Probabilistic modelling of time-frequency representations with application to music signals

Roland Badeau
roland.badeau@eeecs.qmul.ac.uk
C4DM, Wednesday, March 6, 2013
Introduction

- NMF applied to time-frequency distributions:
 - is a powerful tool for modelling music signals
 - has many applications in audio signal processing

- Most probabilistic models for NMF:
 - permit to exploit some a priori knowledge
 - do not take phase into account
 - assume that all time-frequency bins are independent

- The proposed HR-NMF model:
 - takes phases and local correlations into account
 - achieves high spectral resolution
NMF applied to time-frequency distributions:
 - is a powerful tool for modelling music signals
 - has many applications in audio signal processing

Most probabilistic models for NMF:
 + permit to exploit some a priori knowledge
 - do not take phase into account
 - assume that all time-frequency bins are independent

The proposed HR-NMF model:
 - takes phases and local correlations into account
 - achieves high spectral resolution
Introduction

- NMF applied to time-frequency distributions:
 - is a powerful tool for modelling music signals
 - has many applications in audio signal processing
- Most probabilistic models for NMF:
 + permit to exploit some a priori knowledge
 - do not take phase into account
 - assume that all time-frequency bins are independent
- The proposed HR-NMF model:
 - takes phases and local correlations into account
 - achieves high spectral resolution
Advantages and drawbacks of NMF probabilistic models

Choosing an appropriate TF representation

Modelling phases and correlations in the TF domain
 - HR-NMF model
 - Algorithms

Preliminary results
 - Audio source separation
 - Audio inpainting

Conclusions
Advantages and drawbacks of NMF probabilistic models

Choosing an appropriate TF representation

Modelling phases and correlations in the TF domain
 - HR-NMF model
 - Algorithms

Preliminary results
 - Audio source separation
 - Audio inpainting

Conclusions
Outline

- Advantages and drawbacks of NMF probabilistic models
- Choosing an appropriate TF representation
- Modelling phases and correlations in the TF domain
 - HR-NMF model
 - Algorithms
- Preliminary results
 - Audio source separation
 - Audio inpainting
- Conclusions
Outline

- Advantages and drawbacks of NMF probabilistic models
- Choosing an appropriate TF representation
- Modelling phases and correlations in the TF domain
 - HR-NMF model
 - Algorithms
- Preliminary results
 - Audio source separation
 - Audio inpainting
- Conclusions
Outline

- Advantages and drawbacks of NMF probabilistic models
- Choosing an appropriate TF representation
- Modelling phases and correlations in the TF domain
 - HR-NMF model
 - Algorithms
- Preliminary results
 - Audio source separation
 - Audio inpainting
- Conclusions
Non-negative Matrix Factorization (NMF)

Musical score
Non-negative Matrix Factorization (NMF)

Musical score

Spectrogram V
Non-negative Matrix Factorization (NMF)

Musical score

Temporal activations H

Spectral templates W

Spectrogram V
Non-negative Matrix Factorization (NMF)

- Factorization of a matrix $V \in \mathbb{R}^{F \times T}$ as a product $V \approx WH$
- Rank reduction: $W \in \mathbb{R}^{F \times K}_{+}$ and $H \in \mathbb{R}^{K \times T}_{+}$ where $K < \min(F, T)$
- Usual applications:
 - Image analysis, data mining, spectroscopy, finance, etc.
 - Audio signal processing:
 - Multi-pitch estimation, onset detection
 - Automatic music transcription
 - Musical instrument recognition
 - Source separation
 - Audio inpainting
Non-negative Matrix Factorization (NMF)

- Factorization of a matrix $V \in \mathbb{R}_{+}^{F \times T}$ as a product $V \approx WH$
- Rank reduction: $W \in \mathbb{R}_{+}^{F \times K}$ and $H \in \mathbb{R}_{+}^{K \times T}$ where $K < \min(F, T)$
- Usual applications:
 - Image analysis, data mining, spectroscopy, finance, etc.
 - Audio signal processing:
 - Multi-pitch estimation, onset detection
 - Automatic music transcription
 - Musical instrument recognition
 - Source separation
 - Audio inpainting
Non-negative Matrix Factorization (NMF)

