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Abstract

In a recent research paper, we introduced the statistical wave field theory, which establishes
the statistical laws of waves propagating in a bounded volume. These laws hold after many
reflections on the boundary surface and at high frequency. The statistical wave field theory
is the first statistical theory of reverberation that provides the closed-form expression of
the power distribution and the correlations of the wave field jointly over time, frequency
and space, in terms of the geometry and the specific admittance of the boundary surface.
In this paper, we refine the theory predictions, by investigating the impact of a curved
boundary surface on the wave field statistics. In particular, we provide an improved closed-
form expression of the reverberation time in room acoustics that holds at lower frequency.
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1. Introduction

In a recent publication (Badeau, 2024), we introduced the foundations of the statistical
wave field theory, which for the first time establishes mathematically the statistical prop-
erties of the solutions to the wave equation in a bounded volume, after many reflections
on the boundary surface, in terms of power distribution and correlations, jointly over time,
frequency, and space. The first and second order statistics of the wave field were expressed in
closed-form, via asymptotic expansions that hold at high frequency, with respect to (w.r.t.)
the geometry and the specific admittance of the boundary surface. This theory may find
applications in various science fields, including room acoustics, electromagnetic theory, and
nuclear physics. In room acoustics, this theory has permitted us to retrieve the well-known
statistical properties of reverberation that hold in mixing rooms, which provides a first con-
firmation of the theory predictions.

The statistical wave field theory is based on the following physical assumptions: first,
the medium has to be lossless, homogeneous and at rest (Kuttruff, 2014, Chap. 1), so that
the wave equation holds exactly inside the bounded volume. Second, the physical source is
assumed punctual. In addition, all parameters of the problem, including the source position
and the boundaries of the domain, are assumed constant over time. Last, the boundary sur-
face is closed and bounded, and its shape has to meet the mathematical conditions of a mixing
dynamical billiard (Tabachnikov, 1995), a notion that is related to diffusion. Concretely, this
means that most geometric shapes are allowed, especially those including irregular (rough)
surfaces producing wave scattering. Indeed, even though there is no simple mathematical
characterization of mixing billiards, there exist general results that show basically that the

2



more the boundary is irregular, the more it is mixing, and on the contrary, the more it is
smooth, the less it is mixing. Nevertheless, there exist very smooth and simple geometric
shapes such as the Bunimovich stadium (Bunimovich, 1979) that are mixing, though the
mixing rate is slower in this case.

The statistical wave field theory is closely related to the Sturm-Liouville theory. Indeed,
the solutions to the wave equation in a bounded domain are characterized by the Helmholtz
equation that, along with its boundary conditions, forms a particular Sturm-Liouville prob-
lem (Al-Gwaiz, 2008). The Sturm-Liouville theory shows that this problem admits a discrete
set of solutions, called normal modes (Kuttruff, 2014, Chap. 3). In several dimensions of
space, the density of discrete modes increases with the frequency, in a way that has been
investigated mathematically for the first time by Weyl (1911). Since then, a rich literature
has been devoted to the study of asymptotic expansions of the modal density as a function
of frequency f when f → +∞, in various space dimensions and various boundary con-
ditions (Arendt et al., 2009). The case of a three-dimensional (3D) space and of Robin’s
boundary condition, which is of special interest to us, was addressed by the physicists Balian
and Bloch (1970).

Up to the first order of the asymptotic expansion, wave propagation can be approxi-
mated by considering the trajectory of rays traveling in straight lines and undergoing suc-
cessive specular reflections on the boundary surface, as in geometric acoustics (Kuttruff,
2014, Chap. 4) and optics (Greivenkamp, 2004). The ray trajectory can then be interpreted
as a dynamical billiard that, depending on the boundary geometry, may satisfy different
statistical properties, such as ergodicity. In particular, mixing billiards, in addition to being
ergodic, are such that after an asymptotically long elapsed time, the orientation of the ray at
any receiver’s position is statistically independent of the source’s position and orientation.
Under this assumption, the resulting wave field is both homogeneous and isotropic (thus the
classical definition of a diffuse field can be considered as equivalent to the mixing property),
and the reverberation time is constant w.r.t. the space position and the orientation in the
room (Polack, 1992). To sum up, wave propagation can be described as a mixing dynami-
cal billiard in a rectangular region of the time-frequency plane that we depicted in Badeau
(2019, Fig. 1): in the frequency domain, at high frequency, so that the conditions of geomet-
ric acoustics and optics are met, and in the time domain, after the mixing time as defined
by Polack (1992), so that the mixing conditions of a dynamical billiard are met.

Based on the mixing assumption, we proved in Badeau (2024) that, if there is no energy
absorption at the boundary surface, then the wave field is asymptotically wide sense station-
ary (WSS). Moreover, the asymptotic expansion of the modal density directly provides us
with a closed-form expression of the power spectrum of the WSS wave field: indeed, because
all normal modes are uncorrelated and carry on average the same quantity of power when
the source position is random, the power spectrum is proportional to the modal density. If
on the contrary there is energy absorption, then the wave field is non-stationary, and the
theory proves that its statistics are actually related to the analytic continuation of the modal
density to the domain of complex frequencies.

