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Abstract

The mathematical properties of the Laplacian on a bounded domain are well-known when the
boundary condition is of the first type (Dirichlet), or second type (Neumann). In both cases,
this operator is self-adjoint and, therefore, diagonalizable, its spectrum is discrete, and the set
of eigenfunctions can be chosen to form an orthonormal basis of the Hilbert space of square-
integrable functions on the domain. However, in the case of the third type (Robin) boundary
condition, the same is true only when the parameter is real-valued. On the contrary, when
this parameter is complex-valued, the Laplacian may not even be diagonalizable. In this
paper, the spectral decomposition of the complex Robin Laplacian is investigated in the
most general case possible, and a formula that decomposes any square-integrable function
on the set of its (generalized) eigenfunctions is provided. This result is applied to the Green’s
function of the Helmholtz equation, whose existence, unicity and closed-form expression are
established in this general setting, and the statistical wave field theory, which provides the
statistical laws of waves propagating in a bounded domain.
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1. Introduction

In an old book dating back to 1953, Morse and Feshback showed that various linear
partial differential equations in physics, including the Helmholtz, diffusion, and wave equa-
tions, could be expressed in a unified abstract operator form. This approach permitted them
to investigate the Green’s functions of these equations through a common mathematical
framework, including cases of self-adjoint and non-self-adjoint linear operators (Morse and
Feshbach, 1953, Sec. 7.5). Unfortunately, it turned out that in the case of non-self-adjoint
operators, their mathematical developments, which were based on supposedly convergent
series expansions on biorthogonal sets of eigenfunctions, were flawed, therefore, so was their
closed-form expression of the Green’s function (Morse and Feshbach, 1953, p. 884). Indeed,
Kostenbauder et al. (1997) exhibited examples in physics of diverging series expansions in-
volving non-self-adjoint linear operators. This possible pathological behavior of eigenmode
expansions has somewhat restrained the use of the modal approach for many years in acous-
tics. One of our objectives here is, thus, to rehabilitate this approach by showing that all
mathematical issues can be simply overcome in the case of the complex Robin Laplacian.

Let us quickly summarize the known mathematical properties of the Robin Laplacian.
Given a bounded domain Ω ⊂ Rd, with d ≥ 1, whose boundary ∂Ω is Lipschitz continuous,
and an essentially bounded function α : ∂Ω → C, the Robin Laplacian −∆α

Ω is a linear
operator defined on a dense subset D(−∆α

Ω) of the Hilbert space L2(Ω) of square-integrable
functions on Ω, which is such that ∀ψ ∈ D(−∆α

Ω),
∂ψ(x)
∂n(x)

+ α(x)ψ(x) = 0 on ∂Ω, where
∂ψ(x)
∂n(x)

denotes the outer normal derivative of function ψ. When function α(x) is real-valued,
then it is well-known that the Robin Laplacian is self-adjoint and, therefore, diagonalizable1,
its spectrum {λn}n∈N is discrete, consisting of real eigenvalues of finite multiplicity, and its
real-valued eigenfunctions {φn}n∈N, which are such that ∆α

Ωφn + λnφn = 0, can be chosen
to form an orthonormal basis of L2(Ω), which can be written as

∀x,y ∈ Ω,
∑
n∈N

φn(x)φn(y) = δ(x− y). (1)

However, when function α(x) is complex-valued, the Robin Laplacian is no longer self-
adjoint, hence its eigenvalues are generally complex, and it may not be diagonalizable. The
purpose of this paper is, then, to investigate its Jordan decomposition, i.e., to consider the
possible existence of generalized complex eigenfunctions, which are such that (∆α

Ω+λI)
mφ =

0 for some m > 1 (where I denotes the identity), but (∆α
Ω+λI)φ ̸= 0. In this complex case,

1In this context, diagonalizable means that there is a unitary operator U such that U (−∆α
Ω)U

−1 is a
diagonal operator on L2(Ω) (with respect to a fixed orthonormal basis of that space).
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we will observe that the set of (generalized) eigenfunctions can never be orthonormal with
respect to the Hermitian inner product, and it may not even form a basis of L2(Ω). However,
it has been recently proved in Bögli et al. (2022) that the set of (generalized) eigenfunctions
of the complex Robin Laplacian can always be chosen to form an Abel basis of L2(Ω), a
notion that involves a weaker form of convergence than the usual convergence in L2(Ω).

Yet, it is not clear whether Eq. (1) still holds when α(x) is complex-valued, i.e., whether

∀ψ ∈ L2(Ω), ψ(x) =
∑
n∈N

⟨ψ, φn⟩φn(x), (2)

where ⟨ψ1, ψ2⟩ =
∫
Ω
ψ1(x)ψ2(x)dx denotes the Hermitian inner product on the Hilbert space

L2(Ω). In particular, we do not know if

1. The series in Eq. (2) converges in L2(Ω);

2. the dual set of {φn}n∈N [i.e., {φn}n∈N in Eq. (2)] is unique; and

3. for any simple eigenvalue with eigenfunction φn,
∫
Ω
φn(x)

2dx ̸= 0 [the contrary would
prevent the term φn(x)φn(y) in Eq. (1) from being a projection onto the vector space
spanned by φn].

Nevertheless, in Badeau (2025a, Proposition 1), we were able to prove the following result
(we focused on the case d = 3, but the same proof actually holds ∀d ≥ 1).

Proposition 1. Let Ω ⊂ Rd where d ≥ 1 be a bounded domain whose boundary ∂Ω is
Lipschitz continuous, and α ∈ L∞(∂Ω) be a complex-valued function. Assume that

a) The Robin Laplacian is diagonalizable; and

b) the set of eigenfunctions {φn(x)}n∈N forms a basis2 of L2(Ω).

Then, without loss of generality, the set {φn(x)}n∈N can be chosen to form a pseudo-
orthonormal3 basis of L2(Ω), which means that Eq. (1) holds.

However, the current state of mathematical knowledge does not tell us whether the two
assumptions in Proposition 1 hold in all generality.

• Even though a) is a very reasonable assumption that certainly holds almost surely
in some mathematical sense, Bögli et al. (2022, p. 12) exhibited a counterexample of
non-diagonalizable Robin Laplacian in one dimension based on the study in Krejčiřík
et al. (2006), in which two different Neumann eigenvalues are mapped to the same
Robin eigenvalue, creating a nontrivial eigennilpotent; and

2See Definition 1.
3See Definition 7.
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• in the same way, assumption b) seems to be reasonable, because it is known to hold
when α(x) ∈ R for any domain Ω (hence, we expect it to still hold at least when
α(x) ∈ C stays close to the real axis, as the eigenprojections are holomorphic functions
of α, as shown in Bögli et al. (2022, Theorem 1.1)), and also for any α(x) ∈ C for
some particular geometries of Ω, including the rectangular cuboid. Yet, although we
are not aware of any counterexample of a set of eigenfunctions of the Robin Laplacian
that would not form a basis of L2(Ω), there exists no mathematical guarantee that
assumption b) holds in the general case.

Therefore, in this paper, to address the most general case possible given the current
state of mathematical knowledge, we consider the possibility that the Robin Laplacian is not
diagonalizable, and the set of (generalized) eigenfunctions is not a basis of L2(Ω) but only
an Abel basis as proved in Bögli et al. (2022). We will, thus, in our Theorem 2, introduce a
generalized version of Eq. (1) that is guaranteed to hold in all cases, and this theorem will
also provide answers to the three previous questions.