- Factorization of a matrix $V \in \mathbb{R}^{F \times T}_+$ as a product $V \approx WH$
- Rank reduction: $W \in \mathbb{R}^{F \times K}_+$ and $H \in \mathbb{R}^{K \times T}_+$ where $K < \min(F, T)$
- Usual applications:
 - Image analysis, data mining, spectroscopy, finance, etc.
 - Audio signal processing:
 - Multi-pitch estimation, onset detection
 - Automatic music transcription
 - Musical instrument recognition
 - Source separation
 - Audio inpainting
Non-negative Matrix Factorization (NMF)

- Factorization of a matrix $\mathbf{V} \in \mathbb{R}^{F \times T}_+$ as a product $\mathbf{V} \approx \mathbf{W} \mathbf{H}$
- Rank reduction: $\mathbf{W} \in \mathbb{R}^{F \times K}_+$ and $\mathbf{H} \in \mathbb{R}^{K \times T}_+$ where $K < \min(F, T)$
- Usual applications:
 - Image analysis, data mining, spectroscopy, finance, etc.
 - Audio signal processing:
 - Multi-pitch estimation, onset detection
 - Automatic music transcription
 - Musical instrument recognition
 - Source separation
 - Audio inpainting
NMF probabilistic models

- Mixture models with (hidden) latent variables
 - can exploit a priori knowledge
 - can use well-known statistical inference techniques

- Probabilistic models of time-frequency distributions:
 - Additive Gaussian noise [Schmidt 2008],
 - Probabilistic Latent Component Analysis [Smaragdis 2006],
 - Mixture of Poisson components [Virtanen 2008],
 - Mixture of Gaussian components [Févotte 2009],
 - Only model taking the existence of phase into account, and justifying the use of Wiener filtering for separating the components
NMF probabilistic models

- Mixture models with (hidden) latent variables
 + can exploit a priori knowledge
 + can use well-known statistical inference techniques
- Probabilistic models of time-frequency distributions:
 - Additive Gaussian noise [Schmidt 2008],
 - Probabilistic Latent Component Analysis [Smaragdis 2006],
 - Mixture of Poisson components [Virtanen 2008],
 - Mixture of Gaussian components [Févotte 2009],
 + Only model taking the existence of phase into account, and justifying the use of Wiener filtering for separating the components
Gaussian model (IS-NMF) [Févotte 2009]

\[C^{(k)}_{ft} \sim \mathcal{N}(0, w_{fk} h_{kt}) \]

all time-frequency bins are independent

\[\hat{V}^{(k)}_{ft} = w_{fk} h_{kt} \]
Gaussian model (IS-NMF) [Févotte 2009]

\[c_{ft}^{(k)} \sim \mathcal{N}(0, w_{fk}) \]

\[\hat{V}_{ft}^{(k)} = w_{fk} h_{kt} \]

\[X_{ft} = \sum_{k=1}^{K} c_{ft}^{(k)} \sim \mathcal{N}(0, W) \]

\[\hat{V} = WH \]

all time-frequency bins are independent
Gaussian model (IS-NMF) [Févotte 2009]

\[
\begin{align*}
C^{(k)} & \sim \mathcal{N}(0, W_{fk}) \\
C_{ft}^{(k)} & \sim \mathcal{N}(0, W_{fk}) \\
X_{ft} &= \sum_{k=1}^{K} C_{ft}^{(k)} \\
X & \sim \mathcal{N}(0, W_{fk}) \\
\hat{V} &= WH \\
\hat{V}_{ft} &= \sum_{k=1}^{K} \hat{V}_{ft}^{(k)} \\
\hat{V}_{ft}^{(k)} &= w_{fk} h_{kt} \\
\hat{V} & \sim \mathcal{N}(0, 0, 0) \\
\max L(X) & \iff \min D_{IS}(V = |X|^2 |\hat{V})
\end{align*}
\]
A priori knowledge in probabilistic models

- Various kinds of a priori knowledge:
 - Harmonicity [Virtanen 2008, Vincent 2008...]
 - Smoothness of spectral envelopes [Schmidt 2008, Vincent 2008...]
 - Smoothness of temporal activations [Virtanen 2008, Févotte 2009...]
 - Spectral or temporal sparsity [Schmidt 2008, Smaragdis 2009...]