In Badeau (2024), we have investigated the first and second order statistics of the wave
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field that result from the asymptotic expansion at high frequency of the modal density, up to
the first order surface term. So the theory predictions hold under the same high frequency
approximation as in geometric acoustics and optics. In this paper, we investigate the impact
of a curved boundary surface on the wave field statistics, by exploiting the second order
curvature term of the asymptotic expansion, calculated by Balian and Bloch (1970). The
second order asymptotic expansion is based on the additional assumption that the boundary
is twice continuously differentiable, so edges are excluded in Balian and Bloch (1970), and
they are also excluded in the present paper (the effect of edges will be investigated in future
publications, see Sec. 9).

This paper is structured accordingly to Badeau (2024), in order to permit an easy com-
parison of the mathematical developments in the two documents. Note that Badeau (2024)
includes a comprehensive literature review, as well as detailed information regarding the var-
ious assumptions, concepts and implications of the statistical wave field theory, which will
not be repeated here, in order to avoid unneeded redundancies. Nevertheless, the present
paper is written so that it can be read independently from Badeau (2024). In Sec. 2, we
introduce some acronyms and mathematical notations that will be used in the rest of the
paper. Then in Sec. 3, we summarize a few fundamental notions regarding wave propa-
gation that are needed to develop the statistical wave field theory. In Sec. 4, we list the
three mathematical assumptions on which the statistical wave field theory relies, and we
briefly present the Wigner time-frequency distribution that we will use to characterize the
second-order properties of non-stationary random processes. Then in Sec. 5 we present the
special theory dedicated to Neumann’s boundary condition, and in Sec. 6 we present the
general theory dedicated to Robin’s boundary condition. The main results are summarized
in Secs. 5.4 and 6.6. In Sec. 7, we investigate numerically the impact of the surface term
and that of the curvature term on the reverberation time and on the frequency distortion.
Then in Sec. 8, we discuss how in practice the statistical wave field theory can be applied
to room acoustics. Finally, in Sec. 9 we summarize the main contributions of this paper,
and we propose a few perspectives for future work. Another important contribution of this
paper is the proof presented in Appendix A that under mild assumptions, the set of complex
eigenfunctions of the Robin Laplacian forms a pseudo-orthonormal basis of the Hilbert space
of square-integrable functions.

2. Acronyms and mathematical notations

Acronyms:

ACF auto-covariance function

PCF pseudo-covariance function

WSS wide sense stationary

Mathematical notations:

• ≜: equal by definition to
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• N: set of whole numbers

• R, C: sets of real and complex numbers, respectively

• ı =
√
−1: imaginary unit

• R+: set of nonnegative real numbers

• x (bold font), z (regular): vector and scalar, respectively

• A\B: relative complement (set difference) of set B in set A

• A ⊆ B: A is a subset of B, possibly equal to B

• V̊ : interior of a subset V of R3

• V : closure of a subset V of R3

• |V |: Lebesgue measure (volume) of a subset V of R3

• λ = 1
|V | : mean density of sources over space

• ∂V = V \V̊ : boundary of a subset V of R3

• n(x) where x ∈ ∂V : outward unit normal vector to the boundary surface of subset V

• S(A): surface area of a bidimensional sub-manifold A of R3

• ∥.∥2: Euclidean/Hermitian norm of a vector or a function

• z: complex conjugate of z ∈ C

• Re(z) (respectively, Im(z)): real (respectively, imaginary) part of a complex number
z ∈ C

• x⊤: transpose of vector x

• S(0, k): sphere centered at the origin and of radius k: S(0, k) = {k ∈ R3; ∥k∥2 = k}

• δn1,n2 : Kronecker delta: δn1,n2 = 1 if n1 = n2, δn1,n2 = 0 otherwise

• δ(.): Dirac delta function

• H(t): Heaviside function: H(t) = 1 ∀t > 0 and H(t) = 0 ∀t < 0

• sinc(x) = sin(x)
x

: cardinal sine function

• ∆ϕ(x): Laplacian of function ϕ(x)
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• 1D direct and inverse Fourier transforms of a function ψ : R→ C:

ψ̂(f) =
∫
t∈R ψ(t)e

−2ıπftdt and ψ(t) =
∫
f∈R ψ̂(f)e

+2ıπftdf (1)

• 3D direct and inverse Fourier transform of a function ψ : R3 → C:

ψ̂(k) =
∫
x∈R3 ψ(x)e

−2ıπk⊤xdx and ψ(x) =
∫
k∈R3 ψ̂(k)e

+2ıπk⊤xdk (2)

• E[X]: expected value of a random variable X

• Covariance of two complex random variables X and Y :

cov[X, Y ] = E[(X − E[X])(Y − E[Y ])]

3. Fundamentals of waves revisited

In this section, we summarize a few fundamental notions regarding wave propagation that
are needed in the rest of the paper. Most of these notions are well-known and are described
for instance in Morse and Ingard (1968). However, a few concepts presented here are not
standard, such as the source response in Sec. 3.1 and the B-function in Sec. 3.2. These
and other notions were already presented in more detail in Badeau (2024, Sec. III), except
for a thorough investigation of the validity of Eq. (11) in Sec. 3.3, and for the asymptotic
expansion of the modal density in Sec. 3.4, which now includes the curvature term.