1. We still do not know whether the series in Eq. (2) converges in all cases, but introducing
proper weights in front of each term of this series guarantees its convergence;

2. yes, the dual set is unique; and

3. yes, for any simple eigenvalue with eigenfunction φn,
∫
Ω
φn(x)

2dx ̸= 0 (this assertion
answers the Open Problem 4.9 in Bögli et al. (2022)).

Then we will show how this new mathematical result applies to the Green’s function of
the Helmholtz equation, and in our Proposition 2, we will provide the correct closed-form
expression of this Green’s function that holds in the general case. We will also show how
this result applies to the statistical wave field theory recently proposed by the author, which
establishes the statistical laws of waves propagating in a bounded domain (Badeau, 2024,
2025a,b).

This paper is organized as follows. In Sec. 2, we introduce mathematical notations that
will be used in the rest of the paper. Then Sec. 3 summarizes the main definitions and
mathematical results that are needed to introduce our main theorem. This theorem is then
stated and proved in Sec. 4. The applications of this theorem to the Green’s function of the
Helmholtz equation and the statistical wave field theory are presented in Sec. 5. Finally,
in Sec. 6, we summarize the main contributions of this paper, and propose perspectives for
future work.

2. Mathematical notations

• ≜: equal by definition to;

• z: conjugate of the complex number z;

• x⊤: transpose of vector x;
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• A ⊆ B: A is a subset of B, possibly equal to B;

• ∥.∥E: norm in the Banach space E;

• l2(N): Hilbert space of sequences {hn}n∈N such that ∥{hn}n∈N∥2l2(N) ≜
∑

n∈N |hn|2 <
+∞;

• ∂Ω: boundary of the bounded open set Ω ⊂ Rd;

• Ω: closure of the bounded open set Ω ⊂ Rd;

• S: (d− 1)-dimensional Hausdorff measure on ∂Ω;

• ∂ψ(x)
∂n(x)

: outer normal derivative of ψ on ∂Ω;

• C0(Ω): class of continuous functions on Ω;

• L2(Ω): Hilbert space of square-integrable functions on Ω: ∀ψ ∈ L2(Ω), ∥ψ∥2L2(Ω) ≜∫
Ω
|ψ(x)|2dx < +∞;

• H1(Ω): Sobolev space of functions in L2(Ω) whose gradient is also in L2(Ω): ∀ψ ∈
H1(Ω), ∥ψ∥2H1(Ω) ≜ ∥ψ∥2L2(Ω) + ∥∇ψ∥2L2(Ω) < +∞;

• L∞(∂Ω): Lebesgue space of essentially bounded functions4 on ∂Ω: ∥α∥L∞(∂Ω) ≜
ess supx∈∂Ω |α(x)| < +∞;

• I: identity operator on L2(Ω);

• ⟨ψ1, ψ2⟩ =
∫
Ω
ψ1(x)ψ2(x)dx: Hermitian inner product on L2(Ω);

• −∆α
Ω: Robin Laplacian on Ω of parameter α : ∂Ω → C;

• D(T ): domain of definition of operator T ;

• {λn}n∈N: eigenvalues of the Robin Laplacian;

• {φn}n∈N: eigenfunctions of the Robin Laplacian; and

• δ: Dirac delta function.

3. Mathematical framework

In this section, we first define different kinds of bases of separable Hilbert spaces that
are related to our problem (Sec. 3.1), and then we summarize the known properties of the
complex Robin Laplacian that are needed to introduce our main theorem (Sec. 3.2).

4An essentially bounded function α : ∂Ω → C is a measurable function that is bounded on a mea-
surable subset E of ∂Ω such that the set ∂Ω\E is negligible. Then the notation "ess sup" is defined as
ess supx∈∂Ω |α(x)| = supx∈E |α(x)|.
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3.1. Bases of separable Hilbert spaces
Let us introduce the standard notion of basis of a separable complex Hilbert space (Bögli

et al., 2022, Sec. 5).

Definition 1 (Basis). Let H be a separable complex Hilbert space. A set of vectors B =
{en}n∈N is a basis of H if and only if every vector h ∈ H admits a unique convergent series
representation

h =
∑

n∈N hnen, (3)

where hn ∈ C ∀n ∈ N.

The next definition is given in Hussein et al. (2015, Sec. 5).

Definition 2 (Riesz basis with brackets). Let H be a separable complex Hilbert space. A set
of vectors B = {en}n∈N is called a Riesz basis with brackets (or a Riesz basis of subspaces)
of H if and only if there is an increasing sequence of natural numbers Nm (with N0 = 0) such
that every vector h ∈ H admits a unique unconditionally convergent series representation

h =
∑

m∈N

[∑Nm+1−1
n=Nm

hnen

]
(i.e., all reorderings of the series over m converge to the same limit), where hn ∈ C ∀n ∈ N.
If Nm = m ∀m ∈ N, we retrieve the standard notion of a Riesz basis.

Considering Definition 2, we must understand that the usual notion of basis introduced
in Definition 1 may involve a series that is only conditionally convergent [i.e., the limit of the
series in Eq. (3) may depend on the particular ordering of the basis vectors en]. Therefore
all Riesz bases are bases, but not all bases are Riesz bases. Nevertheless, it is well-known
that all orthonormal bases are Riesz bases (Bögli et al., 2022, Sec. 5).

In contrast to the notions of bases and Riesz bases, an Abel basis is always defined
with respect to the eigenvectors and generalized eigenvectors {en}n∈N of a densely defined
operator T (i.e., an operator defined on a dense subset of H). The intuitive idea is that the
formal series expansion of a vector h ∈ H in Eq. (3) may not converge, but if every coefficient
hn is multiplied by a suitable weight e−wnε ∈ C, then the series h(ε) =

∑
n∈N hne

−wnεen does
converge ∀ε > 0, and then h(ε) → h when ε → 0+. Note that an Abel basis is generally
not a basis in the sense of Definition 1 because the unweighted series expansion

∑
n∈N hnen

is not required to converge.

Definition 3 (Abel basis with brackets). Let H be a separable complex Hilbert space and
T : D(T ) → H be a linear operator defined on a dense subset D(T ) ⊂ H with purely
discrete spectrum, such that all but finitely many of its eigenvalues {λn}n∈N lie in the sector
T+
θ ≜ {z ∈ C : | arg z| < θ} for some θ ∈ (0, π). Then the set of (generalized) eigenvectors

{en}n∈N forms an Abel basis with brackets of H of order γ ≥ 0 if and only if γθ < π/2 and
if there is an increasing sequence of natural numbers Nm (with N0 = 0) such that ∀h ∈ H,
there is a sequence of coefficients hn ∈ C such that the series

h(ε) ≜
∑

m∈N

[∑Nm+1−1
n=Nm

hne
−wnεen

]
(4)
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converges ∀ε > 0, and limε→0+ h(ε) = h. In Eq. (4), the weights wn ∈ C are such that
∀λn ∈ T+

θ , wn = λγn, and ∀λn /∈ T+
θ , wn = 0. If Nm = m ∀m ∈ Z, we get the standard

notion of an Abel basis.

Note that in Eq. (4), the series over m may be only conditionally convergent, as in
Definition 1. In other respects, it follows from Definitions 2 and 3 that a Riesz basis, if it
consists of the generalized eigenfunctions of a suitable operator, is always an Abel basis of
order zero.