- Standard approaches:
 - Parametrisation of \(W \) and / or \(H \)
 - Use of a predefined dictionary \(W \) (parametric or non-parametric, learned beforehand)
 - Bayesian methods (a priori distribution of the parameters)
A priori knowledge in probabilistic models

Various kinds of a priori knowledge:
- Harmonicity [Virtanen 2008, Vincent 2008...]
- Smoothness of spectral envelopes [Schmidt 2008, Vincent 2008...]
- Smoothness of temporal activations [Virtanen 2008, Févotte 2009...]
- Spectral or temporal sparsity [Schmidt 2008, Smaragdis 2009...]

Standard approaches:
- Parametrisation of W and / or H
- Use of a predefined dictionary W (parametric or non-parametric, learned beforehand)
- Bayesian methods (a priori distribution of the parameters)
The low-level model raises several issues:

- Phase is not (or insufficiently) taken into account
- Sinusoids are not modelled as such (they cannot be properly separated by Wiener filtering)
- All time-frequency bins are assumed independent
The low-level model raises several issues:

- Phase is not (or insufficiently) taken into account
- Sinusoids are not modelled as such (they cannot be properly separated by Wiener filtering)
- All time-frequency bins are assumed independent
The low-level model raises several issues:

- Phase is not (or insufficiently) taken into account
- Sinusoids are not modelled as such (they cannot be properly separated by Wiener filtering)
- All time-frequency bins are assumed independent
The low-level model raises several issues:

- Phase is not (or insufficiently) taken into account
- Sinusoids are not modelled as such (they cannot be properly separated by Wiener filtering)
- All time-frequency bins are assumed independent
Outline

- Advantages and drawbacks of NMF probabilistic models
- **Choosing an appropriate TF representation**
 - Modelling phases and correlations in the TF domain
 - HR-NMF model
 - Algorithms
- Preliminary results
 - Audio source separation
 - Audio inpainting
- Conclusions
Preservation of whiteness (PW)
Preservation of whiteness (PW)

White noise

Filter bank

Frequency

Time

2D white noise
Perfect reconstruction (PR)

Input signal

Filter bank

Analysis

Frequency

Time-frequency representation

Time
Perfect reconstruction (PR)

Input signal → Filter bank → Frequency → Analysis

Time-frequency representation

Synthesis → Time → Filter bank → Input signal
Solution of (PW) + (PR)

- Critically sampled paraunitary filter banks: \(R(z) = \tilde{E}(z) \)

- "Decorrelating" effect onto a stationary process
Solution of (PW) + (PR)

- Critically sampled paraunitary filter banks: $R(z) = \tilde{E}(z)$

- "Decorrelating" effect onto a stationary process
Outline

- Advantages and drawbacks of NMF probabilistic models
- Choosing an appropriate TF representation
- Modelling phases and correlations in the TF domain
 - HR-NMF model
 - Algorithms
- Preliminary results
 - Audio source separation
 - Audio inpainting
- Conclusions
Graphical model of IS-NMF ($X \sim \mathcal{N}(0, WH)$)
Autoregressive filtering of the channels

\[f * a^{(k)}_F \]
\[f * a^{(k)}_{F-1} \]
\[\vdots \]
\[f * a^{(k)}_2 \]
\[f * a^{(k)}_1 \]
Graphical model of HR-NMF (AR1)
Graphical model of HR-NMF (AR2)
HR-NMF model

- Frequency bands are independent and non-stationary
- Particular cases:
 - IS-NMF model
 - Autoregressive process
 - Exponential Sinusoidal Model (ESM)
HR-NMF model

