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Abstract

The statistical wave field theory establishes mathematically the statistical laws of the
solutions to the wave equation in a bounded volume. It provides the closed-form expression
of the power distribution and the correlations of the wave field jointly over time, frequency
and space, in terms of the geometry and the specific admittance of the boundary surface. In
a recent paper, we presented a mathematical approach to this theory based on the Sturm-
Liouville theory and the theory of dynamical billiards. We focused on mixing billiards that
generate an isotropic wave field, and we retrieved the well-known statistical properties of
reverberation in room acoustics. In the present paper, we introduce a simpler geometric
approach, dedicated to a particular class of non-ergodic billiards. Though limited to only
a few polyhedra, this approach offers a precious insight into various aspects of the theory,
including the first examples of anisotropic wave fields, whose statistical properties are related
to mathematical crystallography. We also show that the formulas that we obtain in this
anisotropic case are closely related to those of the mixing case, albeit based on a different
mathematical approach.
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1. Introduction

In the field of room acoustics, it is well known that when waves propagate in a bounded
three-dimensional space, after many reflections on the room boundaries, and at high fre-
quency, their collective behavior becomes stochastic, a physical phenomenon that is called
late reverberation. During the 20th century, several researchers aimed to characterize math-
ematically various statistical properties of reverberation, e.g. over time (Moorer, 1979),
frequency (Schroeder, 1962), time-frequency (Polack, 1988) and space (Cook et al., 1955).
In particular, the reverberation time, which is defined as the time it takes for the sound
pressure level to reduce by 60 dB, received special attention, first with the empirical law
proposed by Sabine at the end of the 19th century from early experiments, which holds in
a diffuse acoustic field and highly reverberant rooms (Joyce, 1975), then with the modified
formula established by Eyring (1930), which holds when the absorption at the boundary is
larger, and later with the reverberation theory of Polack (1992), based on the mathematical
theory of dynamical billiards (Tabachnikov, 1995).

Indeed, at high frequency, wave propagation can be approximated by considering the
trajectory of rays that undergo successive specular reflections on the domain’s boundary,
similarly to optical rays (Kuttruff, 2014, Chap. 4). The ray trajectory can then be interpreted
as a dynamical billiard that, depending on the boundary geometry, may follow different
statistical properties. For instance, a billiard is ergodic when over time, the position and
the unit direction vector of almost every ray trajectory are jointly uniformly distributed
in the phase space V × S(0, 1), where V denotes the bounded volume and S(0, 1) is the
unit sphere. In addition, mixing billiards, in addition to being ergodic, are such that after
an asymptotically long elapsed time, the orientation of the ray at any receiver’s position is
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statistically independent of the source’s position and orientation. Under this assumption, the
wave field statistics are independent of the receiver’s position and orientation in the room.
The wave field is thus isotropic (so the classical definition of a diffuse field can be considered
as equivalent to the mixing property), and the reverberation time is also independent of
the space position and the orientation in the room (Polack, 1992). In other respects, even
in rooms whose shape is not mixing, Joyce (1978) proved that replacing the deterministic
specular reflections with random reflections following Lambert’s cosine law was sufficient to
enforce ergodicity. In ergodic rooms, various formulas have been proposed for the asymptotic
reverberation time, based on the statistics of the reflections on the boundary surface, see
e.g. Joyce (1978), Polack (1992) and Kuttruff (2014, Chaps. 4 and 5). Yet, the case of
non-ergodic rooms is much more complex, since the reverberation time can no longer be
uniquely defined, and may depend on the source and receiver positions and orientations. A
noteworthy study of the particular case of bidimensional (2D) and three-dimensional (3D)
ergodic and non-ergodic circular and rectangular enclosures can be found in Polack (2024).

In a recent publication (Badeau, 2024), the author of the present paper has opted for a
radically different mathematical approach, which proved to be much more powerful than the
usual methods based on the statistics of the reflections. This innovative approach led to a
whole new theory called statistical wave field theory. This theory establishes mathematically
the statistical laws of the solutions to the wave equation in a bounded volume. It provides the
closed-form expression of the power distribution and the correlations of the wave field jointly
over time, frequency and space, in terms of the geometry and the specific admittance of the
boundary surface. In room acoustics, it permitted us to retrieve the well-known statistical
properties of reverberation that have been established over the past century, and to reveal
new, previously unknown properties.

In Badeau (2024), we focused on the case of mixing rooms, and we developed a com-
plex mathematical approach based on a Weyl-like asymptotic expansion of the modal den-
sity (Balian and Bloch, 1970). So, one of the objectives of the present paper is to introduce
a simpler and more intuitive geometric approach to the statistical wave field theory. For
this purpose, we address a simpler framework than that of mixing billiards: we consider
polyhedral shapes V , which will be referred to as special polyhedra and which include the
rectangular cuboid as a particular case, that are neither mixing nor ergodic, but rather in-
tegrable in the sense of Arnold’s theorem (Arnold and Avez, 1989). This means that the
Helmholtz equation can be solved in closed-form subject to various boundary conditions
(Dirichlet, Neumann, and even Robin in certain cases). Moreover, all the eigenfunctions are
trigonometric polynomials. Based on these closed-form solutions, deriving the equations of
the statistical wave field theory will prove to be much easier than in the mixing case. More-
over, a notable difference with the mixing case is that the high frequency approximation is
not even required: the theory predictions hold right from the zero frequency.

In the case of Neumann’s boundary condition, we will then show that the wave field
in these special polyhedra is stationary but not isotropic. Yet, its second order statistics
present the rotational invariances of a cyclic crystallographic point group. In the case of
Robin’s boundary condition, we will show that the wave vector space undergoes a nonlinear
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distortion and that this distortion is not isotropic either, but presents the same rotational
invariances of a cyclic crystallographic point group. This new approach paves the way for
a general anisotropic formula of the reverberation time, which encompasses both cases of
special polyhedra and mixing billiards.

This paper is structured accordingly to Badeau (2024), in order to permit an easy com-
parison of the two documents. Note that Badeau (2024) includes a comprehensive literature
review, as well as detailed information regarding the various assumptions, concepts and im-
plications of the statistical wave field theory, which will not be repeated here, in order to
avoid unneeded redundancies. Nevertheless, the present paper is written so that it can be
read independently from Badeau (2024). Sec. 2 introduces some acronyms and mathematical
notations that will be used in the rest of the paper. Then Sec. 3 characterizes the sets of
polyhedra that are the subject of the present study, and Sec. 4 summarizes a few funda-
mental notions regarding wave propagation that are needed to develop the theory. Section 5
reviews the mathematical assumptions on which the theory relies in the particular case of
special polyhedra. Then Sec. 6 develops the special theory dedicated to Neumann’s boundary
condition, and Sec. 7 develops the general theory dedicated to Robin’s boundary condition.
Section 8 compares the results obtained in the case of special polyhedra with those already
obtained in the case of mixing billiards (Badeau, 2024). Finally, Sec. 9 summarizes the main
contributions of this paper, and proposes a few perspectives for future work.