3.2. Known properties of the complex Robin Laplacian
We consider a bounded Lipschitz domain Ω ⊂ Rd with d ≥ 1, which means that Ω

is a non-empty bounded open set with a finite number of connected components, and its
boundary ∂Ω is a Lipschitz continuous submanifold of Rd, i.e., it is locally the graph of a
Lipschitz function5. We then consider the Sobolev space H1(Ω) of functions in L2(Ω) whose
gradient is also in L2(Ω). Before defining the Robin Laplacian, we first need to introduce
the notions of trace and normal derivative, as defined in Arendt and ter Elst (2011).

Definition 4 (Trace). Let Ω ⊂ Rd with d ≥ 1 be a bounded Lipschitz domain. Then, every
function ψ ∈ H1(Ω) admits a unique trace on ∂Ω, which is defined as a function φ ∈ L2(∂Ω)
such that there is a sequence of functions ψn ∈ H1(Ω) ∩ C0(Ω) such that ψn → ψ in H1(Ω)
and ψn|∂Ω → φ in L2(∂Ω).

From now on, the trace of any function ψ ∈ H1(Ω) will be simply denoted with the same
notation ψ.

Definition 5 (Normal derivative). Let Ω ⊂ Rd with d ≥ 1 be a bounded Lipschitz domain.
Then every function ψ ∈ H1(Ω) such that ∆ψ ∈ L2(Ω) admits a unique normal derivative
∂ψ(x)
∂n(x)

∈ L2(∂Ω), which is defined in the weak sense as ∀φ ∈ H1(Ω),

∫
∂Ω

∂ψ(x)
∂n(x)

φ(x)dS(x) =
∫
Ω

(
∇ψ(x)⊤∇φ(x) + ∆ψ(x)φ(x)

)
dx. (5)

We can now define the Robin Laplacian, following the discussion in Bögli et al. (2022,
Sec. 3), which is based on the mathematical framework of Kato (1976).

Definition 6 (Robin Laplacian). Let Ω ⊂ Rd with d ≥ 1 be a bounded Lipschitz domain, and
let α ∈ L∞(∂Ω) be a complex-valued function. The sesquilinear form aα : H1(Ω)×H1(Ω) →
C defined as

aα[ψ1, ψ2] =
∫
∂Ω
α(x)ψ1(x)ψ2(x)dS(x) +

∫
Ω
∇ψ1(x)∇ψ2(x)d(x), (6)

5That means that for any point x ∈ ∂Ω, there is a neighborhood V ⊂ Rd of x, a local Cartesian coordinate
system (x1, . . . , xd), and a Lipschitz function f : Rd−1 → R, such that ∀y ∈ ∂Ω ∩ V, yd = f(y1, . . . , yd−1).
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will be referred to as the Robin form. Then the Robin Laplacian −∆α
Ω is a linear operator

defined on a dense subset D(−∆α
Ω) of the separable Hilbert space H = L2(Ω), which is such

that ∀ψ1 ∈ D(−∆α
Ω) ⊂ H1(Ω), ∀ψ2 ∈ H1(Ω),

aα[ψ1, ψ2] =

∫
Ω

(−∆α
Ωψ1)(x)ψ2(x)dx, (7)

where

D(−∆α
Ω) =

{
ψ ∈ H1(Ω) : ∆ψ ∈ L2(Ω) and ∂ψ(x)

∂n(x)
+ α(x)ψ(x) = 0 on ∂Ω

}
. (8)

Finally, a function φ ∈ D(−∆α
Ω) is an eigenfunction of the Robin Laplacian of eigenvalue

λ ∈ C if and only if ∆α
Ωφ+ λφ = 0 in L2(Ω).

The following theorem summarizes the main results presented in Bögli et al. (2022),
which we need in this paper.

Theorem 1. Let Ω ⊂ Rd, d ≥ 1, be a bounded Lipschitz domain, and α ∈ L∞(∂Ω). Then,

1. The spectrum of the Robin Laplacian is discrete, consisting of eigenvalues of finite
algebraic multiplicity, without any finite point of accumulation;

2. the Robin Laplacian is self-adjoint if and only if function α is real-valued. In this case,
it is diagonalizable and its eigenfunctions can be chosen to form an orthonormal basis
of L2(Ω); and

3. if function α is not real-valued, then without loss of generality, the set of (generalized)
eigenfunctions can be chosen so as to form an Abel basis with brackets of L2(Ω) of
order γ = (d− 1)/2 + η for any η > 0 and any θ ∈ (0, π

2γ
min(γ, 1)), and even a Riesz

basis with brackets if d = 1. However, they cannot be chosen to form an orthonormal
basis of L2(Ω).

Remark 1. The definition of an Abel basis with brackets (Definition 3) involves a linear
operator T . In assertion 3 of Theorem 1, this linear operator is actually T = −∆α

Ω + ωI for
a well-chosen constant ω ≥ 0, as explained in the proof of Bögli et al. (2022, Theorem 5.7),
which is based on the main theorem in Agranovich (1994). Indeed, this theorem deals with
sesquilinear forms in Hilbert spaces that are continuous and coercive6 (Agranovich, 1994,
p. 151), and Bögli et al. (2022, p. 17) show that it is always possible to choose a real constant
ω ≥ 0 high enough such that the sesquilinear form defined by the operator T satisfies this
condition. Note that this operator has the same (generalized) eigenfunctions as the Robin
Laplacian −∆α

Ω, but its spectrum is shifted by the constant ω. In a few places in the remainder
of this paper, we will cite directly the reference Agranovich (1994), to refer to specific results
and proofs that do not appear in Bögli et al. (2022).

6A coercive sesquilinear form aα : H1(Ω) ×H1(Ω) → C is such that there is a constant ε > 0 such that
∀ψ ∈ H1(Ω), ε∥ψ∥2H1(Ω) ≤ Re(aα[ψ,ψ]).
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Remark 2. The assertions in Theorem 1 were formulated in Bögli et al. (2022) by assuming
that the complex function α is constant, but the authors explicitly stated that assertions 1
and 2 still hold when α ∈ L∞(∂Ω). Moreover, assertion 3 also holds when α ∈ L∞(∂Ω)
because the proof of Bögli et al. (2022, Theorem 5.7) trivially generalizes to this case7. In
other respects, note that the original statement of Theorem 5.7 in Bögli et al. (2022) neglected
to refer to bases with brackets, but the original theorem in Agranovich (1994) and its proof
explicitly deal with such bases. That is why the statement of our Theorem 1 does involve
bases with brackets.

4. Spectral decomposition of the complex Robin Laplacian

Before introducing our main theorem, let us first introduce the notion of pseudo-orthogonality :

Definition 7 (Pseudo-orthogonality). Let Ω ⊂ Rd, d ≥ 1, be a bounded Lipschitz do-
main. Two functions ψ1, ψ2 ∈ L2(Ω) are said to be pseudo-orthogonal if and only if∫
Ω
ψ1(x)ψ2(x)dx = 0 (which means that ψ1 and ψ2 are orthogonal). In the same way, a

function ψ ∈ L2(Ω) is said to be pseudo-unitary if and only if
∫
Ω
ψ(x)2dx = 1. Finally, a

pseudo-orthogonal set of pseudo-unitary functions will be said to be pseudo-orthonormal.

