[2] Nancy Bertin, Roland Badeau, and Emmanuel Vincent. "Fast Bayesian NMF algorithms enforcing harmonicity and temporal
continuity in polyphonic music transcription®. In Proc. of IEEE WASPAA, pages 29-32, New York, USA, October 2009.
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ﬁﬁim‘l Temporal smoothness

B MAP estimator: C(©) = L(0®) + log(p(®)) ot ©® = {emk, hkn}
B Markov chain structured a priori distribution:

O—O— —©

p(H) = kl;llp(hkl) I p(hin[k(n-1))

n=2
where p(hyn|hin—1)) follows an inverse-Gamma distribution

[1] Nancy Bertin, Roland Badeau, and Emmanuel Vincent. “Enforcing Harmonicity and Smoothness in Bayesian Nonnegative
Matrix Factorization Applied to Polyphonic Music Transcription". IEEE Transactions on Audio, Speech, and Language Processing,
18(3): 538-549, March 2010.

[2] Nancy Bertin, Roland Badeau, and Emmanuel Vincent. "Fast Bayesian NMF algorithms enforcing harmonicity and temporal
continuity in polyphonic music transcription”. In Proc. of IEEE WASPAA, pages 29-32, New York, USA, October 2009.
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ﬁﬁgﬁ“ Temporal smoothness

B MAP estimator: C(©) = L(0®) + log(p(®)) ot ©® = {emk, hkn}
B Markov chain structured a priori distribution:
K N
p(H) = IT p(hk1) [T p(hkn|hk(n-1))
k=1 n=2
where p(hyn|hin—1)) follows an inverse-Gamma distribution
B SAGE algorithm [1] and multiplicative update rules [2] with = 0.5

[1] Nancy Bertin, Roland Badeau, and Emmanuel Vincent. “Enforcing Harmonicity and Smoothness in Bayesian Nonnegative
Matrix Factorization Applied to Polyphonic Music Transcription". IEEE Transactions on Audio, Speech, and Language Processing,
18(3): 538-549, March 2010.

[2] Nancy Bertin, Roland Badeau, and Emmanuel Vincent. "Fast Bayesian NMF algorithms enforcing harmonicity and temporal
continuity in polyphonic music transcription”. In Proc. of IEEE WASPAA, pages 29-32, New York, USA, October 2009.
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ﬁggﬁ“ NMF-based automatic transcription

® Algorithm [1,2] w

Estimation of
MIDI pitch

Input Time-frequency Nonnegative - MIDI
. — . — L Transcription — 5
signal representation decomposition file

Detection of the attacks

H and ends of notes

[1] Nancy Bertin, Roland Badeau, and Gaél Richard. "Blind signal decompositions for automatic transcription of polyphonic music:
NMF and K-SVD on the benchmark". In Proc. of IEEE ICASSP, volume 1, pages 65-68, Honolulu, Hawaii, USA, April 2007.

[2] Nancy Bertin, Roland Badeau, and Emmanuel Vincent. "Enforcing Harmonicity and Smoothness in Bayesian Nonnegative
Matrix Factorization Applied to Polyphonic Music Transcription”. IEEE Transactions on Audio, Speech, and Language Processing,
18(3): 538-549, March 2010.
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ﬁggﬁ“ NMF-based automatic transcription

® Algorithm [1,2] w

Estimation of
MIDI pitch

Input Time-frequency Nonnegative - MIDI
. — . — L Transcription — 5
signal representation decomposition file

Detection of the attacks

H and ends of notes

® Demo
= Original signal (Liszt): ¢
= Transcribed signal: ¢

[1] Nancy Bertin, Roland Badeau, and Gaél Richard. "Blind signal decompositions for automatic transcription of polyphonic music:
NMF and K-SVD on the benchmark". In Proc. of IEEE ICASSP, volume 1, pages 65-68, Honolulu, Hawaii, USA, April 2007.

[2] Nancy Bertin, Roland Badeau, and Emmanuel Vincent. "Enforcing Harmonicity and Smoothness in Bayesian Nonnegative
Matrix Factorization Applied to Polyphonic Music Transcription”. IEEE Transactions on Audio, Speech, and Language Processing,
18(3): 538-549, March 2010.
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AT Time- -frequency activations

‘]”LZ b Q) —|27rufq‘

Model [1]: Vg, = S°K_; Wichin(f) where hy, () = o2,

- 2
—i2mvep
1430 p=1 akn e f ‘

(a) Original spectrogram (b) Spectral form (c) Time-frequency activation

100

5]

—~ ~-20 =
N
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32 % ué.z 20
g 560 g i
! 50 :
20

[0) -80

1 2 3 0 2 4 1 15 2 25 3 35

time (seconds) frequency (kHz) time (seconds)

Jew'’s harp signal decomposed with an ARMA of order (1,1)

[1] Romain Hennequin, Roland Badeau, and Bertrand David. "NMF with time-frequency activations to model non-stationary audio
events". IEEE Transactions on Audio, Speech, and Language Processing, vol. 19, no. 4, pp. 744-753, May 2011. J
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ﬁﬁim‘l Fundamental frequencies variations

K N (Vo)
Model [1]: Vi, = kz Wik (10,) hin Where wy (12) = hZ ang(r —hvQ)
=) -1

Original spectrogram Temporal activations
Decomposition of an excerpt of J.S. Bach’s first prelude

[1] Romain Hennequin, Roland Badeau, and Bertrand David. "Time-dependent parametric and harmonic templates in nonnegativej

matrix factorization”. In Proc. of DAFX, Graz, Austria, September 2010.
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ﬁggﬁ“ Score-based informed source separation

®m Algorithm [1]

v
\

i

I 4
I\
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notes MIDI
T

notes MIDI

notes MIDI

temps (trames) temps (trames) temps (trames)

B
=

3
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% s 0 T o0 20
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[1] Romain Hennequin, Bertrand David, and Roland Badeau. "Score informed audio source separation using a parametric model
of non-negative spectrogram”. In Proc. of IEEE ICASSP, Prague, Czech Republic, May 2011.
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ﬁggﬁ“ Score-based informed source separation

®m Algorithm [1]

v
\

notes MIDI

T

notes MIDI
T

temps (trames) temps (trames) temps (trames)

%0 B w0
s (econdes)

B Round Midnight (Thelonious Monk): ¢ <@ "fJ ¢

[1] Romain Hennequin, Bertrand David, and Roland Badeau. "Score informed audio source separation using a parametric model
of non-negative spectrogram”. In Proc. of IEEE ICASSP, Prague, Czech Republic, May 2011.
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ﬁggﬁ“ Conclusions

® Nonstationary signal modelling

Q>

Wednesday, February 13, 2013
TELECOM
Tech
Page 37 /37 C4DM Seminar Roland Badeau

At |




ﬁggﬁ“ Conclusions

B Nonstationary signal modelling

= Adaptive high resolution methods
= Nonnegative decompositions enforcing harmonicity and
smoothness
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ﬁﬁmi Conclusions

B Nonstationary signal modelling

= Adaptive high resolution methods
= Nonnegative decompositions enforcing harmonicity and
smoothness

B Applications to audio and music signals

= Source separation, audio coding,
= Pitch and tempo estimation, automatic transcription
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ﬁﬁgﬁ“ Conclusions

B Nonstationary signal modelling

= Adaptive high resolution methods
= Nonnegative decompositions enforcing harmonicity and
smoothness

B Applications to audio and music signals

= Source separation, audio coding,
= Pitch and tempo estimation, automatic transcription

B Qutlooks

= |s it possible to merge HR methods and NMF in some way?
= .. to be continued in an upcoming seminar (March 6)
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