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ﬁggﬁ“ Introduction

B NMF applied to time-frequency distributions:

= is a powerful tool for modelling music signals
= has many applications in audio signal processing
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ﬁﬁim‘l Introduction

B NMF applied to time-frequency distributions:

= is a powerful tool for modelling music signals
= has many applications in audio signal processing

B Most probabilistic models for NMF:

+ permit to exploit some a priori knowledge
- do not take phase into account
- assume that all time-frequency bins are independent
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ﬁﬁgﬁ“ Introduction

B NMF applied to time-frequency distributions:

= is a powerful tool for modelling music signals

= has many applications in audio signal processing
B Most probabilistic models for NMF:

+ permit to exploit some a priori knowledge

- do not take phase into account

- assume that all time-frequency bins are independent
B The proposed HR-NMF model:

= takes phases and local correlations into account
= achieves high spectral resolution
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ﬁggﬁ“ Outline

B Advantages and drawbacks of NMF probabilistic models
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%8 outiine
B Advantages and drawbacks of NMF probabilistic models
B Choosing an appropriate TF representation
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ﬁggﬁ“ Outline

B Advantages and drawbacks of NMF probabilistic models
® Choosing an appropriate TF representation

B Modelling phases and correlations in the TF domain

= HR-NMF model
= Algorithms
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ﬁﬁmi Outline

B Advantages and drawbacks of NMF probabilistic models

B Choosing an appropriate TF representation
B Modelling phases and correlations in the TF domain

= HR-NMF model
= Algorithms

B Preliminary results

= Audio source separation
= Audio inpainting
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ﬁﬁmi Outline

B Advantages and drawbacks of NMF probabilistic models

B Choosing an appropriate TF representation

B Modelling phases and correlations in the TF domain

= HR-NMF model
= Algorithms

B Preliminary results
= Audio source separation
= Audio inpainting

B Conclusions
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iﬁiml Non-negative Matrix Factorization (NMF)
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iﬁiml Non-negative Matrix Factorization (NMF)
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iggﬁ“ Non-negative Matrix Factorization (NMF)
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iggﬁ“ Non-negative Matrix Factorization (NMF)

 Factorization of a matrix V € R;,*T as a product V ~ W H
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iggﬁ“ Non-negative Matrix Factorization (NMF)

® Factorization of a matrix V € R;*" as a product V ~ W H
® Rank reduction: W € RT*¥ and H € R *T where K < min(F,T)
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iggﬁ“ Non-negative Matrix Factorization (NMF)

® Factorization of a matrix V € R;*" as a product V ~ W H

® Rank reduction: W € RT*¥ and H € R *T where K < min(F,T)
® Usual applications:
= Image analysis, data mining, spectroscopy, finance, etc.
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iﬁﬁ' Non-negative Matrix Factorization (NMF)

® Factorization of a matrix V € R;*" as a product V ~ W H

® Rank reduction: W € RE*€ and H € RX*T where K < min(F, T)

® Usual applications:

= Image analysis, data mining, spectroscopy, finance, etc.
= Audio signal processing:

Multi-pitch estimation, onset detection

Automatic music transcription

— Musical instrument recognition

Source separation

Audio inpainting
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ﬁggﬁ“ NMF probabilistic models

B Mixture models with (hidden) latent variables

+ can exploit a priori knowledge
+ can use well-known statistical inference techniques
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ﬁﬁim‘l NMF probabilistic models

B Mixture models with (hidden) latent variables
+ can exploit a priori knowledge
+ can use well-known statistical inference techniques
B Probabilistic models of time-frequency distributions:
= Additive Gaussian noise [Schmidt 2008],
= Probabilistic Latent Component Analysis [Smaragdis 2006],

= Mixture of Poisson components [Virtanen 2008],
= Mixture of Gaussian components [Févotte 2009],