3.1. Main definitions
In a simply connected open domain V ⊆ R3, the homogeneous wave equation states that

∆p(x, t)− 1

c2
∂2p(x, t)

∂t2
= 0, (3)

where p(x, t) is the wave amplitude at position x ∈ V and time t ∈ R, ∆ is the Laplacian,
and c is the propagation speed of the wave. By applying the one-dimensional (1D) Fourier
transform [Eq. (1)] w.r.t. time to Eq. (3), we get the Helmholtz equation:

∆ϕ(x) + 4π2k2ϕ(x) = 0, (4)

where the scalar k = f
c

is the wave number and f denotes the frequency1.
Given a punctual source position x0 ∈ V and a space position x ∈ V , we define the source

response p as the unique causal solution to the following inhomogeneous wave equation:

∆p(x,x0, t)−
1

c2
∂2p(x,x0, t)

∂t2
= −δ(x− x0)δ̇(t). (5)

In the same way, given a punctual source position x0 ∈ V and a space position x ∈ V ,
a Green’s function G of the Helmholtz equation (4) is a particular solution to the following
inhomogeneous Helmholtz equation:

∆G(x,x0, k) + 4π2k2G(x,x0, k) = −δ(x− x0). (6)

1Note the unusual presence of the term 4π2 in Eq. (4), which induces a normalization of the wave number
different from what is usually found in the literature. This convention is related to our definition of the
Fourier transform in Eq. (1) as a function of the frequency, instead of the pulsation or angular frequency.
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3.2. B-function
In the case of a simply connected domain V ⊂ R3 with boundaries, any Green’s function

G(x,x0, k) can generally be analytically continued on a mathematical vicinity D of V , which
depends on the geometry and the specific admittance of the boundary surface. In some cases,
this extension holds in the full space D = R3. The B-function on D ⊆ R3 is then defined as:

B(y,x0, k) = −
(
∆G(y,x0, k) + 4π2k2G(y,x0, k)

)
. (7)

By definition of the Green’s function G in Eq. (6), the restriction of the B-function to V is
δ(y − x0). Reciprocally, when D = R3, a particular Green’s function G is obtained as:

G(x,x0, k) =

∫
y∈R3

G0(x− y, k)B(y,x0, k)dy (8)

where G0 is a free-field Green’s function. Equation (8) permits us to interpret the B-function
as a spatial distribution of image sources in the free field, which collectively generate inside
V the same response as that of the single original source within the bounded domain V .
This characterization of the wave field in terms of image sources is usual for instance in the
particular case of the rectangular cuboid (Allen and Berkley, 1979).

3.3. Robin’s boundary condition
We now consider a simply connected domain V ⊈ R3, whose boundary ∂V is a Lipschitz

continuous bidimensional (2D) manifold (i.e. ∂V is locally the graph of a Lipschitz function).
The boundary ∂V is characterized by the specific admittance β̂(x, k) ∈ C, which is an
essentially bounded function of the position x ∈ ∂V . Then the boundary condition of the
Helmholtz equation is written

∀x ∈ ∂V, ∂φ(x, k)
∂n(x)

+ 2ıπkβ̂(x, k)φ(x, k) = 0, (9)

where ∂
∂n(x)

denotes partial differentiation in the direction of the outward unit normal vector
n(x) to the boundary surface at x ∈ ∂V . In the case of non-rigid surfaces, which absorb
a part of the energy of the incident wave, β̂(x, k) is complex and the real part of β̂(x, k) is
positive. Also note that when k = 0, Eq. (9) reduces to Neumann’s boundary condition.

Since the boundary condition explicitly depends on the wave number k, the solutions to
the homogeneous Helmholtz equation also depend on k, thus Eq. (4) has to be rewritten

∆φ(x, k) + 4π2κ(k)2φ(x, k) = 0, (10)

where the wave number is now denoted κ(k) ∈ C.
Now, let us assume in addition that V is a bounded domain. Then the set of eigenvalues

κn(k) and eigenfunctions φn(x, k) that are solutions to Eqs. (9) and (10) is discrete and
indexed by n ∈ N. Moreover, when the specific admittance β̂(x, k) is purely imaginary,
all the eigenvalues κn(k) and eigenfunctions φn(x, k) are real-valued, the Robin Laplacian
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operator is real symmetric, and the set {φn(., k)}n∈N forms a Hilbert basis of L2(V ), which is
reflected by Eq. (11). When on the contrary Re(β̂(x, k)) > 0, then there is energy absorption
at the boundary, so both κn(k) and φn(x, k) are complex and Im(κn(k)) > 0 (which implies
an exponential decay over time). In this case, the Robin Laplacian operator is not Hermitian,
and the set {φn(., k)}n∈N no longer forms a Hilbert basis of L2(V ), because it is not orthogonal
w.r.t. the Hermitian inner product. Nevertheless, it has been recently proved2 in Bögli et al.
(2022, Theorem 5.7) that the set {φn(., k)}n∈N always forms an Abel basis of L2(V ), a notion
which involves a weaker form of convergence than the usual convergence in L2(V ) [see Bögli
et al. (2022, Definition 5.5)].