- Frequency bands are independent and non-stationary
- Particular cases:
 - IS-NMF model
 - Autoregressive process
 - Exponential Sinusoidal Model (ESM)
HR-NMF model

- Frequency bands are independent and non-stationary
- Particular cases:
 - IS-NMF model
 - Autoregressive process
 - Exponential Sinusoidal Model (ESM)
HR-NMF model

- Frequency bands are independent and non-stationary
- Particular cases:
 - IS-NMF model
 - Autoregressive process
 - Exponential Sinusoidal Model (ESM)
Outline

- Advantages and drawbacks of NMF probabilistic models
- Choosing an appropriate TF representation
- Modelling phases and correlations in the TF domain
 - HR-NMF model
 - Algorithms
- Preliminary results
 - Audio source separation
 - Audio inpainting
- Conclusions
Maximum likelihood estimation

- Expectation-Maximization (EM) algorithm:
 - E-step:
 - Kalman filtering with smoothing (forward-backward)
 - Complexity: \(O(FTK^3P^3) \)
 - M-step:
 - Iterative algorithm which switches between \((W, a)\) and \(H\)
 - Complexity: \(O(FTKP^2) \)

- Processing realistic data requires faster algorithms:
 - Improve the convergence speed
 - Reduce the computational complexity

Maximum likelihood estimation

- Expectation-Maximization (EM) algorithm:
 - **E-step:**
 - Kalman filtering with smoothing (forward-backward)
 - Complexity: $O(FTK^3P^3)$
 - **M-step:**
 - Iterative algorithm which switches between (W, a) and H
 - Complexity: $O(FTKP^2)$

- Processing realistic data requires faster algorithms:
 - Improve the convergence speed
 - Reduce the computational complexity

Maximum likelihood estimation

- Expectation-Maximization (EM) algorithm:
 - E-step:
 - Kalman filtering with smoothing (forward-backward)
 - Complexity: $O(FTK^3P^3)$
 - M-step:
 - Iterative algorithm which switches between (W, a) and H
 - Complexity: $O(FTKP^2)$

- Processing realistic data requires faster algorithms:
 - Improve the convergence speed
 - Reduce the computational complexity

Maximum likelihood estimation

- Expectation-Maximization (EM) algorithm:
 - E-step:
 - Kalman filtering with smoothing (forward-backward)
 - Complexity: $O(FTK^3P^3)$
 - M-step:
 - Iterative algorithm which switches between (W, a) and H
 - Complexity: $O(FTKP^2)$

- Processing realistic data requires faster algorithms:
 - Improve the convergence speed
 - Reduce the computational complexity

EM as Minorize-Maximize (MM) method

\[L(\theta) = \ln(p(x; \theta)) \]
EM as Minorize-Maximize (MM) method

\[Q(\theta, \theta_0) = \int \ln(p(x, c; \theta))p(c|x; \theta_0)dc \]
\[M(\theta, \theta_0) = L(\theta_0) + Q(\theta, \theta_0) - Q(\theta_0, \theta_0) \]
EM as Minorize-Maximize (MM) method

\[\theta_1 = \arg \max_{\theta} M(\theta, \theta_0) \]
EM as Minorize-Maximize (MM) method

\[Q(\theta, \theta_1) = \int \ln(p(x, c; \theta)) p(c|x; \theta_1) \, dc \]
\[M(\theta, \theta_1) = L(\theta_1) + Q(\theta, \theta_1) - Q(\theta_1, \theta_1) \]
EM as Minorize-Maximize (MM) method

\[
\theta_2 = \operatorname{argmax}_\theta M(\theta, \theta_1)
\]
Computing the gradient of L:

\[
Q(\theta, \theta_0) = \int \ln(p(x, c; \theta))p(c|\theta_0)\,dc \\
M(\theta, \theta_0) = L(\theta_0) + Q(\theta, \theta_0) - Q(\theta_0, \theta_0)
\]
Computing the gradient of L

\[\nabla L(\theta_0) = \nabla Q(\theta_0, \theta_0) \]

\[Q(\theta, \theta_0) = \int \ln(p(x, c; \theta)) p(c|x; \theta_0) dc \]

\[M(\theta, \theta_0) = L(\theta_0) + Q(\theta, \theta_0) - Q(\theta_0, \theta_0) \]
Multiplicative update rules