+ Only model taking the existence of phase into account, and justifying
the use of Wiener filtering for separating the components
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ﬁggﬁ“ Gaussian model (IS-NMF)  [Févotte 2009]
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ﬁggﬁ“ Gaussian model (IS-NMF)  [Févotte 2009]
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ﬁggﬁ“ Gaussian model (IS-NMF)  [Févotte 2009]
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ﬁggﬁ“A priori knowledge in probabilistic models

B Various kinds of a priori knowledge:
= Harmonicity [Virtanen 2008, Vincent 2008. ..]
= Smoothness of spectral envelopes [Schmidt 2008, Vincent 2008.. .]
= Smoothness of temporal activations [Virtanen 2008, Févotte 2009. ..]
= Spectral or temporal sparsity [Schmidt 2008, Smaragdis 20009.. .]
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ﬁﬁmiA priori knowledge in probabilistic models

B Various kinds of a priori knowledge:
= Harmonicity [Virtanen 2008, Vincent 2008. ..]
= Smoothness of spectral envelopes [Schmidt 2008, Vincent 2008.. .]
= Smoothness of temporal activations [Virtanen 2008, Févotte 2009...]
= Spectral or temporal sparsity [Schmidt 2008, Smaragdis 2009. .. ]

B Standard approaches:

= Parametrisation of W and / or H

= Use of a predefined dictionary W (parametric or non-parametric,
learned beforehand)

= Bayesian methods (a priori distribution of the parameters)
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ﬁggﬁ“ Analysis levels
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ﬁggﬁ“ Analysis levels
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ﬁggﬁ“ Analysis levels
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ﬁﬁmi Analysis levels

. | Probabilistic model .
Time-frequency | : . ; A priori
o —— of time-frequency ——
distribution 1 R z knowledge
5 distribution :
Transformation @ Low-level model @ High-level model
of the data ‘ ‘

B The low-level model raises several issues:

= Phase is not (or insufficiently) taken into account
= Sinusoids are not modelled as such (they cannot be properly

separated by Wiener filtering)
= All time-frequency bins are assumed independent
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ﬁggﬁ“ Outline

B Advantages and drawbacks of NMF probabilistic models

B Choosing an appropriate TF representation
|
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ﬁggﬁ“ Preservation of whiteness (PW)
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ﬁggﬁ“ Preservation of whiteness (PW)
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ﬁggﬁ“ Perfect reconstruction (PR)
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ﬁggﬁ“ Perfect reconstruction (PR)
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i H 8 soiution of (PW) + (PR)
® Critically sampled paraunitary filter banks: R(z) = E(z)
Frequency

— DFT (complex Gaussian processes)
— MDCT (real Gaussian processes)
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i H 8 soiution of (PW) + (PR)
® Critically sampled paraunitary filter banks: R(z) = E(z)
Frequency

— DFT (complex Gaussian processes)
— MDCT (real Gaussian processes)

m "Decorrelating” effect onto a stationary process
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ﬁggﬁ“ Outline

B Advantages and drawbacks of NMF probabilistic models

® Choosing an appropriate TF representation
B Modelling phases and correlations in the TF domain
= HR-NMF model
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ﬁggﬁ“Graphical model of IS-NMF ( X ~ A/(0, WH))
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ﬁggﬁ“ Autoregressive filtering of the channels
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ﬁggﬁ“ Graphical model of HR-NMF (AR1)
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ﬁggﬁ“ Graphical model of HR-NMF (AR2)
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i % & 90 HR-NMF model
B Frequency bands are independent and non-stationary

25NS

C4DM Seminar Roland Badeau

TELEEOM

[~ i |



&8 T HR-NME model

B Frequency bands are independent and non-stationary
B Particular cases:
= IS-NMF model
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&8 T HR-NME model

B Frequency bands are independent and non-stationary
B Particular cases:

= |S-NMF model
= Autoregressive process

CLLLLLLLL

TELEEOM

[~ i |

C4DM Seminar Roland Badeau




&8 T HR-NME model

B Frequency bands are independent and non-stationary
B Particular cases:

= |S-NMF model
= Autoregressive process

LT

= Exponential Sinusoidal Model (ESM)
Pt
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ﬁggﬁ“ Outline