In this paper, we introduce a stronger result. Indeed, Proposition 1 in Appendix A proves
that if the Robin Laplacian is diagonalizable and if the set {φn(x, k)}n∈N forms a basis of
L2(V ) (which is always the case of the real Robin Laplacian), then without loss of generality,
this set can be chosen so as to form a pseudo-orthonormal basis of L2(V ), which means that

∀x,y ∈ V,
∑
n∈N

φn(x, k)φn(y, k) = δ(x− y). (11)

In other words, the dual basis of {φn(x, k)}n∈N w.r.t. the Hermitian inner product is the set
{φn(x, k)}n∈N. The idea of considering such biorthogonal sets of eigenfunctions in the general
case of non-self-adjoint linear operators was originally developed in Morse and Feshbach
(1953, Sec. 7.5), but it turned out that their mathematical developments based on supposedly
convergent series expansions were flawed, since Kostenbauder et al. (1997) exhibited examples
in physics of diverging series expansions involving non-self-adjoint linear operators. Here,
the convergence of the series in Eq. (11) is guaranteed by Proposition 1. In addition, note
that Eq. (11) is equivalent to ∀ψ1, ψ2 ∈ L2(V ),∑

n∈N

∫
V

φn(x, k)ψ1(x)dx

∫
V

φn(x, k)ψ2(x)dx =

∫
V

ψ1(x)ψ2(x)dx. (12)

If the set {φn(x, k)}n∈N is not just a simple basis of L2(V ), but in addition satisfies the frame
condition of a Riesz basis [as defined in Bögli et al. (2022, Definition 5.3)], then the series
in Eq. (12) converges absolutely, which is a stronger property than conditional convergence.

In other respects, given a punctual source position x0 ∈ V , a Green’s function of the
Helmholtz equation as defined in Eq. (6) is expressed as

G(x,x0, k) =
∑
n∈N

φn(x0, k)φn(x, k)

4π2(κn(k)2 − k2)
. (13)

Indeed, Eq. (11) shows that function G in (13) is a solution to the inhomogeneous Helmholtz
equation (6) in V , and it satisfies the boundary condition (9) on ∂V because all functions
φn(x, k) satisfy this condition.

2This property was proved in Bögli et al. (2022) when β̂(x, k) is constant on ∂V , but the same proof
actually applies when β̂(x, k) is an essentially bounded function.
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Then applying the residue theorem (Ahlfors, 1979) to the derivative of the inverse Fourier
transform [Eq. (1)] of function f 7→ G(x,x0,

f
c
) leads to the following expression of the causal

source response introduced in Eq. (5):

p(x,x0, t) = H(t) q(x,x0, t), (14)

where

q(x,x0, t) = c2Re

(∑
n∈N

φn(x0,
νn
c
)φn(x,

νn
c
)e2ıπνnt

)
, (15)

H(t) denotes the Heaviside function, which is such that H(t) = 1 ∀t > 0 and H(t) = 0
∀t < 0, and ∀n ∈ N∗, νn ∈ C denotes the unique solution to the equation f

c
= κn(

f
c
), which

has both nonnegative real and imaginary parts.
Finally, every eigenfunction φn(., k) is holomorphic in V , so it can generally be contin-

ued as an analytic function on a mathematical vicinity D of V , which is a solution to the
Helmholtz equation (10) on D. By substituting Eqs. (10) and (13) into Eq. (7), we get the
closed-form expression of the B-function on D:

B(y,x0, k) =
∑
n∈N

φn(x0, k)φn(y, k). (16)

Note that Eq. (11) confirms that the restriction of the B-function to V is δ(y − x0).

3.4. Asymptotic expansion of the modal density
We have seen in Sec. 3.3 that in a simply connected bounded domain, the set of normal

modes of the Helmholtz equation is discrete and countable. Moreover, it is well-known
that the density of modes is quadratically increasing with the wave number κ, so when
the frequency is high enough, the spectrum is well described by a smooth density function
ρ(κ, k). When the boundary surface of the domain V is twice continuously differentiable
and when β̂(x, k) is Lipschitz continuous with a small Lipschitz constant3, Balian and Bloch
(1970) have shown that function ρ(κ, k) admits the following second order expansion4 when
κ→ +∞:

ρ(κ, k) = 4π|V |κ2 + κ
∫
s∈∂V

(
π
2
− 2 arctan(k

κ
ıβ̂(s, k))

)
dS(s)

+ 1
2π

∫
s∈∂V

1
3
+ 1

1+

(
k
κ
ıβ̂(s,k)

)2 −
arctan

(
k
κ
ıβ̂(s,k)

)
k
κ
ıβ̂(s,k)

( 1
R1(s)

+ 1
R2(s)

)
dS(s).

(17)

This equation holds both in the case of Neumann’s boundary condition, which corresponds
to k = 0 as mentioned previously, and in the case of Robin’s boundary condition if and

3See the discussion in Balian and Bloch (1970, Sec. V.A).
4In Eq. (17), we have modified the notation used in Balian and Bloch (1970) so as to adapt it to the

notation used in this paper.
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only if β̂ is purely imaginary (indeed, this assumption is necessary to guarantee that the
eigenvalues κn(k) are real, in order to be able to define a density function ρ(κ, k) over R).