2. Acronyms and mathematical notations

Acronyms:

ACF auto-covariance function

WSS wide sense stationary

Mathematical notations:

• ≜: equal by definition to

• N: set of whole numbers

• R, C: sets of real and complex numbers

• ı =
√
−1: imaginary unit

• R+: set of nonnegative real numbers

• x (bold font), z (regular): vector and scalar, respectively

• A\B: relative complement (set difference) of set B in set A

• A∗ = A\{0}: set A minus 0

• A ⊆ B: A is a subset of B, possibly equal to B
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• V̊ : interior of a subset V of R3

• V : closure of a subset V of R3

• |V |: Lebesgue measure (volume) of a subset V of R3

• λ = 1
|V | : mean density of sources over space

• ∂V = V \V̊ : boundary of a subset V of R3

• n(x) where x ∈ ∂V : outward unit normal vector to the boundary surface of subset V

• S(A): area of a 2D sub-manifold A of R3

• P S: 3× 2 orthonormal matrix whose range space is parallel to the flat surface S

• ∥.∥2: Euclidean/Hermitian norm of a vector or a function

• z: complex conjugate of z ∈ C

• Re(z) (resp. Im(z)): real (resp. imaginary) part of a complex number z ∈ C

• x⊤: transpose of vector x

• A⊥: orthogonal complement of set A

• S(0, k): sphere centered at the origin and of radius k: S(0, k) = {k ∈ R3; ∥k∥2 = k}

• Cn: finite group of rotations that is generated by a unique rotation of angle 2π
n

• SO(3): special orthogonal group (3D rotation group)

• L2(V ) where V is a Borel subset of R3: Hilbert space of measurable functions f
supported in V , such that ∥f∥2 =

√∫
V
|f(x)|2dx < +∞

• δn1,n2 : Kronecker delta: δn1,n2 = 1 if n1 = n2, δn1,n2 = 0 otherwise

• δ(.): Dirac delta function

• XL with L > 0: Dirac comb defined on R: XL(x) =
∑

k∈Z δ(x− kL)

• ∆ϕ(x): Laplacian of function ϕ(x)

• 1D Fourier transform of function ψ : R → C:

ψ̂(ν) =
∫
t∈R ψ(t)e

−2ıπνtdt (1)

• 3D Fourier transform of function ψ : R3 → C:

ψ̂(k) =
∫
x∈R3 ψ(x)e

−2ıπk⊤xdx (2)
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• E[X]: expected value of a random variable X

• Covariance of two complex random variables X and Y :

cov[X, Y ] = E[(X − E[X])(Y − E[Y ])]

3. Special polygons and polyhedra

In this section, we characterize the sets of special polygons and special polyhedra that
are integrable in the sense of Arnold’s theorem (Arnold and Avez, 1989), which means that
the Helmholtz equation can be solved in closed-form subject to various boundary conditions
(Dirichlet, Neumann, and even Robin in certain cases).

Rectangle Equilateral triangle Hemiequilateral triangleIsosceles right triangle

Line segment Special polyhedra (all are right prisms)

Figure 1: Special polygons and the corresponding special polyhedra

First, in two space dimensions, there exist only four integrable polygons (Amar et al.,
1991; McCartin, 2008), which are illustrated in Fig. 1, and which will be referred to as special
polygons. Indeed, it is necessary that every angle between two sides be equal to π

n
for some

n ∈ N∗, so that the number of sides can only be 3 or 4, the only possible quadrilateral
being the rectangle. In the case of triangles, the three angles have to sum to π, so the only
possible values of n are 2, 3, 4 and 6. This suggests a relationship with the crystallographic
restriction theorem (Bamberg et al., 2003), as proved in Rowlett et al. (2021). More precisely,
only three triangles are admissible: the isosceles right triangle (whose angles are π

2
, π
4
, π
4
),

the equilateral triangle (whose angles are π
3
, π
3
, π
3
), and the hemiequilateral triangle (whose

angles are π
2
, π
3
, π
6
). Among these special polygons, the eigenfunctions of the rectangle can

be easily expressed in Cartesian coordinates as the outer product of two one-dimensional
(1D) eigenfunctions of the line segment, the eigenfunctions of the equilateral triangle were
originally solved in closed-form by Lamé (1833), and the eigenfunctions of the isosceles
right triangle and the hemiequilateral triangle are deduced from those of the square and
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the equilateral triangle, respectively [see McCartin (2011) for a study of the equilateral and
hemiequilateral triangles, and Overfelt and White (1986) for a study of the isosceles right
triangle].

In higher space dimension n, the characterization of the geometric shapes that admit a
complete set of trigonometric eigenfunctions is still an open problem. Rowlett et al. (2021)
and Blom (2021) conjecture that a necessary and sufficient condition is that V is a polytope
that strictly tessellates space, which means that Rn = ∪j∈ZVj, where all Vj are isometric to V ,
and are obtained by reflecting V across its boundary faces. Furthermore, the hyperplanes
that contain the boundary faces of each Vj must have empty intersection with the interior
of Vk, for all j and k.

In three space dimensions, to the best of our knowledge, there exist only four polyhedra
that strictly tessellate R3, and that indeed admit a complete set of trigonometric eigenfunc-
tions: all of them are right prisms, whose polygonal base is one of the four special polygons.
Their eigenfunctions are thus expressed as the product of a 2D eigenfunction of their polyg-
onal base and a 1D eigenfunction of the line segment. These four special polyhedra are
illustrated in Fig. 1. It is worth noticing that in these integrable dynamical billiards, the
phase space is not explored in an ergodic manner, because the ray trajectories switch over
time between only a finite number of directions. Nevertheless, almost every ray trajectory
still reaches almost all positions in V uniformly over time, which means that space is still
explored in an ergodic manner.

4. Fundamentals of waves revisited

This section summarizes a few fundamental notions regarding wave propagation that are
needed in the rest of the paper. Most of these notions are well-known and are described for
instance in Morse and Ingard (1968). These and other notions were already presented in
more details in Badeau (2024, Sec. III), except for the particular case of special polyhedra
that is addressed in Secs. 4.3.2 and 4.4.2.

4.1. Main definitions
In a simply connected open domain V ⊆ R3, the homogeneous wave equation states that

∆p(x, t)− 1

c2
∂2p(x, t)

∂t2
= 0, (3)

where p(x, t) is the wave amplitude at position x ∈ V and time t ∈ R, ∆ is the Laplacian,
and c is the propagation speed of the wave. Applying the 1D Fourier transform (Eq. (1))
with respect to time to Eq. (3) yields the Helmholtz equation:

∆ϕ(x) + 4π2k2ϕ(x) = 0, (4)

where the scalar k = ν
c

is the wave number and ν denotes the frequency.
Given a punctual source position x0 ∈ V and a space position x ∈ V , a Green’s functionG

of the Helmholtz equation is a particular solution of the following inhomogeneous Helmholtz
equation:

∆G(x,x0, k) + 4π2k2G(x,x0, k) = −δ(x− x0). (5)
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4.2. B-function
In the case of a simply connected domain V ⊂ R3 with boundaries, any Green’s function

G(x,x0, k) can generally be analytically continued on a mathematical vicinity D of V that
depends on the geometry and the specific admittance of the boundary surface. In some cases,
this extension holds in the full space D = R3. The B-function on D ⊆ R3 is then defined as:

B(y,x0, k) = −
(
∆G(y,x0, k) + 4π2k2G(y,x0, k)

)
. (6)

By definition of the Green’s function G in Eq. (5), the restriction of the B-function to V is
δ(y − x0). Reciprocally, when D = R3, a particular Green’s function G is obtained as:

G(x,x0, k) =

∫
y∈R3

G0(x− y, k)B(y,x0, k)dy, (7)

where G0 is a free-field Green’s function. Equation (7) permits us to interpret the B-function
as a spatial distribution of image sources in the free field, which collectively generate inside V
the same response as that of the single original source within the bounded domain V . In
this paper, we will focus on Neumann’s boundary condition and on the special polyhedra,
in which case the B-function is real-valued, defined on D = R3, and does not depend on k,
so it will be simply denoted B(y,x0).