B Advantages and drawbacks of NMF probabilistic models
® Choosing an appropriate TF representation

B Modelling phases and correlations in the TF domain

= HR-NMF model
= Algorithms
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28 T Maximum likelihood estimation

B Expectation-Maximization (EM) algorithm:

[1] Roland Badeau. "Gaussian modelling of mixtures of non-stationary signals in the time-frequency domain (HR-NMF)". In IEEE
Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New York, USA, October 2011.
Tech
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28 T Maximum likelihood estimation

B Expectation-Maximization (EM) algorithm:
= E-step:
— Kalman filtering with smoothing (forward-backward)
— Complexity: O(FTK?3P?)

[1] Roland Badeau. "Gaussian modelling of mixtures of non-stationary signals in the time-frequency domain (HR-NMF)". In IEEE
Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New York, USA, October 2011.
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28 T Maximum likelihood estimation

B Expectation-Maximization (EM) algorithm:
= E-step:
— Kalman filtering with smoothing (forward-backward)
— Complexity: O(FTK?3P?)
= M-step:
— lterative algorithm which switches between (W, a) and H
— Complexity: O(FTKP?)

[1] Roland Badeau. "Gaussian modelling of mixtures of non-stationary signals in the time-frequency domain (HR-NMF)". In IEEE
Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New York, USA, October 2011.
ParisTech
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28 T Maximum likelihood estimation

B Expectation-Maximization (EM) algorithm:
= E-step:
— Kalman filtering with smoothing (forward-backward)
— Complexity: O(FTK3P?3)
= M-step:
— lterative algorithm which switches between (W, a) and H
— Complexity: O(FTKP?)
B Processing realistic data requires faster algorithms:
= Improve the convergence speed
= Reduce the computational complexity

[1] Roland Badeau. "Gaussian modelling of mixtures of non-stationary signals in the time-frequency domain (HR-NMF)". In IEEE
Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New York, USA, October 2011. J
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ﬁﬁiml EM as Minorize-Maximize (MM) method

L(6) = In(p(x;0))
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ﬁggﬁ“ EM as Minorize-Maximize (MM) method

In(p(x,c;8))p(c|x; hy)dc
(60) + Q(8,60) — Q(fo, bo)
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ﬁggﬁ“ EM as Minorize-Maximize (MM) method

61 = argmax M (6, 6)
0
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ﬁggﬁ“ EM as Minorize-Maximize (MM) method

In(p(x,c;8))p(c|x;hy)dc
(61) +Q(0,01) — Q(01,01)
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ﬁggﬁ“ EM as Minorize-Maximize (MM) method

6, = argmax M (6, 0;)
0
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ﬁggﬁ“ Computing the gradient of L

In(p(x,c;8))p(c|x; hy)dc
(90)+Q( ,00) — Q(bo, o)
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ﬁggﬁ“ Computing the gradient of L

/ VL(00) = VQ(bo, bo)
L(9)

Q(8,60) = [In(p(x,c;0))p(c|x;bp)dc
M(9a9o)=|—(90)+Q( ,00) — Q (6o, o)
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ﬁggﬁ“ Multiplicative update rules

B Purpose: improve the convergence rate of EM

[1] Roland Badeau, Alexey Ozerov. "Multiplicative update rules for modelling mixtures of non-stationary signals in the time-
frequency domain (HR-NMF)". Submitted to EUSIPCO, Marrakech, Morocco, September 2013. J
Tech
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ﬁggﬁ“ Multiplicative update rules

B Purpose: improve the convergence rate of EM

B Observation: the E-step permits to efficiently compute the
gradient of the log-likelihood function

[1] Roland Badeau, Alexey Ozerov. "Multiplicative update rules for modelling mixtures of non-stationary signals in the time-
frequency domain (HR-NMF)". Submitted to EUSIPCO, Marrakech, Morocco, September 2013. J
Tech
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ﬁﬁmi Multiplicative update rules