In the right member of Eq. (17), the dominant term 4π|V |κ2 is known as the volume term.
The first order term, which involves the first integral over the boundary surface, is called the
surface term. The second order term, which involves the second integral over the boundary
surface, is called the curvature term. Indeed, this curvature term depends explicitly on the
two main curvature radii R1(s) and R2(s) at any point s of the boundary surface ∂V . These
main curvature radii are defined as follows (Kobayashi and Nomizu, 1996): since ∂V is twice
continuously differentiable, then in a vicinity of any point s ∈ ∂V , the 2D manifold ∂V
can be locally parameterized as xn = −f(xT ), where f : R2 → R is a twice continuously
differentiable function, xn = n(s)⊤(x − s) ∈ R, and xT ∈ R2 is the orthogonal projection
of vector x − s onto the 2D subspace tangent to ∂V at s. In particular, f(s) = 0 and
∇f(s) = 0. Then the Hessian matrix of f at s is generally denoted II(s) and it defines
the second fundamental form (or shape tensor) of ∂V at s. Its two eigenvectors are called
the principal directions, and its two eigenvalues are called the principal curvatures. Finally,
the main curvature radii R1(s) and R2(s) are defined as the inverses of the two principal
curvatures.

As explained in Balian and Bloch (1970), a few conditions are required for the asymp-
totic expansion (17) to hold true up to the second order curvature term: first, since we
assumed that ∂V is twice continuously differentiable, the principal curvatures 1

R1(s)
and

1
R2(s)

are continuous functions on the compact set ∂V , so they are bounded, which implies
infs∈∂V |R1(s)| > 0 and infs∈∂V |R2(s)| > 0. Second, the wave number κ has to be much
larger than both sups∈∂V

1
|R1(s)| and sups∈∂V

1
|R2(s)| . Actually, a third condition is hidden

in Balian and Bloch (1970, p. 435): the wave number κ should never get close to kβ̂(s, k).
The authors did not highlight this condition, because in Eq. (17), κ is real, whereas kβ̂(s, k)
is purely imaginary. Nevertheless, their proof is based on an analytic continuation to the
domain of complex wave numbers, in which case an imaginary κ should not get too close
to kβ̂(s, k). However, in the statistical wave field theory, we will also consider the analytic
continuation of Eq. (17) to complex values of β̂(s, k) that are not purely imaginary, so the
condition κ ̸= kβ̂(s, k) should be understood in the broadest sense, i.e. for complex values
of both κ and β̂(s, k). Indeed, we can note that this assumption is required in Eq. (17), in

order to prevent the denominator 1 +
(

k
κ
ıβ̂(s, k)

)2
from getting close to zero.

4. Fundamentals of the statistical wave field theory

4.1. Mathematical assumptions
The statistical wave field theory relies on three mathematical assumptions (Badeau, 2024,

Sec. IV).
The first assumption states that the punctual source’s position x0 is a random variable

uniformly distributed in V . This assumption is related to the mixing property, and it turns
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the source response p(x,x0, t) introduced in Eq. (5) into a random process, which from now
on will be simply denoted p(x, t).

The second assumption states that the frequency f (or equivalently the wave number k)
is large, which permits us to apply spectral smoothing, i.e. to approximate the discrete modal
distribution by a smooth modal density, and to consider asymptotic expansions of various
functions of k, including the modal density.

Last, the third assumption, like the first one, is related to the mixing property. It
states that the mean and (pseudo-)covariances of the B-function are stationary and isotropic,
so that the statistics are independent from the receiver’s position and orientation. More
precisely, in the case of Neumann’s boundary condition, the B-function is a real WSS random
process, which means that both its mean µB = E[B(y, 0)] and its covariances cov[B(y +
z, 0), B(y, 0)] are well-defined and do not depend on y. Its stationary first and second order
statistics are then characterized by the mean µB = λ ≜ 1

|V | , the auto-covariance function
(ACF) ΓB(z) ≜ cov[B(y + z, 0), B(y, 0)], and the isotropic power spectrum

Γ̂B(k) ≜
∫
k∈S(0,k)

Γ̂B(k) dS(k).

In the case of Robin’s boundary condition, the B-function is a complex pseudo-stationary
random process, which means that both its mean µB = E[B(y, k)] and its pseudo-covariances
cov[B(y+z, k), B(y, k)] are well-defined and do not depend on y. Its stationary first and sec-
ond order statistics are then characterized by the same mean µB = λ, the pseudo-covariance
function (PCF) JB(z, k) ≜ cov[B(y + z, k), B(y, k)], and the isotropic pseudo spectrum

ĴB(κ, k) ≜
∫
κ∈S(0,κ)

ĴB(κ, k) dS(κ).

4.2. Relationship between the modal density and the power and pseudo spectra
In the case of Neumann’s boundary condition, we established at the beginning of Badeau

(2024, Sec. V) the following relationship between the modal density ρ(k, 0) and the power
spectrum Γ̂B(k):

Γ̂B(k) = λ2 ρ(k, 0), (18)

which holds asymptotically, when k → +∞. Equation (18) was proved independently of the
asymptotic expansion in Eq. (17), therefore it holds at all orders of this asymptotic expansion.
Then in the case of Robin’s boundary condition, we proved in Badeau (2024, Sec. VI.A.3) a
similar relationship between the modal density ρ(κ, k) and the pseudo spectrum ĴB(κ, k):

ĴB(κ, k) = λ2 ρ(κ, k), (19)

which also holds asymptotically, when κ → +∞, and where ρ(κ, k) denotes the analytic
continuation of the asymptotic expansion of the modal density in Eq. (17), from a purely
imaginary to a complex-valued specific admittance β̂(s, k). Equation (19) was thus proved