4.3. Neumann’s boundary condition
Let us consider a simply connected domain V ⊈ R3, whose boundary ∂V is a Lips-

chitz continuous 2D manifold (i.e. ∂V is locally the graph of a Lipschitz function). Then
Neumann’s boundary condition of the Helmholtz equation (4) states that

∀x ∈ ∂V,
∂ϕ(x)

∂n(x)
= 0, (8)

where ∂V denotes the boundary surface of V , and ∂
∂n(x)

denotes partial differentiation in
the direction of the outward normal to this surface at x. In room acoustics, Eq. (8) models
the reflection of sound waves by hard (or rigid) surfaces, which reflect the wave without
absorbing any energy (Kuttruff, 2014, Chap. 3).

4.3.1. Simply connected bounded domain
If V is a bounded domain, then the Sturm-Liouville theory (Pearson, 2001) shows that

the set of eigenvalues kn and unit eigenfunctions ϕn(x), also called normal modes, which
are solutions to Eqs. (4) and (8) is discrete: it is indexed by n ∈ N. Moreover, both kn and
ϕn(x) are real. So, without loss of generality, the eigenvalues kn can be assumed nonnegative
and sorted by non-decreasing order. Finally, the set {ϕn(x)}n∈N is such that

∀x,y ∈ V,
∑
n∈N

ϕn(x)ϕn(y) = δ(x− y). (9)
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This set forms a Hilbert basis of the real Hilbert space L2(V ) of square-integrable func-
tions on V . In addition, note that the constant function ϕ0(x) = 1√

|V |
is always a unit

eigenfunction of Eqs. (4)) and (8), of eigenvalue k0 = 0.
Then given a punctual source position x0 ∈ V , let us consider the following Green’s

function of the Helmholtz equation (4), which satisfies Eq. (5):

G(x,x0, k) =
∑
n∈N

ϕn(x0)ϕn(x)

4π2(k2n − k2)
. (10)

Finally, every eigenfunction ϕn(.) is holomorphic in V , so it can be continued as an an-
alytic function on a mathematical vicinity D of V , which is a solution of the Helmholtz
equation (4) on D. Substituting Eqs. (4) and (10) into Eq. (6) yields the closed-form expres-
sion of the B-function on D:

B(y,x0) =
∑
n∈N

ϕn(x0)ϕn(y). (11)

Note that Eq. (9) confirms that the restriction of the B-function to V is δ(y−x0), as already
mentioned in Sec. 4.2.

4.3.2. Special polyhedra
As mentioned in Sec. 1, the special polyhedra belong to the few geometric shapes for which

the eigenvalues kn and eigenfunctions ϕn(x), which satisfy Eqs. (4) and (8), can be calculated
in closed-form. For instance, in 2D, the equilateral triangle and the hemiequilateral triangle
are solved in McCartin (2002), and the isosceles right triangle is solved in Overfelt and
White (1986). In 3D, the corresponding right prisms represented in Fig. 1 are solved in the
same way, as the outer product of each of these triangles and the line segment. From these
closed-form expressions, the B-function can then be also calculated in closed-form, and it
appears that it is always an atomic measure defined on D = R3, whose support is the finite
union of translates of a certain lattice, as illustrated in Fig. 2 in the 2D case.

In this section, we will first focus on the particular case of the rectangular cuboid, because
it is both the simplest case to solve mathematically, and the principal case of interest in
room acoustics (Kuttruff, 2014, Chap. 3). Then we will introduce a common mathematical
framework that applies to all special polyhedra.
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y1

y2
3L2

2L2

L2

0

−L2

−2L2

−3L2

−3L1 −2L1 −L1 0 L1 2L1 3L1

(a) Periodic space tessellation by the rectangle (primitive
unit cells bordered by thick lines)

y1

y2
3L

2L

L

0

−L

−3L −2L −L 0 L 2L 3L

(b) Periodic space tessellation by the isosceles
right triangle (primitive unit cells bordered by
thick lines)

(c) Periodic space tessellation by
the equilateral triangle (primi-
tive unit cells bordered by dot-
ted lines)

(d) Periodic space tessellation
by the hemiequilateral triangle
(primitive unit cells bordered by
thick lines)

Figure 2: Periodic B-function (atoms represented with colors) and strict space tessellation by special polygons

Rectangular cuboid. Let us consider a rectangular cuboid of dimensions L1, L2, L3, so that
V=(0, L1) × (0, L2) × (0, L3). Then the normal modes can be indexed by three natural
numbers (n1, n2, n3) ∈ N3, with eigenvalues kn1,n2,n3 =

1
2

√
n2
1

L2
1
+

n2
2

L2
2
+

n2
3

L2
3
, and eigenfunctions

ϕn1,n2,n3(x) = 2−
δn1,0

+δn2,0
+δn3,0

2

√
8
|V |

3∏
l=1

cos
(

πnlxl

Ll

)
= 2−

δn1,0
+δn2,0

+δn3,0
2√

8|V |

∑
s1,s2,s3=±1 e

2ıπk⊤
s1n1,s2n2,s3n3

x,

(12)

where the wave vectors are indexed by three integers (n1, n2, n3) ∈ Z3:

kn1,n2,n3 =
[

n1

2L1
, n2

2L2
, n3

2L3

]⊤
. (13)
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Substituting Eq. (12) into Eq. (11) yields the following closed-form expression of the
B-function, which is defined on D = R3:

B(y,x0) =
3∏

l=1

∑
sl=±1

X2Ll
(yl − sl x0l),

where XL denotes the Dirac comb of period L > 0. An example of this B-function is
illustrated in Fig. 2(a) in the 2D-case, where its atoms are represented with different colors,
so as to highlight its periodicity. It can be noticed that the successive reflections of the
original domain V = (0, L1) × (0, L2) strictly tessellate the 2D space, and that the B-
function is periodic of primitive unit cell (0, 2L1)× (0, 2L2) (which is bordered by thick lines
in Fig. 2(a)), repeated on a rectangular Bravais lattice (Bravais, 1850).

General case. TheB-functions of the three other special polyhedra are illustrated in Figs. 2(b)-
(d) in the 2D case. It can be noticed that the B-function is always a periodic atomic measure,
and that its primitive unit cell is always a parallelogram, which is bordered by thick lines
in Figs. 2(a),(b),(d), and by dotted lines in Fig. 2(c), because in the particular case of the
equilateral triangle, these lines do not match the edges of the domain V .

Mathematically, the eigenfunctions ϕn(x) of the four special polyhedra are trigonometric
polynomials. We can thus write: ∀n ∈ N,

ϕn(x) =
∑
m

αn,me
2ıπk⊤

n,mx (14)

where, without loss of generality, the finite set of parameters αn,m ∈ C and kn,m ∈ R3 can
be indexed so as to satisfy the following properties:

• the wave vectors {kn,m}n,m are distributed on a Bravais lattice in R3;

• ∀n ∈ N, the wave vectors kn,m have the same norm: ∀m, ∥kn,m∥2 = kn;

• ∀n ∈ N, since ϕn(x) is real-valued, we have

∀m, kn,−m = −kn,m and αn,−m = αn,m; (15)

• finally, since the eigenfunctions are unitary (i.e.
∫
V
ϕn(x)

2dx = 1), we have

∀n ∈ N,
∑
m

|αn,m|2 = λ ≜ 1
|V | . (16)

Note that for n = 0, there is only one component m = 0, so that

k0,0 = 0 and α0,0 =
√
λ. (17)

The distribution of the wave vectors on a lattice is reflected by Eq. (13) for both the rectan-
gular cuboid and the isosceles right triangular right prism (in which case L1 = L2 = L), and
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Eq. (16) can be directly derived from Eq. (12) in the case of the rectangular cuboid. Indeed,
Eq. (12) shows that

∀m, αn,m =

√
2
δn1,0

+δn2,0
+δn3,0

8|V | , (18)

where the natural number n corresponds to the triplet (|n1|, |n2|, |n3|), and for every n, the in-
tegerm corresponds to the 8