- **Purpose:** improve the convergence rate of EM
- **Observation:** the E-step permits to efficiently compute the gradient of the log-likelihood function
- **Principle:** replace the M-step by any gradient-based optimizer
- **New update rules parametrized by** $\varepsilon \geq 0$, which generalize both IS-NMF multiplicative updates ($\varepsilon = 0$) and EM ($\varepsilon = 1$)
- **Enhanced convergence speed obtained with a "simulated cooling" strategy (make ε decrease over iterations)**

Multiplicative update rules

- **Purpose:** improve the convergence rate of EM
- **Observation:** the E-step permits to efficiently compute the gradient of the log-likelihood function
- **Principle:** replace the M-step by any gradient-based optimizer
- **New update rules** parametrized by $\epsilon \geq 0$, which generalize both IS-NMF multiplicative updates ($\epsilon = 0$) and EM ($\epsilon = 1$)
- Enhanced convergence speed obtained with a "simulated cooling" strategy (make ϵ decrease over iterations)

Multiplicative update rules

- Purpose: improve the convergence rate of EM
- Observation: the E-step permits to efficiently compute the gradient of the log-likelihood function
- Principle: replace the M-step by any gradient-based optimizer
 - New update rules parametrized by $\varepsilon \geq 0$, which generalize both IS-NMF multiplicative updates ($\varepsilon = 0$) and EM ($\varepsilon = 1$)
 - Enhanced convergence speed obtained with a "simulated cooling" strategy (make ε decrease over iterations)

Multiplicative update rules

- Purpose: improve the convergence rate of EM
- Observation: the E-step permits to efficiently compute the gradient of the log-likelihood function
- Principle: replace the M-step by any gradient-based optimizer
- New update rules parametrized by $\varepsilon \geq 0$, which generalize both IS-NMF multiplicative updates ($\varepsilon = 0$) and EM ($\varepsilon = 1$)
- Enhanced convergence speed obtained with a "simulated cooling" strategy (make ε decrease over iterations)

Multiplicative update rules

- **Purpose:** improve the convergence rate of EM
- **Observation:** the E-step permits to efficiently compute the gradient of the log-likelihood function
- **Principle:** replace the M-step by any gradient-based optimizer
- **New update rules** parametrized by $\varepsilon \geq 0$, which generalize both IS-NMF multiplicative updates ($\varepsilon = 0$) and EM ($\varepsilon = 1$)
- **Enhanced convergence speed** obtained with a "simulated cooling" strategy (make ε decrease over iterations)

Prior distribution of latent variables in band f ($P = 1$, $K = 2$)
Joint distribution of complete data in band f ($P = 1$, $K = 2$)
Variational Bayesian EM algorithm

Posterior distribution of latent variables in band \(F \) \((P = 1, K = 2)\)
Variational Bayesian EM algorithm

- Structured mean field approximation in band f ($P = 1$, $K = 2$)

\[
\begin{align*}
\cdots & \rightarrow C_{f,t-1}^{(1)} & \rightarrow C_{f,t}^{(1)} & \rightarrow C_{f,t+1}^{(1)} & \rightarrow \cdots \\
\cdots & \rightarrow C_{f,t-1}^{(2)} & \rightarrow C_{f,t}^{(2)} & \rightarrow C_{f,t+1}^{(2)} & \rightarrow \cdots
\end{align*}
\]
Variational Bayesian EM algorithm

- Mean field approximation in band f ($P = 1$, $K = 2$)

$$
\cdots C_{f,t-1}^{(1)} \quad C_{f,t}^{(1)} \quad C_{f,t+1}^{(1)} \quad \cdots
$$

$$
\cdots C_{f,t-1}^{(2)} \quad C_{f,t}^{(2)} \quad C_{f,t+1}^{(2)} \quad \cdots
$$
Variational Bayesian EM algorithm