11



for any value of β̂(s, k) ∈ C, but this proof was based on the truncation to the first or-
der of the asymptotic expansion in Eq. (17). In this paper, we will admit that Eq. (19)
actually holds at all orders of this asymptotic expansion, in the same way as Eq. (18). Nev-
ertheless, we can prove this property when the specific admittance β̂(s, k) is purely imag-
inary (so that all eigenfunctions φn(x, k) and eigenvalues κn(k) that are solutions to the
Helmholtz equation (10) are real-valued). To do so, let us adapt the same line of reasoning
as in Badeau (2024, Sec. V), to the general case of Robin’s boundary condition. According
to the third assumption introduced in Sec. 4.1, the B-function is a pseudo-stationary ran-
dom process defined on R3. Its second order statistics are thus characterized by its pseudo
spectrum ĴB(κ, k), which is defined on the wave vector space R3. Then Eq. (16) shows
that B(y,x0, k) =

∑
n∈NBn(y,x0, k) with Bn(y,x0, k) = φn(x0, k)φn(y, k). Since every

eigenfunction φn is a solution to the Helmholtz equation (10) with the eigenvalue κn(k),
then so is the PCF Jn(z, k) of the pseudo-stationary random process Bn. Therefore its 3D-
Fourier transform [Eq. (2)], i.e. the measure Ĵn(κ, k), is supported in S(0, κn(k)). Indeed,
since Jn(z, k) =

∫
κ∈R3 e

2ıπκ⊤zdĴn(κ, k), the Helmholtz equation (10) applied to Jn(z, k)

yields 4π2(κn(k)
2 − ∥κ∥2)Ĵn(κ, k) = 0, therefore either κ ∈ S(0, κn(k)) or Ĵn(κ, k) = 0. In

other respects, Eq. (11) shows that
∫
x∈V φn(x, k)

2dx = 1. Therefore the pseudo-energy of
each mode Bn, averaged over both the source position x0 and the receiver position y, is
λ2
∫
x0∈V

∫
y∈V Bn(y,x0)

2dydx0 = λ2. We thus conclude that
∫
S(0,κn(k))

dĴn(κ, k) = λ2. Since
the density of modes is given by ρ(κ, k), we finally obtain Eq. (19) by smoothing the discrete
pseudo spectrum over κ.

4.3. Wigner distribution
In the statistical wave field theory, the power distribution of the wave field is characterized

by the Wigner time-frequency distribution of the random process q(x,x0, t) introduced in
Eqs. (14) and (15), which from now on will be simply denoted q(x, t), since the source
position x0 is random. More precisely, let

Γq(x1,x2, t1, t2) = cov[q(x1, t1), q(x2, t2)] (20)

denote the ACF of the non-stationary random process q(x, t). Then its (cross-)Wigner
distribution Wq is defined as follows (Cohen, 1989): ∀f, t ∈ R,

Wq(x1,x2, f, t) =

∫
R
Γq(x1,x2, t+

τ
2
, t− τ

2
)e−2ıπfτdτ. (21)

5. Special theory (Neumann’s boundary condition)

5.1. Asymptotic expansion of the power spectrum
By substituting Eq. (17) into Eq. (18), we get

Γ̂B(k) = 4πλ

(
k2 + λS(∂V )

8
k + λ

24π2

∫
s∈∂V

(
1

R1(s)
+ 1

R2(s)

)
dS(s)

)
. (22)
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More precisely, the spectral representation [see Theorem 8.4.IV in Daley and Vere-Jones
(2003, Chap. 8)] of the WSS random process B(y, 0) can be written in the same way as
in Badeau (2024, Sec. V.A.3):

B(y, 0) = λ+

∫
k∈R3

∫
s∈V

e2ıπk
⊤(y−s)dξ̂0(k, s), (23)

where ξ̂0(k, s) is a centered complex random measure with uncorrelated increments on R3×V ,
which is Hermitian symmetric w.r.t. k, such that for any Borel sets K ⊂ R3 and V ⊂ V ,

E
[(
ξ̂0(K,V)

)2]
= 0 and E

[∣∣∣ξ̂0(K,V)∣∣∣2] = ∫
k∈R+

S(K∩S(0,k))
S(S(0,k)) Λ̂0(k,V) dk (24)

with Λ̂0(k,V) the nonnegative spectral measure on R+ × V defined as

Λ̂0(k,V) = 4πλ2
(
|V|k2 + S(V∩∂V )

8
k + 1

24π2

∫
s∈V∩∂V

(
1

R1(s)
+ 1

R2(s)

)
dS(s)

)
, (25)

which is such that Γ̂B(k) = Λ̂0(k, V ).