2
δn1,0

+δn2,0
+δn3,0

possible values of the triplet (sign(n1), sign(n2), sign(n3)),
which finally proves Eq. (16). In addition, we have the following result, which generalizes
the 2D case (Amar et al., 1991): there is a polyhedron P made of V and a few reflections
of V , which is a parallelogrammatic right prism, which strictly tessellates the 3D space, and
which is such that every eigenfunction ϕn is periodic of primitive unit cell P . Then the
uniform probability density function on P , p(u) = 1

|P |1P (u), satisfies the following property:
the characteristic function p̂(k), defined as the 3D Fourier transform (Eq. (2)) of p, is such
that ∀Q ∈ N∗,

p̂

(
Q∑

q=1

knq ,mq

)
= 0 (19)

for all wave vectors kn1,m1 . . .knQ,mQ
such that

∑Q
q=1 knq ,mq ̸= 0. In particular, the polyhe-

dron P can be [0, 2L1]× [0, 2L2]× [0, 2L3] for both the rectangular cuboid and the isosceles
right triangular right prism (in which case L = L1 = L2). Moreover, the B-function is also
periodic of primitive unit cell P , as represented in Fig. 2 in the 2D-case.

4.4. Robin’s boundary condition
We still consider a simply connected domain V ⊈ R3, whose boundary ∂V is a Lipschitz

continuous 2D manifold. Now, the boundary ∂V is characterized by the specific admittance
β̂(x, k) ∈ C, which is an essentially bounded function of the position x ∈ ∂V . Then the
boundary condition of the Helmholtz equation is

∀x ∈ ∂V,
∂φ(x, k)

∂n(x)
+ 2ıπkβ̂(x, k)φ(x, k) = 0. (20)

In the case of non-rigid surfaces, which absorb a part of the energy of the incident wave,
β̂(x, k) is complex and the real part of β̂(x, k) is positive. However, when there is no energy
absorption, β̂(x, k) is purely imaginary. Also note that when k = 0, Eq. (20) reduces to
Neumann’s boundary condition (Eq. (8)). Since the boundary condition in Eq. (20) explicitly
depends on k, the solutions of the homogeneous Helmholtz equation also depend on k, thus
Eq. (4) has to be rewritten

∆φ(x, k) + 4π2κ(k)2φ(x, k) = 0, (21)

where the wave number is now denoted κ(k) ∈ C.
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4.4.1. Simply connected bounded domain
If V is a bounded domain, then the set of eigenvalues κn(k) and eigenfunctions φn(x, k),

which are solutions to Eqs. (20) and (21), is still discrete and indexed by n ∈ N. Moreover,
when k ̸= 0, if there is energy absorption at the boundary (i.e. if β̂(x, k) is complex and
Re(β̂(x, k)) > 0), then both κn(k) and φn(x, k) are complex and Im(κn(k)) > 0. However,
if there is no energy absorption (i.e. if β̂(x, k) is purely imaginary), then κn(k) and φn(x, k)
are real-valued.

4.4.2. Special polyhedra
With the special polyhedra, the situation is different from the Neumann’s case. Indeed,

in 2D, the isosceles right triangle and the hemiequilateral triangle are no longer solvable in
closed-form, so neither are the corresponding right prisms illustrated in Fig. 1. Nevertheless,
the rectangle and the equilateral triangle are still solvable in closed-form, provided that
function x 7→ β̂(x, k) is constant on every side of the polygon (for instance the latter was
addressed in McCartin (2004)), and so are the corresponding right prisms. In this section,
we will focus on the particular case of the rectangular cuboid (Kuttruff, 2014, Chap. 3), for
the same reasons as explained in Sec. 4.3.2.

So, let us consider again a rectangular cuboid of dimensions L1, L2, L3, so that V=(0, L1)×
(0, L2) × (0, L3). Let us assume that β̂(x, k) = β̂−l(k) ∈ C on the face orthogonal to axis
l ∈ {1, 2, 3} and going through xl = 0, and β̂(x, k) = β̂+l(k) ∈ C on the face orthogonal to
axis l and going through xl = Ll. Then the eigenfunctions of the Helmholtz equation (21)
can be factorized as

φn(x, k) =
3∏

l=1

φn,l(xl, k), (22)

where ∀l ∈ {1, 2, 3}, function φn,l is of the form

φn,l(xl, k) = an,l(k)e
−2ıπκn,l(k)xl + bn,l(k)e

2ıπκn,l(k)xl , (23)

with an,l(k), bn,l(k) and κn,l(k) ∈ C. Indeed, the eigenfunctions φn(x, k) in Eq. (22) are
clearly solutions to the Helmholtz equation (21), associated with the eigenvalues

κn(k) =
√
κn,1(k)2 + κn,2(k)2 + κn,3(k)2.

Moreover, at the cuboid boundaries, Robin’s boundary condition (Eq. (20)) yields φ̇n,l(0, k) =

2ıπkβ̂−l(k)φn,l(0, k) at xl = 0, and φ̇n,l(Ll, k) = −2ıπkβ̂+l(k)φn,l(Ll, k) at xl = Ll, which
can be written as a 2× 2 linear system of equations:

K

[
an,l(k)
bn,l(k)

]
=

[
0
0

]
,

where K is the 2× 2 matrix[
κn,l(k) + kβ̂−l(k) −κn,l(k) + kβ̂−l(k)

(−κn,l(k) + kβ̂+l(k))e
−2ıπκn,l(k)Ll (κn,l(k) + kβ̂+l(k))e

2ıπκn,l(k)Ll

]
.

13



For a non-zero solution (an,l(k), bn,l(k)) to exist, the determinant of this system has to be
zero, thus (

κn,l(k)− kβ̂−l(k)
)(

κn,l(k)− kβ̂+l(k)
)

(
κn,l(k) + kβ̂−l(k)

)(
κn,l(k) + kβ̂+l(k)

) = e4ıπκn,l(k)Ll . (24)

The solutions κn,l(k) of Eq. (24) cannot be expressed in closed-form and have to be com-
puted numerically (Kuttruff, 2014, Chap. 3). Note that the squared magnitude of function
φn,l(xl, k) defined in Eq. (23) is represented in Kuttruff (2014, Fig. 3.5 p. 82) for n = 4 and
for various values of β̂±l(k), in order to illustrate the distortion of the normal modes induced
by a non-zero specific admittance.

5. Fundamentals of the statistical wave field theory

In Badeau (2024, Sec. IV), we introduced the three mathematical assumptions of the
version of the statistical wave field theory dedicated to mixing billiards:

• Assumption 1: the source’s position is a random variable uniformly distributed in V ;

• Assumption 2: the frequency f (or equivalently the wave number k) is large;

• Assumption 3: the mean and covariances of the B-function are stationary and isotropic.