We can now state our main theorem:

Theorem 2 (Spectral decomposition of the complex Robin Laplacian). Let Ω ⊂ Rd, d ≥ 1,
be a bounded Lipschitz domain, and α ∈ L∞(∂Ω). Then,

1. Every (generalized) eigenfunction of the Robin Laplacian is an analytic function of x
in Ω;

2. for any simple eigenvalue λn, the corresponding eigenfunction φn is such that
∫
Ω
φn(x)

2dx ̸=
0; moreover, for any (simple or multiple) eigenvalue λn, the set of eigenfunctions φn
that correspond to a one-dimensional Jordan block can be chosen such that

∫
Ω
φn(x)

2dx =
1; however, any eigenfunction that corresponds to a Jordan block of dimension greater
than one is such that

∫
Ω
φn(x)

2dx = 0; and

3. the set of eigenfunctions and generalized eigenfunctions can be chosen to form a pseudo-
orthonormal Abel basis with brackets of L2(Ω), i.e., there is an increasing sequence of
natural numbers Nm (with N0 = 0) such that

lim
ε→0+

∑
m∈N

[
Nm+1−1∑
n=Nm

e−wnεφn(x)φn(y)

]
= δ(x− y). (9)

In Eq. (9), the weights wn ∈ C are defined as follows: if ω + λn ∈ T+
θ , then wn =

(ω + λn)
γ, otherwise wn = 0, where

7Note that this proof contains a minor typographical error that should be corrected: everywhere, "d/2"
should be replaced by "2/d". This typographical error appears only in the proof and does not alter the
conclusions of Bögli et al. (2022, Theorem 5.7).
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• The constant ω ≥ 0 is such that the sesquilinear form defined by the operator
−∆α

Ω + ωI is coercive ( cf. Remark 1);

• γ = (d− 1)/2 + η for any η > 0; and

• T+
θ = {z ∈ C : | arg z| < θ} for any θ ∈ (0, π

2γ
min(γ, 1)).

In particular, Eq. (9) shows that the dual set of {φn}n∈N is unique and equal to {φn}n∈N.

Remark 3. For a Jordan block of dimension greater than one, the eigenfunction φn is such
that

∫
Ω
φn(x)

2dx = 0, as stated in assertion 2 of Theorem 2. However, in assertion 3, the
chosen basis of generalized eigenfunctions associated with this Jordan block is obtained by
means of a pseudo-orthonormalization process similar to Gram–Schmidt (see the proof of
Theorem 2). This means that every function φm in this pseudo-orthonormal basis is actually
a linear combination of the eigenfunction and at least one generalized eigenfunction, such
that

∫
Ω
φm(x)

2dx = 1.

Remark 4. Equation (9) generalizes Eq. (1), which holds in the real case α ∈ R, and the
complex case α ∈ C when the set of (generalized) eigenfunctions {φn}n∈N forms a basis of
L2(Ω) as in Proposition 1. Equation (9) should be interpreted in the following sense: ∀ε > 0,
the linear operator IαΩ(ε) introduced in Eq. (10) is well-defined as follows

IαΩ(ε) :

L2(Ω) → L2(Ω)

ψ 7→
∑
m∈N

[
Nm+1−1∑
n=Nm

e−wnε⟨ψ, φn⟩φn
]

(10)

[i.e., the series over m in Eq. (10) converges in L2(Ω)], and it is bounded ( cf. the proof of
the Abel basis property in Agranovich (1994, p. 162)), therefore, Lipschitz continuous. Then
the sequence of operators IαΩ(ε) converges, in turn, to the identity I on L2(Ω) when ε→ 0+.

Proof of Theorem 2. First, assertion 1 of Theorem 2 comes from the fact that ∀λ ∈ C,
∀m ≥ 1, the differential operator P ≜ (∆ + λI)m is elliptic, and it is well-known that any
solution φ of the differential equation Pφ = 0 on an open set Ω with P elliptic is analytic
(Hörmander, 2015, Theorem 4.4.3).

Then, note that assertion 1 of Theorem 1 shows that every eigenvalue of the Robin Lapla-
cian has finite algebraic multiplicity. For convenience, here, we will use an enumeration of
the eigenvalues and (generalized) eigenfunctions that is different from that in Eq. (9). There-
fore, let {λn}n∈N be the set of eigenvalues, where each eigenvalue is repeated successively
according to its finite geometric multiplicity, i.e., its number of distinct eigenfunctions (or
equivalently its number of distinct Jordan blocks). Then for each n ∈ N, letMn < +∞ be the
dimension of the corresponding Jordan block, and let φ(Mn)

n be a generalized eigenfunction
of the Robin Laplacian such that (∆α

Ω+λnI)
Mnφ

(Mn)
n = 0 (where I denotes the identity) and

(∆α
Ω+λnI)

Mn−1φ
(Mn)
n ̸= 0. Then, φ(Mn)

n generates a Jordan chain of Mn linearly independent
generalized eigenfunctions φ(m)

n of rank m ∈ {1 . . .Mn}, such that

φ(m−1)
n = −(∆α

Ω + λnI)φ
(m)
n , (11)
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which starts at rank m = Mn > 0 with the generator φ(Mn)
n and ends at rank m = 1

with the eigenfunction φ
(1)
n [if we push the recursion one step further, we get φ(0)

n = 0].
Finally, ∀n1, n2 ∈ N, ∀m1 ∈ {1 . . .Mn1}, ∀m2 ∈ {1 . . .Mn2}, let us define the Mn1 ×Mn2

matrix Hn1,n2 of entries [Hn1,n2 ]m1,m2 =
∫
Ω
φ
(m1)
n1 (x)φ

(m2)
n2 (x)dx. Then ∀n1, n2 ∈ N, ∀m1 ∈

{1 . . .Mn1}, ∀m2 ∈ {1 . . .Mn2}, by substituting Eq. (8) applied to ψ(x) = φ
(m1)
n1 (x) and

Eq. (11) applied to n = n1 and m = m1 into Eq. (5) applied to ψ(x) = φ
(m1)
n1 (x) and

φ(x) = φ
(m2)
n2 (x), we get∫

Ω
φ
(m1−1)
n1 (x)φ

(m2)
n2 (x)dx+ λn1

∫
Ω
φ
(m1)
n1 (x)φ

(m2)
n2 (x)dx

=
∫
∂Ω
α(x)φ

(m1)
n1 (x)φ

(m2)
n2 (x)dS(x) +

∫
Ω
∇φ(m1)

n1 (x)⊤∇φ(m2)
n2 (x)dx.

In the same way, we also get∫
Ω
φ
(m1)
n1 (x)φ

(m2−1)
n2 (x)dx+ λn2

∫
Ω
φ
(m1)
n1 (x)φ

(m2)
n2 (x)dx

=
∫
∂Ω
α(x)φ

(m1)
n1 (x)φ

(m2)
n2 (x)dS(x) +

∫
Ω
∇φ(m1)

n1 (x)⊤∇φ(m2)
n2 (x)dx.

By subtracting the two equalities, we get

(λn1 − λn2)
∫
Ω
φ
(m1)
n1 (x)φ

(m2)
n2 (x)dx

=
∫
Ω
φ
(m1)
n1 (x)φ

(m2−1)
n2 (x)dx−

∫
Ω
φ
(m1−1)
n1 (x)φ

(m2)
n2 (x)dx.