5.2. Green’s function
In the same way as in Badeau (2024, Sec. V.B), Eqs. (7) and (23) lead to the following

spectral representation of the Green’s function:

G(x, k) = µG(k) +

∫
k∈R3

∫
s∈V

e2ıπk
⊤(x−s)

4π2(∥k∥22 − k2)
dξ̂0(k, s) (26)

with
µG(k) = −

λ

4π2k2
. (27)

5.3. Source response
In the same way as in Badeau (2024, Sec. V.C), applying the residue theorem to the

derivative of the inverse Fourier transform [Eq. (1)] of function f 7→ G(x, f
c
) leads to the

following expression of the source response:

p(x, t) = H(t) q(x, t), (28)

where the random process q(x, t) admits the following spectral representation:

q(x, t) = c2
(
λ+

∫
k∈R3

cos(2πc∥k∥2t)
∫
s∈V

e2ıπk
⊤(x−s)dξ̂0(k, s)

)
. (29)
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5.4. Wigner distribution
In the same way as in Badeau (2024, Sec. V.D), substituting Eqs. (29) and (20) into

Eq. (21) leads to the following asymptotic expansion of the Wigner distribution of the random
process q, which holds when f → +∞:

Wq(x1,x2, f, t) =
c3

4
sinc(2π f

c
∥x1 − x2∥2) Γ̂B(

f
c
). (30)

Then by substituting Eq. (22) into Eq. (30), we get

Wq(x1,x2, f, t) = Wq(f) γ(x1,x2, f), (31)

where

Wq(f) ≜ Wq(x,x, f, t) = πλc

(
f 2 + λcS(∂V )

8
f + λc2

24π2

∫
s∈∂V

(
1

R1(s)
+ 1

R2(s)

)
dS(s)

)
(32)

is the stationary Wigner distribution at any point x ∈ V , and

γ(x1,x2, f) = sinc

(
2πf∥x1 − x2∥2

c

)
(33)

corresponds to the usual expression of the spectral correlation in a diffuse acoustic field, as
established by Cook et al. (1955).

6. General theory (Robin’s boundary condition)

6.1. Asymptotic expansion of the pseudo spectrum
By substituting Eq. (17) into Eq. (19) and by using the well-known identity arctan(x) =

1
2ı
ln
(
1+ıx
1−ıx

)
, we get

ĴB(κ, k) = 4πλ
(
κ2 + λS(∂V )

8
κ+ λ

8π

∫
s∈∂V 2ıκ ln

(
κ−kβ̂(s,k)

κ+kβ̂(s,k)

)
+ 1

π

(
1
3
+ κ2

κ2−k2 β̂(s,k)2
+ κ

2k β̂(s,k)
ln
(

κ−kβ̂(s,k)

κ+kβ̂(s,k)

))(
1

R1(s)
+ 1

R2(s)

)
dS(s)

)
.

(34)

6.2. Wave numbers distortion
We will now show that the power spectrum Γ̂B(K) in Eq. (22) and the pseudo spectrum

ĴB(κ, k) in Eq. (34) are related through the equation

Γ̂B(K) = ĴB(K(K, k), k) dK(K,k)
dK

. (35)

In Eq. (35), function K 7→ K(K, k) is such that K(K, 0) = K and K(0, k) = 0, and it can be
interpreted as a distortion of the wave number K when the specific admittance β̂ is non-zero.

Indeed, with the change of variable κ = K(K, k) in the right member of Eq. (35), inte-
grating Eq. (35) w.r.t. K yields∫ K

0

Γ̂B(κ)dκ =

∫ K(K,k)

0

ĴB(κ, k) dκ. (36)
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Then substituting Eqs. (22) and (34) into Eq. (36) yields∫ K

0

(
κ2 + λS(∂V )

8
κ+ λ

24π2

∫
s∈∂V

(
1

R1(s)
+ 1

R2(s)

)
dS(s)

)
dκ

=
∫ K(K,k)

0

(
κ2 + λS(∂V )

8
κ+ λ

8π

∫
s∈∂V 2ıκ ln

(
κ−kβ̂(s,k)

κ+kβ̂(s,k)

)
+ 1

π

(
1
3
+ κ2

κ2−k2 β̂(s,k)2
+ κ

2k β̂(s,k)
ln
(

κ−kβ̂(s,k)

κ+kβ̂(s,k)

))(
1

R1(s)
+ 1

R2(s)

)
dS(s)

)
dκ,

which can be rewritten
K3

3
+ λS(∂V )

8
K2

2
+ λ

24π2K
∫
s∈∂V

1
R1(s)

+ 1
R2(s)

dS(s) = K(K,k)3

3
+ λS(∂V )

8
K(K,k)2

2

+ λ
8π

∫
s∈∂V ı

(
K(K, k)2 ln

(
K(K,k)−kβ̂(s,k)

K(K,k)+kβ̂(s,k)

)
− k2β̂(s, k)2 ln

(
kβ̂(s,k)−K(K,k)

kβ̂(s,k)+K(K,k)

)
− 2kβ̂(s, k)K(K, k)

)
+ 1

4πk β̂(s,k)

(
K(K, k)2 ln

(
K(K,k)−kβ̂(s,k)

K(K,k)+kβ̂(s,k)

)
+ k2β̂(s, k)2 ln

(
kβ̂(s,k)−K(K,k)

kβ̂(s,k)+K(K,k)

)
+ 10k β̂(s,k)K(K,k)

3

)
×
(

1
R1(s)

+ 1
R2(s)

)
dS(s).