We showed that Assumptions 1 and 3 were directly related to the mixing property, and
Assumption 2 permitted us to locally approximate a possibly curved boundary surface by
its tangent plane. The three assumptions were sorted in this particular order because this
was the only possible deductive way of deriving the mathematical equations of the theory.
In this paper, the situation is different, because we no longer consider mixing billiards, but
instead we focus on the special polyhedra, and we only address the Neumann’s case. In
particular, Assumption 2 is no longer required, and indeed the theory predictions will hold
right from the zero frequency. In other respects, the special polyhedra are neither mixing
nor ergodic, yet almost every ray trajectory still explores space in an ergodic manner (i.e.
uniformly over time), as explained in Sec. 3. Consequently, a relaxed version of Assumption
3 holds (Sec. 5.1): the mean and covariances of the B-function are still stationary [as can
be noticed in Fig. 2, the B-function is actually a periodic, and thus stationary, simple point
process, as defined in Daley and Vere-Jones (2003, Chap. 8)], but no longer isotropic (as can
be noticed e.g. in Fig. 2(a), the atoms are spatially distributed along straight lines whose
directions are parallel to the sides of the rectangle). Finally, Assumption 1 no longer holds
in the strict sense because, even though space is still explored in an ergodic manner, it is not
explored in a mixing manner (in the sense that two parallel ray trajectories starting at close
spatial positions will almost surely stay parallel and close to each other), so the stationary
statistics of the wide-sense stationary (WSS) B-function do depend on the source’s position.
Nevertheless, we will show that when the power spectrum of the B-function is smoothed
over frequency, the resulting auto-covariance function (ACF) becomes independent again of
the source’s position (Sec. 5.2). In this way, Assumption 1 still holds in a broader sense.
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5.1. Stationarity of the B-function
The first assumption considered here is simply related to the periodicity of the B-function,

which is clearly visible in Fig. 2: The mean and covariances of the B-function are stationary.
This assumption is enforced by introducing a random translation of space, characterized by
the probability density function p introduced in Sec. 4.3.2. We thus consider the random
process B(y − u,x0), where u is a random vector with probability distribution p, and
we will show that it is WSS. First, substituting Eq. (14) into Eq. (11) yields B(y,x0) =∑

n∈NBn(y,x0), where

Bn(y,x0) =
∑
m0

∑
m

αn,m0 αn,m e
2ıπk⊤

n,m0
x0 e2ıπk

⊤
n,my.

Then Eq. (19) with Q = 1 and Eq. (17) yield E [Bn(y − u,x0)] = λ δn,0, which shows that
the B-function is first order stationary, of mean µB = λ. In the same way, Eq. (19) with
Q = 2 and Eq. (15) show that ∀n1, n2 > 0,

cov[Bn1(y1 − u,x0), Bn2(y2 − u,x0)] = δn1,n2 λn(x0)
∑
m

|αn,m|2 e2ıπk
⊤
n,m(y1−y2) (25)

where
λn(x0) ≜

∑
m1

∑
m2

αn,m1αn,m2 e
2ıπ(kn,m1−kn,m2 )

⊤x0 . (26)

Eq. (25) shows that the B-function is WSS, of ACF

Γ0
B(z;x0) ≜ cov[B(y + z − u,x0), B(y − u,x0)]

=
∑

n∈N∗ λn(x0)
∑

m |αn,m|2 e2ıπk
⊤
n,mz.

(27)

It can be noticed that Γ0
B(z;x0) explicitly depends on the original source position x0, which

is in agreement with the fact that space is not explored in a mixing manner. Moreover, it can
also be noticed that function n 7→ λn(x0) is oscillating around a value that can be calculated
by averaging λn(x0) over x0. Indeed, Eqs. (26), (19) with Q = 2, (15) and (16) yield∫

λn(x0)p(x0)dx0 =
∑
m

|αn,m|2 = λ.

5.2. Random source position
Since the statistical wave field theory involves a power spectrum that is smoothed over

the wave numbers kn, replacing λn(x0) by its average value λ in Eq. (27) will not affect the
smoothed power spectrum. Therefore, it is still possible to assume that the source position x0

is randomly and uniformly distributed in V , even though space is not explored in a mixing
manner. Consequently, the B-function is WSS, of same mean µB = λ, and ACF

Γ0
B(z) = λ

∑
n∈N∗

∑
m

|αn,m|2 e2ıπk
⊤
n,mz. (28)
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6. Special theory (Neumann’s boundary condition)

In the case of Neumann’s boundary condition, the B-function is WSS, as explained in
Sec. 5, so the room response to a punctual source is WSS over both space and time, and
it can be decomposed on the set of plane waves e2ıπk⊤x cos(2πc∥k∥2t) for all wave vectors
k ∈ R3 [as in Eq. (87) in Badeau (2024)]. Then the purpose of the special statistical wave
field theory is to calculate the spectral measure Γ̂B(k), which can be interpreted as the power
distribution of the plane waves in this decomposition.

As in Sec. 4.3.2, we first focus on the rectangular cuboid (Sec. 6.1), before addressing the
general case of special polyhedra (Sec. 6.2).

6.1. Rectangular cuboid
Let us consider a rectangular cuboid of dimensions L1, L2, L3, so that V=(0, L1)×(0, L2)×

(0, L3) as in Sec. 4.3.2. By substituting Eqs. (13) and (18) into Eq. (28), where the natural
number n corresponds to the triplet (|n1|, |n2|, |n3|), and for every n, the integer m corre-
sponds to the 8

2
δn1,0

+δn2,0
+δn3,0

possible values of the triplet (sign(n1), sign(n2), sign(n3)), we
obtain

Γ0
B(z) = λ

3∏
l=1

X2Ll
(zl) +

λ2

2

3∑
l=1

∏
l′ ̸=l

Ll′X2Ll′
(zl′) +

λ2

4

3∑
l=1

LlX2Ll
(zl)− 7

8
λ2 (29)

whose 3D Fourier transform (Eq. (2)) is

Γ̂0
B(k) =

λ2

8

(
3∏

l=1

X 1
2Ll

(kl) +
3∑

l=1

δ(kl)
∏
l′ ̸=l

X 1
2Ll′

(kl′) +
3∑

l=1

X 1
2Ll

(kl)
∏
l′ ̸=l

δ(kl′))− 7δ(k)

)
.

(30)
The second order measure M0

B(z) ≜ Γ0
B(z) + λ2 is represented in 2D in Fig. 3(a): it

is made of atoms located on a rectangular Bravais lattice, of horizontal and vertical lines
going through these atoms, and of a constant term represented by the colored background.
Note that Fig. 3(a) represents the second order measure M0

B(z) rather than the ACF Γ0
B(z)

mainly for visualization purposes, in order to avoid representing negative terms such as −7
8
λ2

in Eq. (29) (the same remark will apply to Figs. 3(b) and (d)). The 3D Fourier transform of
M0

B(z), the raised spectral measure M̂0
B(k) ≜ Γ̂0

B(k)+λ
2δ(k), is illustrated in 2D in Fig. 3(c):

it is discrete, i.e. made only of atoms that are also located on a rectangular Bravais lattice
(the different sizes of the points are intended to represent the different powers of the atoms,
according to Eq. (28)).
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(a) Exact second order measure M0
B(z) =

Γ0
B(z) + λ2

(b) Reduced second order measure MB(z) =
ΓB(z)+λ2 (equal to M0

B(z) inside the red frame)

(c) Discrete raised spectral measure M̂0
B(k) =

Γ̂0
B(k) + λ2δ(k) (the different sizes of the points

represent different powers)

(d) Reduced raised spectral measure M̂B(k) =

Γ̂B(k) + λ2δ(k) (each line is parallel to each set
of parallel lines in Fig. 2(a))

Figure 3: Second order measures and raised spectral measures of the rectangle

As previously explained, the statistical wave field theory rather focuses on smoothed
power spectra. Here spectral smoothing can be achieved by modifying the expression of the
ACF in Eq. (29) by keeping only the terms that are non-zero in the vicinity of z = 0:

ΓB(z) = λδ(z) + λ2

2

3∑
l=1

∏
l′ ̸=l

Ll′δ(zl′) +
λ2

4

3∑
l=1

Llδ(zl)− 7
8
λ2. (31)

The resulting reduced second order measure MB(z) = ΓB(z) + λ2 is represented in 2D
in Fig. 3(b). It can be noticed that it is equal to the exact second order measure inside the
region bounded by the red frame in Figs. 3(a) and (b), so that multiplying either of these two
measures by the indicator function of this region would produce the same result. Note that
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this particular region is made of all vectors z = x1−x2 for x1,x2 ∈ V , so it characterizes all
possible pairs of points where the correlations of the wave field can be practically estimated
from experimental measurements inside the room volume. Also note that multiplication
in the space domain by this indicator function is equivalent to convolution in the spectral
domain by its 3D Fourier transform, which acts as a smoothing filter.