(12)

If λn1 ̸= λn2 , Eq. (12) proves by induction that ∀m1 ∈ {1 . . .Mn1}, ∀m2 ∈ {1 . . .Mn2},
φ
(m1)
n1 is pseudo-orthogonal to φ(m2)

n2 because φ(0)
n1 and φ(0)

n2 are zero. Therefore the two invariant
subspaces related to λn1 and λn2 are pseudo-orthogonal, i.e., Hn1,n2 = 0. If on the contrary
λn1 = λn2 , then the two functions φ(m1)

n1 and φ(m2)
n2 belong to the same invariant subspace, and

Eq. (12) yields
∫
Ω
φ
(m1)
n1 (x)φ

(m2−1)
n2 (x)dx =

∫
Ω
φ
(m1−1)
n1 (x)φ

(m2)
n2 (x)dx. Again, this equality

proves by induction that φ(m1)
n1 is pseudo-orthogonal to φ(m2)

n2 as φ(0)
n1 and φ

(0)
n2 are zero, but

only for m1 + m2 ≤ max(Mn1 ,Mn2), therefore, in general, Hn1,n2 ̸= 0. For instance, if
n1 = n2 = n and if Mn > 1, then Hn,n is a lower anti-triangular Hankel matrix8. In this
particular case, we note that [Hn,n]1,1 = 0, i.e., the eigenfunction φ

(1)
n is pseudo-orthogonal

to itself, which proves the last part of assertion 2 of Theorem 2: any eigenfunction that
corresponds to a Jordan block of dimension greater than one is such that

∫
Ω
φn(x)

2dx = 0.
In the remainder of this proof, for convenience we will use the same enumeration of the

eigenvalues and (generalized) eigenfunctions as that in Eq. (9): {λn}n∈N will now denote the
set of eigenvalues, where each eigenvalue λ is repeated successively according to its finite
algebraic multiplicity, which is defined as M ≜

∑
λn=λ

Mn.
Now, let us prove the first part of assertion 2 of Theorem 2. For any simple eigenvalue λn,

the corresponding eigenfunction φn is such that
∫
Ω
φn(x)

2dx ̸= 0. Indeed, if λn is a simple
eigenvalue (i.e., M = 1), then we have already proved that φn(x) is pseudo-orthogonal

8A Hankel matrix H is such that every entry [H]m1,m2
depends only on m1 + m2. In addition, H is

lower anti-triangular if it is square of dimension M , and ∀m1,m2 such that m1 +m2 ≤M , [H]m1,m2
= 0.

11



to all of the other (generalized) eigenfunctions. By reductio ad absurdum, suppose that∫
Ω
φn(x)

2dx = 0. Then ψ(x) ≜ φn(x) is orthogonal to φn′(x) ∀n′ ∈ N. However, Theorem 1
proves that the set of (generalized) eigenfunctions can be chosen so as to form an Abel basis
with brackets of L2(Ω) of order γ = (d−1)/2+η for any η > 0 and any θ ∈ (0, π

2γ
min(γ, 1)).

Following Definition 3 with T = −∆α
Ω+ωI, there is an increasing sequence of natural numbers

Nm (with N0 = 0) such that ψ(x, ε) ≜
∑

m∈N

[∑Nm+1−1
n′=Nm

ψn′e−wn′εφn′(x)
]

converges to ψ(x)
in L2(Ω) when ε → 0+, where the weights wn′ ∈ C are such that if ω + λn′ ∈ T+

θ , then
wn′ = (ω + λn′)γ, otherwise wn′ = 0. Because ψ(x) is orthogonal to φn′(x) ∀n′ ∈ N,
by continuity of the inner product it is also orthogonal to ψ(x, ε) ∀ε > 0. Then, when
ε → 0+, still by continuity of the inner product, we conclude that ψ(x) is orthogonal to
itself, therefore it is zero. As ψ(x) = φn(x), this contradicts the fact that φn(x) is nonzero.
We, thus, conclude that

∫
Ω
φn(x)

2dx ̸= 0. Hence, without loss of generality, we can assume
that

∫
Ω
φn(x)

2dx = 1.
In the same way, if λn is a multiple eigenvalue, let M be its algebraic multiplicity. Then

there is a basis {φn(x), . . . , φn+M−1(x)} of eigenfunctions and generalized eigenfunctions of
the corresponding invariant subspace. Let us next define the M ×M matrix H of entries
[H ]i,j =

∫
Ω
φn+i(x)φn+j(x)dx for i, j ∈ {0 . . .M − 1}. If we assume that H is singular,

then the same line of reasoning as in the previous case shows that the matrix G of entries
[G]i,j =

∫
Ω
φn+i(x)φn+j(x)dx is also singular, which is in contradiction with the fact that

the set {φn(x), . . . , φn+M−1(x)} is linearly independent. We, thus, conclude that matrix
H is non-singular, therefore, we can apply a Gram–Schmidt-like process to make the set
{φn(x), . . . , φn+M−1(x)} pseudo-orthonormal. Hence, without loss of generality, we can
assume that the set {φn(x), . . . , φn+M−1(x)} is pseudo-orthonormal.

Note that, still when λn is a multiple eigenvalue, the exact same reasoning but applied to
the subset of eigenfunctions whose Jordan blocks are one-dimensional, instead of the whole
set of eigenfunctions and generalized eigenfunctions, proves the remaining part of assertion 2
of Theorem 2. The set of eigenfunctions can be chosen such that

∫
Ω
φn(x)

2dx = 1 for all φn
that correspond to a one-dimensional Jordan block.

Let us now move on to assertion 3 of Theorem 2. So far, we have proved that, without loss
of generality, the whole set of eigenfunctions and generalized eigenfunctions {φn(x)}n∈N can
be chosen to form a pseudo-orthonormal Abel basis with brackets of L2(Ω). In particular,
the Abel basis with brackets property shows that ∀ψ ∈ L2(Ω), ψ(x) = limε→0+ ψ(x, ε) where
∀ε > 0, ψ(x, ε) =

∑
m∈N

[∑Nm+1−1
n=Nm

ψne
−wnεφn(x)

]
, and the pseudo-orthonormality property

further implies that ∀n ∈ N, ⟨ψ(x, ε), φn(x)⟩ = ψne
−wnε. When ε → 0+, the continuity

of the inner product then implies that ⟨ψ, φn⟩ = ψn. We, thus, get ∀ψ ∈ L2(Ω), ψ =

limε→0+
∑

m∈N

[∑Nm+1−1
n=Nm

e−wnε⟨ψ, φn⟩φn
]
, which can be rewritten as Eq. (9) (cf. Remark 4).

Let us now study the uniqueness of this decomposition. If λn is a simple eigenvalue, then
its two possible pseudo-unitary eigenfunctions are φn(x) and −φn(x), therefore, the product
φn(x)φn(y) is unique. In the same way, if λn is a multiple eigenvalue, then any pseudo-
orthonormal basis of eigenfunctions of the corresponding invariant subspace will result in
the same sum of products

∑M
i=0 φn+i(x)φn+i(y).
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Finally, let us investigate the uniqueness of the dual set of the pseudo-orthonormal Abel
basis with brackets {φn(x)}n∈N. A set {ψn(x)}n∈N is dual to {φn(x)}n∈N if and only if
∀n, n′ ∈ N, ⟨ψn(x), φn′(x)⟩ = δn,n′ . Consequently,

ψn(x) = limε→0+
∑
m∈N

[
Nm+1−1∑
n′=Nm

e−wn′ε⟨ψn(x), φn′(x)⟩φn′(x)

]
= limε→0+ e

−wnεφn(x) = φn(x).