- **Purpose:** reduce the computational complexity of EM
- **Principle:** the posterior distribution of the latent variables is approximated by a factorized distribution
- **Complexity reduction:**
 - Exact E-step: $O(FTK^3(1 + P)^3)$
 - Structured mean field (no dependency over k): $O(FTK(1 + P)^3)$
 - Mean field (no dependency over k and t): $O(FTK(1 + P))$
- **Performance loss:**
 - The increase of log-likelihood function is no longer guaranteed
 - In practice, no perceptual difference

Variational Bayesian EM algorithm

- **Purpose**: reduce the computational complexity of EM
- **Principle**: the posterior distribution of the latent variables is approximated by a factorized distribution

Complexity reduction:
- Exact E-step: $O(FTK^3(1 + P)^3)$
- Structured mean field (no dependency over k): $O(FTK(1 + P)^3)$
- Mean field (no dependency over k and t): $O(FTK(1 + P))$

Performance loss:
- The increase of log-likelihood function is no longer guaranteed
- In practice, no perceptual difference

Variational Bayesian EM algorithm

- **Purpose:** reduce the computational complexity of EM
- **Principle:** the posterior distribution of the latent variables is approximated by a factorized distribution
- **Complexity reduction:**
 - Exact E-step: $O(FTK^3(1 + P)^3)$
 - Structured mean field (no dependency over k): $O(FTK(1 + P)^3)$
 - Mean field (no dependency over k and t): $O(FTK(1 + P))$

- **Performance loss:**
 - The increase of log-likelihood function is no longer guaranteed
 - In practice, no perceptual difference

Variational Bayesian EM algorithm

- **Purpose:** reduce the computational complexity of EM
- **Principle:** the posterior distribution of the latent variables is approximated by a factorized distribution
- **Complexity reduction:**
 - Exact E-step: $O(FTK^3(1 + P)^3)$
 - Structured mean field (no dependency over k): $O(FTK(1 + P)^3)$
 - Mean field (no dependency over k and t): $O(FTK(1 + P))$
- **Performance loss:**
 - The increase of log-likelihood function is no longer guaranteed
 - In practice, no perceptual difference

Outline

- Advantages and drawbacks of NMF probabilistic models
- Choosing an appropriate TF representation
- Modelling phases and correlations in the TF domain
 - HR-NMF model
 - Algorithms
- Preliminary results
 - Audio source separation
 - Audio inpainting
- Conclusions
Application to piano tones

Spectrogram of the input piano sound (C4 + C3)
Source separation

Separation of two sinusoidal components

(a) First component (C4)

(b) Second component (C3)

IS-NMF:

HR-NMF:
Audio inpainting

Spectrogram of the input piano sound (C4 + C3)
Audio inpainting

Masked spectrogram of the input piano sound

C4+C3:
C4 alone:
IS-NMF:
HR-NMF:
Audio inpainting

Recovery of the full C4 piano tone

C4+C3:
C4 alone:
IS-NMF:
HR-NMF:
Outline

- Advantages and drawbacks of NMF probabilistic models
- Choosing an appropriate TF representation
- Modelling phases and correlations in the TF domain
 - HR-NMF model
 - Algorithms
- Preliminary results
 - Audio source separation
 - Audio inpainting
- Conclusions
Contributions

- Critically sampled paraunitary filter banks satisfy both PW and PR
- HR-NMF time-frequency model:
 - models phases and local correlations in each frequency band
 - generalizes IS-NMF, mixtures of AR processes, and ESM models
- Algorithms:
 - EM algorithm: too computationally demanding
 - Multiplicative update rules: improved convergence speed
 - Variational Bayesian EM algorithm: lower computational complexity
- Preliminary results:
 - Separation of overlapping sinusoids without perceptible artefacts
 - Restoration of missing observations without perceptible artefacts
Contributions