The 3D Fourier transform of the reduced ACF in Eq. (31) can be written as Γ̂B(k) =

M̂B(k) − λ2δ(k), where the reduced raised spectral measure M̂B(k) can be decomposed as
follows:

M̂B(k) = λ volume term
+λ2

2

∑3
l=1 δ(kl)

∏
l′ ̸=l Ll′ surface term

+λ2

4

∑3
l=1 Ll

∏
l′ ̸=l δ(kl′) edge term

+λ2

8
δ(k) vertex term

(32)

As the names suggest, the volume term is related to the space inside the polyhedron, char-
acterized by its volume |V |; the surface term is related to its faces, characterized by their
areas

∏
l′ ̸=l Ll′ ; the edge term is related to its edges, characterized by their lengths Ll; and

the vertex term is related to its vertices. The reduced raised spectral measure in Eq. (32) is
illustrated in 2D in Fig. 3(d), where the colored background represents the constant volume
term λ. This spectral measure is smoother than the exact (discrete) one in Fig. 3(c), but it
is not a smooth function. Anyway, convolving either of these two raised spectral measures
by the previously mentioned smoothing filter would produce the same result, which is clearly
apparent when comparing Figs. 3(c) and (d).

From now on, we will forget the exact expressions of the ACF in Eq. (29) and of the
discrete spectral measure in Eq. (30). Instead, the statistical wave field theory rather focuses
on the reduced ACF in Eq. (31) and on its 3D Fourier transform, the reduced spectral
measure Γ̂B(k) = M̂B(k)− λ2δ(k) with M̂B(k) as defined in Eq. (32).

6.2. General case
Let us now address the general case of special polyhedra. First, note that the representa-

tion of the raised spectral measure M̂B(k) of the rectangular cuboid in Fig. 3(d) contains two
straight lines, which represent measures supported by the 2D subspaces parallel to the poly-
hedron’s faces, and which are proportional to the 2D Lebesgue measure. These subspaces
are also parallel, not only to the polyhedron’s faces, but also to the faces of all the successive
reflections of this polyhedron, which strictly tessellate the 3D space, as represented in 2D in
Fig. 2(a).

Room is missing here to develop the detailed mathematical proofs, but the same remark
actually holds for the three other special polyhedra, whose raised spectral measures M̂B(k)
are represented in 2D in Fig. 4. The case of the equilateral triangle (Fig. 4(b)) is similar
to that of the rectangular cuboid: each line represents a 2D subspace parallel to one of the
polyhedron’s faces. However the case of the isosceles right triangle and the hemiequilateral
triangle (Figs. 4(a) and (c)) is a bit different: each line represents a 2D subspace that is not
necessarily parallel to one of the original polyhedron’s faces, but rather to one of the faces of
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its successive reflections. So, each line represented in Figs. 4(a) and (c) is parallel to each set
of parallel lines of the strict space tessellations represented in Fig. 2(b) and (d), respectively.

(a) Isosceles right triangle (each
line is parallel to each set of par-
allel lines in Fig. 2(b))

(b) Equilateral triangle (each line is
parallel to each set of parallel lines
in Fig. 2(c))

(c) Hemiequilateral triangle (each
line is parallel to each set of par-
allel lines in Fig. 2(d))

Figure 4: Reduced raised spectral measures of special polygons

Moreover, note that the four raised spectral measures represented in Figs. 3(d) and 4(a)-
(c) present rotational invariances. This is because they are invariant to all successive reflec-
tions through the polyhedra’s faces. Mathematically, there is actually a one-to-one corre-
spondence between the four special polyhedra and the four non-trivial cyclic crystallographic
point groups Cn, as shown in Table 1. In crystallographic notation (Burzlaff and Zimmer-
mann, 2006), Cn denotes the finite group of rotations (of cardinal n) that has an n-fold
rotation axis, i.e. that is generated by a unique rotation of angle 2π

n
.

Special polyhedron Crystallographic point group Angle of the generator
Rectangular cuboid C2 π

Isosceles right triangular right prism C4
π
2

Equilateral triangular right prism C3
2π
3

Hemiequilateral triangular right prism C6
π
3

Table 1: Crystallographic point groups associated with the four special polyhedra

So, the raised spectral measure of each special polyhedron is invariant to any rotation R
in Cn. Similarly to Eq. (32), the general expression of the raised spectral measure M̂B(k)
can be decomposed as follows:

M̂B(k) = λ volume term

+λ2

4

∑
f

Sf

(
1
n

∑
R∈Cn

δ(n⊤
f Rk)

)
surface term

+λ2

24

∑
e

Le(
π
θe
− θe

π
)

(
1
n

∑
R∈Cn

δ(P⊤
d⊥
e
Rk)

)
edge term

+λ2

96

∑
v

( π
θv

− θv
π
) δ(k) vertex term

(33)

19



In Eq. (33), the surface term involves a sum over every face f of the polyhedron, charac-
terized by its area Sf and outward unit normal vector nf . Similarly, the edge term involves
a sum over every edge e, characterized by its length Le, direction vector de, and angle θe
between the two faces adjacent to the edge (P d⊥

e
denotes any 3×2 orthonormal matrix whose

2D range space is the orthogonal complement of de). Finally, the vertex term involves a sum
over every vertex v, characterized by the angle θv between two of its three adjacent faces
(the two other angles are equal to π

2
, since all special polyhedra are right prisms). It can

be easily verified that Eq. (33) reduces to Eq. (32) in the particular case of the rectangular
cuboid.

7. General theory (Robin’s boundary condition)

The main purpose of the general statistical wave field theory is to show that Robin’s
boundary condition induces a non-linear distortion of the real wave vectors k related to Neu-
mann’s boundary condition. In particular, when there is energy absorption at the boundary
(i.e. when Re(β̂(k)) > 0), the distorted Robin’s wave vectors κ are complex, and similarly
to the Neumann case addressed at the beginning of Sec. 6, the room response to a punctual

source can be decomposed on a set of plane waves e2ıπ(κ
⊤x+c

√
κ⊤κ t) and e

2ıπ
(
κ⊤x−c

√
κ⊤κ t

)
,

where
√
κ⊤κ denotes the complex square root of κ⊤κ ∈ C with positive imaginary part

(these plane waves have direction Re(κ), frequencies ±cRe(
√
κ⊤κ) and temporal attenu-

ation coefficient c Im(
√
κ⊤κ) > 0). In addition, the general statistical wave field theory

provides the closed-form expression of the non-linear distortion that transforms the Neu-
mann’s wave vectors k into the corresponding Robin’s wave vectors κ.

In the case of mixing billiards that we adressed in Badeau (2024, Sec. VI), this non-
linear distortion is isotropic, and we were able to identify it by using a complex mathe-
matical approach based on a change of variable that relates Neumann’s power spectrum to
Robin’s pseudo spectrum. Here, in the case of special polyhedra, the non-linear distortion
is anisotropic, and its identification is much easier, since the expression of the wave vectors
is available in closed-form.

As in Sec. 4.4, we first focus on the rectangular cuboid (Sec. 7.1), before addressing the
general case of special polyhedra (Secs. 7.2 and 7.3).