Therefore, the dual set of {φn}n∈N is unique and equal to {φn}n∈N, which ends the proof of
assertion 3 of Theorem 2.

5. Applications

In this section, we present applications of Theorem 2 to the Green’s function of the
Helmholtz equation (Sec. 5.1) and the statistical wave field theory (Sec. 5.2).

5.1. Green’s function of the Helmholtz equation
Let us first summarize a few fundamental notions regarding wave propagation, which are

presented in more detail in Badeau (2024) and Badeau (2025a) (we refer to Morse and Ingard
(1968) and Kuttruff (2014) for an in-depth introduction to theoretical acoustics and room
acoustics). In a simply connected domain Ω ⊆ Rd, the homogeneous Helmholtz equation
states that

∀x ∈ Ω, ∆φ(x) + 4π2κ2φ(x) = 0, (13)

where κ = ν
c
, where ν is the frequency and c is the propagation speed. Then, given a

punctual source position x0 ∈ Ω and wave number k, a Green’s function G of the Helmholtz
equation is a solution of the following inhomogeneous Helmholtz equation: ∀x ∈ Ω,

∆G(x,x0, k) + 4π2k2G(x,x0, k) = −δ(x− x0). (14)

If the domain Ω admits a Lipschitz continuous boundary ∂Ω characterized by its specific
admittance β̂(x, k) ∈ L∞(∂Ω), then the Robin boundary condition is written

∀x ∈ ∂Ω,
∂ψ(x, k)

∂n(x)
+ ı2πkβ̂(x, k)ψ(x, k) = 0, (15)

and this boundary condition applies to Eqs. (13) and (14). In the case of non-rigid bound-
aries, which absorb a part of the energy of the incident wave, β̂(x, k) is complex and the real
part of β̂(x, k) is positive.

Because the boundary condition depends on the wave number k, the solutions of the
homogeneous Helmholtz equation also depend on k, thus, Eq. (13) has to be rewritten as

∀x ∈ Ω, ∆φ(x, k) + 4π2κ(k)2φ(x, k) = 0, (16)

where κ(k) ∈ C. If, in addition, the domain Ω is bounded, then these definitions fit in
the general mathematical framework introduced in Sec. 3.2, with α(x) ≜ ı2πkβ̂(x, k) ∈ C.
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Therefore, the conclusions of Theorems 1 and 2 hold. In particular, the set of eigenvalues
λn ≜ 4π2κn(k)

2 and eigenfunctions φn(x) ≜ φn(x, k), which are solutions of Eqs. (15)
and (16), is discrete and can be indexed by n ∈ N. Then the Green’s function of the
Helmholtz equation satisfies the following properties:

Proposition 2 (Green’s function of the Helmholtz equation). Let Ω ⊂ Rd, d ≥ 1, be a
bounded Lipschitz domain, x0 ∈ Ω, and β̂(x, k) ∈ L∞(∂Ω) for a given k ∈ C.

1. Suppose that the value 4π2k2 does not belong to the complex Robin spectrum {4π2κn(k)
2}n∈N

of parameter α(x) = ı2πkβ̂(x, k). Then, there exists a unique Green’s function G(x,x0, k)
that is the solution to Eqs. (14) and (15), and G is an analytic function of x in Ω\{x0};
and

2. suppose, in addition, that the value 4π2k2 does not belong to the real Robin spectrum
of parameter Re(α). Then, the Green’s function G(x,x0, k) can be written as

G(x,x0, k) = limε→0+
∑
m∈N

[
Nm+1−1∑
n=Nm

e−wnε φn(x0,k)φn(x,k)
4π2(κn(k)2−k2)

]
, (17)

where the natural numbers Nm, the (generalized) eigenfunctions φn, and the weights
wn ∈ C are the same as those in assertion 3 of Theorem 2.

Remark 5. Equation (17) generalizes the following expression of the Green’s function:

G(x,x0, k) =
∑
n∈N

φn(x0, k)φn(x, k)

4π2(κn(k)2 − k2)
,

which holds in the real case α ∈ R and the complex case α ∈ C when the set of (generalized)
eigenfunctions {φn}n∈N forms a basis of L2(Ω) as in Proposition 1.

Remark 6. Because 4π2k2 does not belong to the Robin spectrum, the linear operator −(∆α
Ω+

4π2k2I) : D(−∆α
Ω) → L2(Ω) is invertible. Therefore, the Green’s operator Gα

Ω : L2(Ω) →
D(−∆α

Ω) is uniquely defined as Gα
Ω = −(∆α

Ω + 4π2k2I)−1. Note that the existence of the
Green’s operator Gα

Ω does not imply the existence of a function G(x,x0, k) such that this
operator can be written as

Gα
Ω :

L2(Ω) → D(−∆α
Ω)

ψ 7→
∫
Ω
G(x,x0, k)ψ(x0)dx0.

(18)

Therefore, the existence of the Green’s function G(x,x0, k) such that Eq. (18) holds will be
proved hereunder.

Proof of Proposition 2. Let us prove the first assertion. We start with the uniqueness of the
Green’s function. Let us consider two solutions G1(x,x0, k) and G2(x,x0, k) of Eqs. (14)
and (15). Then their difference is such that (∆α

Ω + 4π2k2)(G1(x,x0, k) − G2(x,x0, k)) = 0.
Because 4π2k2 does not belong to the spectrum of the Robin Laplacian −∆α

Ω, we deduce
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that G1(x,x0, k)−G2(x,x0, k) = 0. Therefore a solution of Eqs. (14) and (15), if it exists,
is unique.

Let us now prove the existence of the Green’s function. To do so, we consider a Green’s
function G0 in the free field, i.e., a fundamental solution G0(x, k) of the inhomogeneous
Helmholtz equation (14) with x0 = 0 in Rd (without boundary condition). Note that, in
general, the function G0(x−x0, k) does not satisfy Robin’s boundary condition in Eq. (15),
hence, it is different from the Green’s function G(x,x0, k) that we are looking for. In other
respects, as the differential operator P ≜ ∆ + 4π2k2I is elliptic, it is well-known that any
solution G0 of the differential equation PG0 = 0 on the open set Rd\{0} with P elliptic is
analytic (Hörmander, 2015, Theorem 4.4.3), therefore, G0(x, k) is an analytic function in
Rd\{0}.

Now, suppose that the Green’s function G(x,x0, k), which is the solution to Eqs. (14)
and (15), exists. Because functions G(x,x0, k) and G0(x−x0, k) satisfy the inhomogeneous
Helmholtz equation (14), then function u(x) ≜ G(x,x0, k)−G0(x−x0, k), which is defined
on Ω, satisfies ∀x ∈ Ω, (∆ + 4π2k2)u(x) = 0, which implies that ∀v ∈ H1(Ω),∫

Ω

(∆ + 4π2k2)u(x)v(x)dx = 0. (19)

As G(x,x0, k) satisfies the Robin boundary condition [Eq. (15)], Eq. (19) is equivalent to
∀v ∈ H1(Ω),

−aα[u, v] + 4π2k2
∫
Ω
u(x)v(x)d(x)

=
∫
∂Ω

(
α(x)G0(x− x0, k) +

∂G0(x−x0,k))
∂n(x)

)
v(x)dS(x),

(20)

where the Robin form aα was defined in Eq. (6). Reciprocally, if u is a solution of Eq. (20),
then by applying Eq. (20) to all functions v ∈ H1(Ω) whose trace on ∂Ω is zero, we prove
that function G(x,x0, k) ≜ G0(x−x0, k)+u(x) is a solution to Eq. (14). Then by applying
Eq. (20) again to the larger set of all functions v ∈ H1(Ω), we deduce that G(x,x0, k) is also
a solution to Eq. (15). Therefore proving the existence of the Green’s function G(x,x0, k) is
equivalent to proving the existence of a solution u to Eq. (20). Moreover, because we have
already proved that the Green’s function G(x,x0, k) is unique, the solution u of Eq. (20) is
also necessarily unique, if it exists.