B Purpose: improve the convergence rate of EM

B Observation: the E-step permits to efficiently compute the
gradient of the log-likelihood function

B Principle: replace the M-step by any gradient-based optimizer

[1] Roland Badeau, Alexey Ozerov. "Multiplicative update rules for modelling mixtures of non-stationary signals in the time-
frequency domain (HR-NMF)". Submitted to EUSIPCO, Marrakech, Morocco, September 2013. J
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ﬁﬁgﬁ“ Multiplicative update rules

B Purpose: improve the convergence rate of EM

B Observation: the E-step permits to efficiently compute the
gradient of the log-likelihood function

B Principle: replace the M-step by any gradient-based optimizer

® New update rules parametrized by € > 0, which generalize both
IS-NMF multiplicative updates (¢ = 0) and EM (e = 1)

[1] Roland Badeau, Alexey Ozerov. "Multiplicative update rules for modelling mixtures of non-stationary signals in the time-
frequency domain (HR-NMF)". Submitted to EUSIPCO, Marrakech, Morocco, September 2013. J
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ﬁﬁgﬁ“ Multiplicative update rules

B Purpose: improve the convergence rate of EM

B Observation: the E-step permits to efficiently compute the
gradient of the log-likelihood function

B Principle: replace the M-step by any gradient-based optimizer

® New update rules parametrized by € > 0, which generalize both
IS-NMF multiplicative updates (¢ = 0) and EM (e = 1)

B Enhanced convergence speed obtained with a "simulated cooling”
strategy (make ¢ decrease over iterations)

[1] Roland Badeau, Alexey Ozerov. "Multiplicative update rules for modelling mixtures of non-stationary signals in the time-
frequency domain (HR-NMF)". Submitted to EUSIPCO, Marrakech, Morocco, September 2013. J
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ﬁggﬁ“ Variational Bayesian EM algorithm

B Prior distribution of latent variables in band f (P =1, K = 2)
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ﬁggﬁ“ Variational Bayesian EM algorithm

® Joint distribution of complete datainband f (P =1, K =2)
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ﬁﬁiml Variational Bayesian EM algorithm

m Posterior distribution of latent variablesinband f (P =1, K = 2)
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ﬁggﬁ“ Variational Bayesian EM algorithm

B Structured mean field approximation in band f (P =1, K = 2)
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ﬁggﬁ“ Variational Bayesian EM algorithm

B Mean field approximation inband f (P =1, K = 2)
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ﬁﬁiml Variational Bayesian EM algorithm

B Purpose: reduce the computational complexity of EM

[1] Roland Badeau, Angélique Drémeau. "Variational Bayesian EM algorithm for modelling mixtures of non-stationary signals in
the time-frequency domain (HR-NMF)". To appear in IEEE ICASSP, Vancouver, Canada, May 2013.
Tech
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ﬁggﬁ“ Variational Bayesian EM algorithm

B Purpose: reduce the computational complexity of EM

B Principle: the posterior distribution of the latent variables is
approximated by a factorized distribution

[1] Roland Badeau, Angélique Drémeau. “"Variational Bayesian EM algorithm for modelling mixtures of non-stationary signals in
the time-frequency domain (HR-NMF)". To appear in IEEE ICASSP, Vancouver, Canada, May 2013.
ParisTech
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ﬁﬁgﬁ“ Variational Bayesian EM algorithm

B Purpose: reduce the computational complexity of EM
B Principle: the posterior distribution of the latent variables is
approximated by a factorized distribution
B Complexity reduction:
= Exact E-step: O(FTK3(1 + P)3)
= Structured mean field (no dependency over k) : O(FTK (1 + P)?)
* Mean field (no dependency over k and t) : O(FTK(1 + P))

[1] Roland Badeau, Angélique Drémeau. “"Variational Bayesian EM algorithm for modelling mixtures of non-stationary signals in
the time-frequency domain (HR-NMF)". To appear in IEEE ICASSP, Vancouver, Canada, May 2013. J
ParisTech