7.1. Rectangular cuboid
The wave vectors of the rectangular cuboid are indexed by three integers (n1, n2, n3) ∈ Z3:

κn1,n2,n3(k) =

 sign(n1)κ|n1|,1(k)
sign(n2)κ|n2|,2(k)
sign(n3)κ|n3|,3(k)

 , (34)

where the coefficients κn,l(k) are the solutions to Eq. (24). These solutions can be rewritten
in the following implicit form:

κn,l(k) = kn,l + ıλSl

4π

(
ln
(

κn,l(k)+kβ̂−l(k)

κn,l(k)−kβ̂−l(k)

)
+ ln

(
κn,l(k)+kβ̂+l(k)

κn,l(k)−kβ̂+l(k)

))
, (35)
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where kn,l = n
2Ll

, λ = 1
|V | =

1
L1L2L3

, and Sl =
1

λLl
is the surface area of the faces orthogo-

nal to axis l. Equation (35) explicitly shows how the complex wave vectors κn1,n2,n3(k) of
Robin’s boundary condition are related to the real wave vectors kn1,n2,n3 = [kn,1, kn,2, kn,3]

⊤

of Neumann’s boundary condition.

(a) Rectangle (β̂(k) ∈ −ıR+, same blue lines as in
Fig. 3(d), which are repulsors)

(b) Rectangle (β̂(k) ∈ +ıR+, same blue lines as in
Fig. 3(d), which are attractors)

(c) Equilateral triangle (β̂(k) ∈ −ıR+, same blue
lines as in Fig. 4(b), which are repulsors)

(d) Equilateral triangle (β̂(k) ∈ +ıR+, same blue
lines as in Fig. 4(b), which are attractors)

Figure 5: Wave vectors distortion in 2D (Neumann’s wave vectors located at vertices of the black grid,
Robin’s wave vectors located at black points, red arrows pointing from the former to the latter)

The wave vectors of the rectangular cuboid are represented in 2D in Figs. 5(a) and (b),
in the case of a single value β̂±l(k) ≜ β̂(k) that is purely imaginary, thus the wave vectors
κn1,n2,n3(k) are real-valued. In both figures, each wave vector kn1,n2,n3 of Neumann’s bound-
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ary condition is located at a vertex of the black rectangular grid, whereas each wave vector
κn1,n2,n3(k) of Robin’s boundary condition is located at a black point, and red arrows point
from the former to the latter, so as to highlight the nonlinear distortion of the wave vector
space, which is clearly anisotropic. In the case Im(β̂(k)) < 0 that is represented in Fig. 5(a),
note that the wave vectors of Neumann’s boundary condition that are located on the same
blue lines as in Fig. 3(d) (represented by blue dots), except for the one located at the origin,
are divided into two wave vectors of Robin’s boundary condition, which are moved to the
two different half spaces separated by this line. On the whole, the 2D subspaces represented
by these blue lines, which are parallel to the polyhedron’s faces, seem to act as repulsors,
which drive the wave vectors away. This effect corresponds to a mass-controlled boundary
surface, as explained in Kuttruff (2014, p. 81). On the contrary, in the case Im(β̂(k)) > 0
that is represented in Fig. 5(b), the blue lines seem to act as attractors, which bring the
wave vectors closer. This effect corresponds to a compliance boundary surface, i.e. a surface
with the impedance of a spring, as explained in Kuttruff (2014, p. 81). The case of the wave
vectors of Neumann’s boundary condition that are located on the blue lines (represented by
blue dots) is especially interesting: the distortion of the wave vector space makes them dis-
appear in a singularity (in a mathematical sense that will be defined hereunder), along with
the power λ |αn,m|2 they carry (see Eq. (28)). This is related to the fact that ∀l ∈ {1, 2, 3},
Eq. (35) does not admit any real solution for n = 0 and k ̸= 0.

Let us now investigate the case of a complex value β̂(k) with positive real part (which
means that the boundary surface absorbs a part of the energy of the incident wave), so that
the Robin’s wave vectors κ(k) are complex-valued. For visualization purpose, we will no
longer consider discrete, but rather continuous values of both coordinates kl and κl(k) (so
the index n disappears). Figure 6 then represents the variations of a single coordinate κl(k)
as a function of the parameter kl ∈ R, which is defined as in Eq. (35), for a single value β̂(k):
κl(k) = kl + ıλSl

2π
ln
(

κl(k)+kβ̂(k)

κl(k)−kβ̂(k)

)
. Note that this equation defines κl(k) implicitly, and it may

happen that there is not a single solution κl(k) for all values of kl ∈ R. So, the domain K of
the function kl 7→ κl(k) may not be R, and the set R\K where this function is not defined
will be referred to as a singularity, which is a common meaning of this word in mathematics.

In Fig. 6, the x-axis represents the real part of complex numbers, and the y-axis their
imaginary part. Since kl is real, its values (represented in magenta) belong to the x-axis,
whereas κl(k) is complex, thus its values (represented in blue) form a curve in the complex
plane. As in Figs. 5(a) and (b), red arrows point from the values kl to the corresponding
values κl(k), so as to highlight the nonlinear distortion of the wave vector space. In Fig. 6(a),
Im(β̂(k)) < 0, so the y-axis seems to act as a repulsor that drives the wave vectors away, as in
Fig. 5(a). Note that there is a gap in the set of values of Re(κl(k)), which corresponds to the
space between the two dotted vertical blue lines in Fig. 6(a). Therefore the set of values κl(k)
is disconnected (it forms two separate blue curves). In Fig. 6(b), Im(β̂(k)) > 0, so the y-axis
seems to act as an attractor that brings the wave vectors closer, as in Fig. 5(b). Again, there
is a gap in the set of values of Re(κl(k)), which corresponds to the space between the two
dotted vertical blue lines in Fig. 6(b). Therefore the set of values κl(k) is also disconnected.
In addition, note that the values of kl in the interval (− 1

2Ll
, 1
2Ll

) (represented by the black
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line segment on the x-axis) do not belong to the domain K. So, this interval represents a
singularity of function kl 7→ κl(k), in the mathematical sense that we defined above. This
singularity can be interpreted as a "black hole" since, as previously noticed from Fig. 5(b),
the power carried by the wave vectors located in this particular region of Neumann’s wave
vector space disappears in the distorted Robin’s wave vectors space [be aware that this
kind of "black hole" should not to be confused with the notion of acoustic black holes in
structures (Pelat et al., 2020)].

Figure 6: Wave vectors distortion in 1D (Neumann’s wave vectors in magenta, Robin’s wave vectors in blue,
red arrows pointing from the former to the later, singularity as a black line segment)

7.2. General case (in the strict sense)
As already mentioned in Sec. 4.4.2, only the rectangular cuboid and the equilateral

triangular right prism are solvable in closed-form in the case of Robin’s boundary condition.
So, strictly speaking, the "general case" that is referred to in this section actually includes
only these two special polyhedra. In both cases, the wave vectors distortion admits the
following implicit closed-form expression:

K(k, k) = k + ıλ
4π

∑
f

Sf ln

(
n⊤

f K(k,k)+k β̂f (k)

n⊤
f K(k,k)−k β̂f (k)

)
nf , (36)

which indeed yields K(kn1,n2,n3 , k) = κn1,n2,n3(k) in the case of the rectangular cuboid, where
kn1,n2,n3 was defined in Eq. (13) and κn1,n2,n3(k) was defined in Eqs. (34) and (35). Similarly
to the expression of the raised spectral measure in Eq. (33), Eq. (36) involves a sum over
every face f of the polyhedron, characterized by its area Sf , outward unit normal vector nf ,
and specific admittance β̂f (k).