Let us now prove the existence (and confirm the uniqueness) of function u. First, the
trace inequality (6.15) in Bögli et al. (2022) shows that there exists a constant C(Ω) > 0
that only depends on the bounded Lipschitz domain Ω, such that ∀v ∈ H1(Ω),∣∣∣∣∫

∂Ω

|v(x)|2dS(x)
∣∣∣∣ ≤ C(Ω)∥v∥L2(Ω)∥v∥H1(Ω). (21)

The trace inequality Eq. (21) shows that the left member of Eq. (20) is a continuous sesquilin-
ear form on H1(Ω)×H1(Ω), and the right member of Eq. (20) is a continuous antilinear form
on H1(Ω). Thus, the Riesz representation theorem implies that there is a unique bounded
linear operator A : H1(Ω) → H1(Ω) and a unique vector w ∈ H1(Ω) such that ∀v ∈ H1(Ω),

aα[u, v]− 4π2k2
∫
Ω
u(x)v(x)d(x) = ⟨Au, v⟩H1(Ω) (22)
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and ∫
∂Ω

(
α(x)G0(x− x0, k) +

∂G0(x−x0,k))
∂n(x)

)
v(x)dS(x) = −⟨w, v⟩H1(Ω).

Therefore, Eq. (20) can be rewritten in the more compact form: ∀v ∈ H1(Ω), ⟨Au, v⟩H1(Ω) =
⟨w, v⟩H1(Ω), which is equivalent to Au = w in H1(Ω). Now we need to prove that the
linear operator A is bijective, which will permit us to conclude that there exists a unique
vector u ∈ H1(Ω) such that Au = w. First, by substituting Eq. (7) into Eq. (22), we get
∀v ∈ D(−∆α

Ω),
⟨Av, v⟩H1(Ω) =

∫
Ω
−(∆α

Ω + 4π2k2)v(x)v(x)d(x).

Consequently, as 4π2k2 does not belong to the spectrum of the Robin Laplacian −∆α
Ω and this

spectrum has no finite point of accumulation (as shown in Theorem 1), there is a constant
c0 > 0 such that ∀v ∈ D(−∆α

Ω), ∣∣⟨Av, v⟩H1(Ω)

∣∣ ≥ c0∥v∥2L2(Ω), (23)

and because D(−∆α
Ω) is dense in H1(Ω), by continuity, this inequality also holds ∀v ∈ H1(Ω).

In particular, ∀v ∈ H1(Ω) such that Av = 0, Eq. (23) implies that v = 0, therefore A is
injective. In the same way, ∀v ∈ span(A)⊥, ⟨Av, v⟩H1(Ω) = 0, therefore Eq. (23) implies that
v = 0, which proves that span(A) is dense in H1(Ω). Now we have yet to prove that span(A)
is closed, which will permit us to conclude that span(A) = H1(Ω), i.e., A is surjective, thus
bijective. To do so, first, we need to establish the following stronger variant of Eq. (23).
There exists a constant c1 > 0 such that ∀v ∈ H1(Ω),∣∣⟨Av, v⟩H1(Ω)

∣∣ ≥ c1∥v∥2H1(Ω). (24)

By reductio ad absurdum, suppose that Eq. (24) is false. Then, there is a sequence of vectors
vn ∈ H1(Ω) such that ∥vn∥H1(Ω) = 1 ∀n ∈ N and ⟨Avn, vn⟩H1(Ω) → 0 when n → +∞.
However, Eq. (23) proves that

∣∣⟨Avn, vn⟩H1(Ω)

∣∣ ≥ c0∥vn∥2L2(Ω), therefore, ∥vn∥L2(Ω) → 0 when
n → +∞. Because ∥vn∥H1(Ω) = 1 ∀n ∈ N, we also deduce that ∥∇vn∥L2(Ω) → 1 when
n→ +∞. However, Eqs. (22) and (6) yield

⟨Avn, vn⟩H1(Ω) =
∫
∂Ω
α(x)|vn(x)|2dS(x) + ∥∇vn∥2L2(Ω) − 4π2k2∥vn∥2L2(Ω). (25)

In addition, the trace inequality [Eq. (21)] shows that∣∣∫
∂Ω
α(x)|vn(x)|2dS(x)

∣∣ ≤ C(Ω)∥vn∥L2(Ω)∥vn∥H1(Ω)∥α∥L∞(Ω),

therefore,
∫
∂Ω
α(x)|vn(x)|2dS(x) → 0 when n → +∞. Consequently, when n → +∞, the

right member in Eq. (25) tends to one, whereas the left member tends to zero, which is a
contradiction. We have thus proved Eq. (24). Then, applying the Cauchy-Schwarz inequality
to Eq. (24) yields

c1∥v∥2H1(Ω) ≤
∣∣⟨Av, v⟩H1(Ω)

∣∣ ≤ ∥Av∥H1(Ω)∥v∥H1(Ω),

which implies that
c1∥v∥H1(Ω) ≤ ∥Av∥H1(Ω). (26)
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We can now prove that span(A) is closed. Indeed, suppose that a sequence of vectors Avn
converges to a vector b in H1(Ω); we want to prove that b ∈ span(A). However, {Avn}n∈N is
a Cauchy sequence in H1(Ω). Then Eq. (26) proves that {vn}n∈N is also a Cauchy sequence
in H1(Ω). Because the Hilbert space H1(Ω) is complete, the sequence {vn}n∈N converges
to a vector v∞ ∈ H1(Ω). Finally, as the operator A is bounded, it is continuous, therefore,
Av∞ = limn→+∞Avn = b, which proves that b ∈ span(A).

In conclusion, we have proved that span(A) is closed, which proves that A is surjective,
thus bijective, which proves that there exists a unique vector u ∈ H1(Ω) such that Au = w,
which finally proves the existence of the unique Green’s function G(x,x0, k) = G0(x −
x0, k) + u(x), which is the solution to Eqs. (14) and (15). In other respects, function u is a
solution of the differential equation PG = 0 on the open set Ω with P ≜ (∆+4π2k2) elliptic,
which proves that u is actually an analytic function in Ω (Hörmander, 2015, Theorem 4.4.3).
Because function G0 is analytic in Ω\{0}, we conclude that the Green’s function G(x,x0, k)
is analytic in Ω\{x0}. We have, thus, finally proved the first assertion of Proposition 2.