[~ i |

Page 23 /30




ﬁﬁgﬁ“ Variational Bayesian EM algorithm

B Purpose: reduce the computational complexity of EM

B Principle: the posterior distribution of the latent variables is
approximated by a factorized distribution
B Complexity reduction:
= Exact E-step: O(FTK3(1 + P)3)
= Structured mean field (no dependency over k) : O(FTK (1 + P)?)
* Mean field (no dependency over k and t) : O(FTK(1 + P))
® Performance loss:
= The increase of log-likelihood function is no longer guaranteed
= |n practice, no perceptual difference

[1] Roland Badeau, Angélique Drémeau. “"Variational Bayesian EM algorithm for modelling mixtures of non-stationary signals in
the time-frequency domain (HR-NMF)". To appear in IEEE ICASSP, Vancouver, Canada, May 2013. J
ParisTech

[~ i |

Page 23 /30




ﬁﬁmi Outline

B Advantages and drawbacks of NMF probabilistic models

B Choosing an appropriate TF representation
B Modelling phases and correlations in the TF domain

= HR-NMF model
= Algorithms

B Preliminary results

= Audio source separation
= Audio inpainting
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—Ft Tl Application to piano tones
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ﬁggﬁ“ Source separation

(a) First component (C4)
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ﬁﬁiml Audio inpainting

Original spectrogram
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ﬁﬁiml Audio inpainting

Masked spectrogram
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ﬁﬁiml Audio inpainting

Restored spectrogram
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ﬁﬁmi Outline

B Advantages and drawbacks of NMF probabilistic models

B Choosing an appropriate TF representation
B Modelling phases and correlations in the TF domain

= HR-NMF model
= Algorithms

B Preliminary results

= Audio source separation
= Audio inpainting

B Conclusions
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ﬁggﬁ“ Contributions

m Critically sampled paraunitary filter banks satisfy both PW and PR
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ﬁggﬁ“ Contributions

m Critically sampled paraunitary filter banks satisfy both PW and PR
® HR-NMF time-frequency model:

= models phases and local correlations in each frequency band
= generalizes IS-NMF, mixtures of AR processes, and ESM models
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ﬁﬁgﬁ“ Contributions

m Critically sampled paraunitary filter banks satisfy both PW and PR
® HR-NMF time-frequency model:

= models phases and local correlations in each frequency band
= generalizes 1IS-NMF, mixtures of AR processes, and ESM models

® Algorithms:

= EM algorithm: too computationally demanding
= Multiplicative update rules: improved convergence speed
= Variational Bayesian EM algorithm: lower computational complexity
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ﬁﬁgﬁ“ Contributions

m Critically sampled paraunitary filter banks satisfy both PW and PR
® HR-NMF time-frequency model:

= models phases and local correlations in each frequency band
= generalizes 1IS-NMF, mixtures of AR processes, and ESM models

® Algorithms:

= EM algorithm: too computationally demanding

= Multiplicative update rules: improved convergence speed

= Variational Bayesian EM algorithm: lower computational complexity
B Preliminary results:

= Separation of overlapping sinusoids without perceptible artefacts
= Restoration of missing observations without perceptible artefacts
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ﬁﬁgﬁ“ Outlooks

B Design consistent TF representation and TF probabilistic model
B Extensions of HR-NMF:
= Extension to multichannel signals (e.g. stereo)
= Correlations between frequency bands (— attacks, vibratos, chirps)
= Correlations between components (— sympathetic modes)
= Replace NMF by other parametric models, or priors enforcing
harmonicity, sparsity, smoothness...
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B Extensions of HR-NMF:
= Extension to multichannel signals (e.g. stereo)
= Correlations between frequency bands (— attacks, vibratos, chirps)
= Correlations between components (— sympathetic modes)
= Replace NMF by other parametric models, or priors enforcing
harmonicity, sparsity, smoothness...
m Algorithms:

= Variational Bayesian methods
= Markov Chain Monte Carlo (MCMC)
= Belief propagation methods (message passing algorithm)

B Applications:
= Source coding, source separation, audio inpainting...
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