In the case of the equilateral triangular right prism, Eq. (36) can be deduced from the
formulas in McCartin (2004), provided that all the rectangular faces f of this polyhedron (i.e.
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the vertical faces in Fig. 1) share the same value β̂f (k). The wave vectors of the equilateral
triangular right prism are represented in 2D in Figs. 5(c) and (d), still in the case of a purely
imaginary value of β̂f (k), using the same conventions as in Figs. 5(a) and (b). Clearly, all
comments made in Sec. 7.1 still apply to this case. To sum up, we can make the following
observations:

• in the Neumann’s case (i.e. if β̂f (k) = 0), the wave vector space is the flat space R3;

• if β̂f (k) is purely imaginary (i.e. when there is no energy absorption at the boundary
surface), then the wave vector space is still flat and included in R3, but it undergoes a
nonlinear distortion with respect to the Neumann’s case (represented in Fig. 5 in the
2D-case);

• if β̂f (k) is complex but not purely imaginary (i.e. when there is energy absorption),
then the wave vector space is the image of the complex function K(k, k) in Eq. (36),
i.e. a curved 3D submanifold of the six-dimensional (over field R) vector space C3

(represented as the blue curve in Fig. 6 in the 1D-case).

These observations inspire an analogy with the theory of general relativity, which shows
that the flat spacetime of special relativity is distorted and curved by the presence of mass.
This is actually the reason why in Badeau (2024), we named the version of the statistical
wave field theory dedicated to Neumann’s boundary condition special theory (since the wave
vector space is flat in this case), and that dedicated to Robin’s boundary condition general
theory (since the wave vector space is distorted, curved when β̂f (k) is not purely imaginary,
and may contain singularities that behave like black holes when Im(β̂f (k)) > 0).

7.3. General case (in the wide sense)
Now we would like to find a closed-form expression of the wave vectors distortion that

applies to all special polyhedra. This is unfortunately not possible by following the simple
mathematical approach developed in this paper, for the reasons that were already explained
in Sec. 7.2. However, it is possible by generalizing the other, more complex, approach
presented in Badeau (2024). For the moment, we keep this generalization for a future publi-
cation, but here the correct expression of this wave vectors distortion can already be written
and justified with a simple argument. Indeed, as already observed in the case of the rect-
angular cuboid and the equilateral triangular right prism, the blue lines that represent the
repulsors/attractors in Fig. 5 match the ones that characterize the raised spectral measures in
Figs. 3(d) and 4(b). So, we can guess that the same property holds in the case of the isosce-
les right triangular and the hemiequilateral triangular right prisms, whose raised spectral
measures were represented in 2D in Figs. 4(a) and (c). Consequently, the general expression
of the wave vectors distortion that holds for the four special polyhedra is actually obtained
by introducing in Eq. (36) an average over all rotations in Cn, like in Eq. (33):

K(k, k) = k + ıλ
4π

∑
f

Sf

(
1

n

∑
R∈Cn

ln

(
n⊤

f RK(k,k)+k β̂f (k)

n⊤
f RK(k,k)−k β̂f (k)

)
R⊤nf

)
, (37)
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which indeed reduces to (36) in the particular cases of the rectangular cuboid and the
equilateral triangular right prism. In other respects, it can be noticed from Eq. (37) that
K(Rk, k) = RK(k, k) for any rotation R ∈ Cn, which means that rotating the Neumann’s
wave vectors by any rotation in Cn amounts to rotating the corresponding Robin’s wave
vectors by the same rotation.

8. Relationship with mixing billiards

Let us now show the relationship between the formulas obtained in this paper and the
ones presented in Badeau (2024), which were dedicated to the case of mixing billiards.
Contrary to the special polyhedra, where the successive reflections on the faces generate a
finite group of rotations Cn, in mixing billiards, the successive reflections on the boundary
surface generate an infinite group of rotations that is uniformly dense in SO(3), making the
wave field isotropic. In other words, the average over all rotations in Cn that appears in
Eqs. (33) and (37) is replaced by an average over all rotations in SO(3). If in addition we
replace the sum over the faces f of area Sf by an integral over s ∈ ∂V with respect to the
surface element dS(s), then the volume and surface terms in Eq. (33) yield

M̂B(k) = λ+ λ2

4

∫
s∈∂V

(
1
4π

∫
u∈S(0,1)

δ(u⊤k)dS(u)

)
dS(s) = λ+ λ2S(∂V )

8∥k∥2 .

Since Γ̂B(k) = M̂B(k)− λ2δ(k), for all k > 0 we get

Γ̂B(k) ≜
∫
k∈S(0,k)

Γ̂B(k)dS(k) = 4πλ
(
k2 + λS(∂V )

8
k
)
.

This equation is exactly Eq. (80) in Badeau (2024), which is related to the asymptotic
expansion of the modal density (Balian and Bloch, 1970), as shown in Badeau (2024, Sec. V).
In the same way, if β̂f (k) is also replaced by the local specific admittance β̂(s, k), then
Eq. (37) becomes

K(k, k) = k + ıλ
4π

∫
s∈∂V

(
1
4π

∫
u∈S(0,1)

ln
(

u⊤K(k,k)+k β̂(s,k)

u⊤K(k,k)−k β̂(s,k)

)
u dS(u)

)
dS(s).

This formula can be rewritten in the following form, which explicitly highlights the isotropy
of the wave vectors distortion: K(k, k) = K(∥k∥2, k) k

∥k∥2 , where K(K, k) ∈ C denotes the
wave numbers distortion:

K(K, k) = K+ ıλ
8π

∫
s∈∂V

(
ln
(

K(K,k)+kβ̂(s,k)

K(K,k)−kβ̂(s,k)

)
−
(

kβ̂(s,k)
K(K,k)

)2
ln
(

kβ̂(s,k)+K(K,k)

kβ̂(s,k)−K(K,k)

)
+ 2kβ̂(s,k)

K(K,k)

)
dS(s).

This last equation is exactly Eq. (102) in Badeau (2024), which contains the seeds of Eyring’s
formula of the reverberation time (Eyring, 1930), as shown in Badeau (2024, Sec. VI.F).

25



9. Conclusion

In this paper, we have presented a new version of the statistical wave field theory dedi-
cated to the case of special polyhedra, whose mathematical study proved to be much simpler
than that of mixing billiards that was originally addressed in Badeau (2024). In the case
of Neumann’s boundary condition, we were able to determine directly the first and second
order statistics of the B-function by exploiting its periodicity over space. The case of Robin’s
boundary condition was even simpler: we were able to determine the anisotropic distortion
of the wave vectors directly from their closed-form expression. In both cases, the theory
predictions hold at all frequencies, which is another difference with respect to the mixing
case, which only holds at high frequency.

Though limited to only a few polyhedra, the new approach developed here offered a very
interesting insight into the theory, and permitted us to introduce several new concepts: the
edge and vertex terms that appear in the expression of the spectral measure in Neumann’s
case, and the repulsors, attractors and black holes that appear in the distorted wave vectors
space in Robin’s case. In addition, it gave us a first glimpse on the general formulas that
hold in the broader context of anisotropic wave fields.

Although this new mathematical approach is very different from the one that we originally
developed in Badeau (2024), the formulas that we obtained are closely related to those
presented in Badeau (2024), as shown in Sec. 8. This gives us a high confidence in the
validity of the results presented in both papers, since two different mathematical paths
involving various concepts from different areas of mathematics (Weyl-like asymptotic laws
and dynamical billiards on the first hand, geometry and crystallography on the other hand)
converged to the same conclusions.

In future work, we will present a unified version of the theory dedicated to anisotropic
wave fields, which encompasses both cases of special polyhedra and mixing billiards. This
will be achieved by generalizing the approached developed in Badeau (2024) to the case of
non-ergodic billiards in which space is still explored uniformly over time. In addition, we
will also provide general expressions of the edge and vertex terms that have been introduced
here, in order to complement the second order curvature term that we already investigated
in Badeau (2025). The improved predictions of the theory will then hold at lower frequencies
for a large variety of geometric shapes, including both curved surfaces and edges/vertices.
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