The second assertion can be proved by adapting the proof of the Abel basis property
in Agranovich (1994, p. 162). Agranovich’s theorem deals with sesquilinear forms in Hilbert
spaces that are continuous and coercive (Agranovich, 1994, p. 151). As already explained
in Remark 1, Bögli et al. (2022, p. 17) show that it is always possible to choose a constant
ω ≥ 0 high enough such that the sesquilinear forms defined by the operators A ≜ −∆α

Ω+ωI

and B ≜ −∆
Re(α)
Ω + ωI satisfy this condition. Then, the linear operators

Pp(ε) = − 1
2πı

∫
Γp
e−λ

γε(A− λI)−1dλ

and
Qp(ε) = − 1

2πı

∫
Γp
e−λ

γε(B − λI)−1dλ

introduced in Eq. (5.1) of Agranovich (1994) (with different notations) have to be replaced
by

Pp(ε) =
1
2πı

∫
Γp
e−λ

γε (A−λI)−1

λ−ω−4π2k2
dλ

and
Qp(ε) =

1
2πı

∫
Γp
e−λ

γε (B−λI)−1

λ−ω−4π2k2
dλ,

with well-chosen contours Γp in the complex plane (including one around ω + 4π2k2) and
the same convention that e−λγε has to be replaced by one for the contours that contain the
finitely many eigenvalues such that | arg(ω+λn)| ≥ θ, and also for the contour that contains
ω + 4π2k2. In particular, every pair of contours Γp−1 and Γp share the same vertical line
segment Ip in the complex plane, and Agranovich’s proof can be easily adapted to show that
these segments Ip can be chosen such that the sequence

∫
Ip
e−λ

γε (A−λI)−1−(B−λI)−1

λ−ω−4π2k2
dλ tends

to zero when p→ +∞. With this modification, the same arguments as in Agranovich (1994,
p. 162) show that ∀ε > 0, the linear operator Oα

Ω(ε) introduced in Eq. (27) is well-defined as
follows

Oα
Ω(ε) :

L2(Ω) → L2(Ω)

ψ 7→ Gα
Ω ψ −

∑
m∈N

[
Nm+1−1∑
n=Nm

e−wnε⟨ψ,φn⟩φn

λn−4π2k2

]
(27)
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[i.e., the series over m in Eq. (27) converges in L2(Ω)], where Gα
Ω = −(∆α

Ω + 4π2k2I)−1 as in
Remark 6. Moreover, ∀ε > 0 the operator Oα

Ω(ε) is bounded, therefore, Lipschitz continuous,
the sequence of operators Oα

Ω(ε) converges, in turn, to an operator Oα
Ω on L2(Ω) when ε→ 0+,

and if the complex Robin Laplacian −∆α
Ω is replaced by the real Robin Laplacian −∆

Re(α)
Ω ,

then the sequence of operators ORe(α)
Ω (ε) converges to the same limit ORe(α)

Ω = Oα
Ω when

ε → 0+. However, in the real case, the series in Eq. (27) converges in L2(Ω) for ε = 0, and
its limit is GRe(α)

Ω ψ [cf. Remark 5 and Eq. (18)], therefore, the sequence ORe(α)
Ω (ε) converges

to the zero operator ORe(α)
Ω = 0 when ε → 0+. We, thus, conclude that Oα

Ω = O
Re(α)
Ω = 0,

which, considering Eqs. (27) and (18), finally proves Eq. (17).

5.2. Statistical wave field theory
In Badeau (2024), we introduced the foundations of the statistical wave field theory, which

establishes the statistical laws of waves propagating in a bounded domain, and focused on the
particular case of three space dimensions (d = 3). We introduced the B-function as the main
calculation tool of this theory, and presented a closed-form expression of this B-function that
holds when the two assumptions of Proposition 1 hold, i.e., when the Robin Laplacian is
diagonalizable and its eigenfunctions form a basis of L2(Ω), as explained in Badeau (2025a).
Here, we generalize the definition of the B-function to an arbitrary space dimension d, get rid
of these two assumptions as a result of Theorem 2, and provide a modified expression of the
B-function that is guaranteed to hold in the general case. We also show that the fundamental
property of the B-function, which is needed to perform the mathematical developments
in Badeau (2024), continues to hold in this general case. Contrary to the other sections
of this paper, we will only present the main lines of reasoning and not present detailed
mathematical proofs here, as it would take us too far from our main topic.

First, Theorem 2 shows that every (generalized) eigenfunction φn(x, k) of the Robin
Laplacian is an analytic function of x in Ω. In the same way, Proposition 2 shows that the
Green’s function G(x,x0, k), introduced in Sec. 5.1, is an analytic function of x in Ω\{x0}
as well as an analytic function of x0 in Ω\{x} because the expression of G in Eq. (17)
is symmetric. Now, suppose that the analytic functions φn(x, k) and G(x,x0, k) can be
analytically continued on a mathematical neighborhood D of Ω such that Eq. (17) still holds
on D ⊆ Rd. The B-function on D ×D is then defined as

B(x,x0, k) = −
(
∆G(x,x0, k) + 4π2k2G(x,x0, k)

)
. (28)

By definition of the Green’s function G in Eq. (14), the restriction of the B-function to
Ω×Ω is δ(x− x0), where x0 ∈ Ω is the original source position. Elsewhere, the B-function
in Eq. (28) can be interpreted as a distribution of image sources located outside of Ω (Badeau,
2024, Sec. III.B). Then, substituting Eq. (17) into Eq. (28), the expression of the B-function
on D ×D is B(x,x0, k) = limε→0+ B(x,x0, k, ε), with

B(x,x0, k, ε) ≜
∑
m∈N

[
Nm+1−1∑
n=Nm

e−wnεφn(x0, k)φn(x, k)

]
. (29)
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Note that Eq. (9) confirms that the restriction of B(x,x0, k) to Ω×Ω is δ(x−x0). In addition,
as the Abel basis with brackets {φn(x, k)}n∈N is pseudo-orthonormal (cf. assertion 3 in
Theorem 2), Eq. (29) yields ∀ε1, ε2 > 0,∫

x0∈ΩB(x1,x0, k, ε1)B(x2,x0, k, ε2)dx0 = B(x1,x2, ε1 + ε2, k).

When ε1 → 0+ and ε2 → 0+, we, thus, get∫
x0∈ΩB(x1,x0, k)B(x2,x0, k)dx0 = B(x1,x2, k). (30)

In Badeau (2024), Eq. (30) was derived from Eq. (1), which holds under the restrictive
assumptions of Proposition 1. Here, Eq. (30) has been derived from Eq. (9), which holds
under the relaxed assumptions of Theorem 2. Note that Eq. (30) is the fundamental equation
that permitted us to derive Eq. (61) in Badeau (2024), which provides the expression of the
pseudo-covariance function (PCF) of the randomized B-function, on which the mathematical
developments of the general statistical wave field theory rely.

6. Conclusion

In this paper, we have investigated the spectral decomposition of the complex Robin
Laplacian on a bounded Lipschitz domain, and stated a theorem that shows that the set of
its (generalized) eigenfunctions can be chosen to form a pseudo-orthonormal Abel basis with
brackets of the Hilbert space of square-integrable functions on this domain. This theorem
has then been applied to the Green’s function of the Helmholtz equation. To the best of
our knowledge, this is the first time that the existence, unicity and general closed-form
expression of the Green’s function of the Helmholtz equation are established mathematically
in this general setting. The theorem has also been applied to the B-function introduced in the
statistical wave field theory to show that the mathematical grounds of this theory also hold
in the most general case possible. We hope that this new mathematical result will encourage
further spreading of the modal approach in acoustics, now that the series expansions on
biorthogonal sets of (generalized) eigenfunctions of the complex Robin Laplacian are proved
to converge in the weak sense of Abel bases with brackets.

In future work, the approach developed in this paper could be applied to other non-self-
adjoint linear operators that also fit in the mathematical framework of Agranovich (1994).
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