- Critically sampled paraunitary filter banks satisfy both PW and PR
- HR-NMF time-frequency model:
 - models phases and local correlations in each frequency band
 - generalizes IS-NMF, mixtures of AR processes, and ESM models

- Algorithms:
 - EM algorithm: too computationally demanding
 - Multiplicative update rules: improved convergence speed
 - Variational Bayesian EM algorithm: lower computational complexity

- Preliminary results:
 - Separation of overlapping sinusoids without perceptible artefacts
 - Restoration of missing observations without perceptible artefacts
Contributions

- Critically sampled paraunitary filter banks satisfy both PW and PR
- HR-NMF time-frequency model:
 - models phases and local correlations in each frequency band
 - generalizes IS-NMF, mixtures of AR processes, and ESM models
- Algorithms:
 - EM algorithm: too computationally demanding
 - Multiplicative update rules: improved convergence speed
 - Variational Bayesian EM algorithm: lower computational complexity
- Preliminary results:
 - Separation of overlapping sinusoids without perceptible artefacts
 - Restoration of missing observations without perceptible artefacts
Contributions

- Critically sampled paraunitary filter banks satisfy both PW and PR
- HR-NMF time-frequency model:
 - models phases and local correlations in each frequency band
 - generalizes IS-NMF, mixtures of AR processes, and ESM models
- Algorithms:
 - EM algorithm: too computationally demanding
 - Multiplicative update rules: improved convergence speed
 - Variational Bayesian EM algorithm: lower computational complexity
- Preliminary results:
 - Separation of overlapping sinusoids without perceptible artefacts
 - Restoration of missing observations without perceptible artefacts
Outlooks

- Design consistent TF representation and TF probabilistic model
- Extensions of HR-NMF:
 - Extension to multichannel signals (e.g. stereo)
 - Correlations between frequency bands (attacks, vibratos, chirps)
 - Correlations between components (sympathetic modes)
 - Replace NMF by other parametric models, or priors enforcing harmonicity, sparsity, smoothness...
- Algorithms:
 - Variational Bayesian methods
 - Markov Chain Monte Carlo (MCMC)
 - Belief propagation methods (message passing algorithm)
- Applications:
 - Source coding, source separation, audio inpainting...
Outlooks

- Design consistent TF representation and TF probabilistic model
- Extensions of HR-NMF:
 - Extension to multichannel signals (e.g. stereo)
 - Correlations between frequency bands (→ attacks, vibratos, chirps)
 - Correlations between components (→ sympathetic modes)
 - Replace NMF by other parametric models, or priors enforcing harmonicity, sparsity, smoothness...

- Algorithms:
 - Variational Bayesian methods
 - Markov Chain Monte Carlo (MCMC)
 - Belief propagation methods (message passing algorithm)

- Applications:
 - Source coding, source separation, audio inpainting...
Outlooks

- Design consistent TF representation and TF probabilistic model
- Extensions of HR-NMF:
 - Extension to multichannel signals (e.g. stereo)
 - Correlations between frequency bands (attacks, vibratos, chirps)
 - Correlations between components (sympathetic modes)
 - Replace NMF by other parametric models, or priors enforcing harmonicity, sparsity, smoothness...
- Algorithms:
 - Variational Bayesian methods
 - Markov Chain Monte Carlo (MCMC)
 - Belief propagation methods (message passing algorithm)
- Applications:
 - Source coding, source separation, audio inpainting...
Outlooks

- Design consistent TF representation and TF probabilistic model
- Extensions of HR-NMF:
 - Extension to multichannel signals (e.g. stereo)
 - Correlations between frequency bands (→ attacks, vibratos, chirps)
 - Correlations between components (→ sympathetic modes)
 - Replace NMF by other parametric models, or priors enforcing harmonicity, sparsity, smoothness...
- Algorithms:
 - Variational Bayesian methods
 - Markov Chain Monte Carlo (MCMC)
 - Belief propagation methods (message passing algorithm)
- Applications:
 - Source coding, source separation, audio inpainting...