(37)
Equation (37) defines function K(K, k) implicitly, but it is hardly exploitable. Instead,

we will prove that asymptotically (i.e. when K → +∞), K(K, k) admits the following
asymptotic expansion:

K(K, k) = K + λ
16π

(
ı
(
1− λS(∂V )

8K(K,k)

)
ϵ1(K, k)− λ ϵ1(K,k)2

16πK(K,k)
+ ϵ2(K,k)

k

)
(38)

with

ϵ1(K, k) = 2

∫
s∈∂V

(
ln
(

K(K,k)+kβ̂(s,k)

K(K,k)−kβ̂(s,k)

)
−
(

kβ̂(s,k)
K(K,k)

)2
ln
(

kβ̂(s,k)+K(K,k)

kβ̂(s,k)−K(K,k)

)
+ 2kβ̂(s,k)

K(K,k)

)
dS(s)

(39)
and

ϵ2(K, k) =
∫
s∈∂V

1

2π β̂(s,k)

(
ln
(

K(K,k)+kβ̂(s,k)

K(K,k)−kβ̂(s,k)

)
+
(

k β̂(s,k)
K(K,k)

)2
ln
(

kβ̂(s,k)+K(K,k)

kβ̂(s,k)−K(K,k)

)
− 2k β̂(s,k)

K(K,k)

)
×
(

1
R1(s)

+ 1
R2(s)

)
dS(s).

(40)
Indeed, let ϵ(K, k) = K(K, k)−K, and suppose that K(K, k) is large w.r.t. both ϵ(K, k)

and λS(∂V ). Then by substituting K = K(K, k) − ϵ(K, k) in the left member of Eq. (37)
and by then dividing both members by K(K, k)2, we get

ϵ(K, k) = ϵ(K,k)2

K(K,k)
− λS(∂V )

8
ϵ(K,k)
K(K,k)

+ λ
8π

∫
s∈∂V ı

(
ln
(

K(K,k)+kβ̂(s,k)

K(K,k)−kβ̂(s,k)

)
−
(

kβ̂(s,k)
K(K,k)

)2
ln
(

kβ̂(s,k)+K(K,k)

kβ̂(s,k)−K(K,k)

)
+ 2kβ̂(s,k)

K(K,k)

)
+ 1

4πk β̂(s,k)

(
ln
(

K(K,k)+kβ̂(s,k)

K(K,k)−kβ̂(s,k)

)
+
(

kβ̂(s,k)
K(K,k)

)2
ln
(

kβ̂(s,k)+K(K,k)

kβ̂(s,k)−K(K,k)

)
− 2kβ̂(s,k)

K(K,k)

)(
1

R1(s)
+ 1

R2(s)

)
dS(s).

Hence asymptotically,

ϵ(K, k) = λ
16π

(
ı
(
1− λS(∂V )

8K(K,k)

)
ϵ1(K, k)− λ ϵ1(K,k)2

16πK(K,k)
+ ϵ2(K,k)

k

)
,

which finally proves Eq. (38).
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6.3. Green’s function
In the same way as in Badeau (2024, Sec. VI.C), Eq. (35) permits us to calculate the

isotropic PCF JG(z, k) of the Green’s function, from which the following spectral represen-
tation of the random process G(x, k) can be deduced:

G(x, k) = µG(k) +

∫
k∈R3

∫
s∈V

e
2ıπ

K(∥k∥2,k)
∥k∥2

k⊤(x−s)

4π2(K(∥k∥2, k)2 − k2)
dξ̂0(k, s), (41)

where ξ̂0 denotes the same complex random measure as in Eq. (26), and with the same mean
as in Eq. (27): µG(k) = − λ

4π2k2
.

6.4. Source response
In the same way as in Badeau (2024, Sec. VI.D), by applying the residue theorem to

the derivative of the inverse Fourier transform [Eq. (1)] of function f 7→ G(x, f
c
), we get

Eq. (28), with the following spectral representation of the random process q:

q(x, t) = c2
(
λ+Re

(∫
k∈R3

∫
s∈V

e
2ıπ

(
κ(∥k∥2)
∥k∥2

k⊤(x−s)+c κ(∥k∥2)t
)
dξ̂0(k, s)

))
, (42)

where κ(k) ∈ C denotes the unique solution to the equation κ(k) = K(k, κ(k)) that has both
nonnegative real and imaginary parts.

6.5. Simplification of the wave numbers distortion
By substituting K ← k and k ← κ(k) into Eq. (38), we get the asymptotic expansion

κ(k) = k + λ
16π

(
ıϵ1(κ(k)) +

1
κ(k)

(
ϵ2(κ(k))− λ ϵ1(κ(k))

8

(
ϵ1(κ(k))

2π
+ ıS(∂V )

)))
(43)

with
ϵ1(κ) = 2

∫
s∈∂V

(
ln
(

1+β̂(s,κ)

1−β̂(s,κ)

)
− β̂(s, κ)2 ln

(
β̂(s,κ)+1

β̂(s,κ)−1

)
+ 2β̂(s, κ)

)
dS(s), (44)

and

ϵ2(κ) =

∫
s∈∂V

1

2πβ̂(s,κ)

(
ln
(

1+β̂(s,κ)

1−β̂(s,κ)

)
+ β̂(s, κ)2 ln

(
β̂(s,κ)+1

β̂(s,κ)−1

)
− 2β̂(s, κ)

)(
1

R1(s)
+ 1

R2(s)

)
dS(s).

(45)
Equation (43) provides an implicit expression of function κ(k). Note that functions ϵ1(κ)

and Im(ϵ2(κ)) are bounded, as illustrated in Figs. 1(a), 1(b) and 1(d) in Sec. 7. If we
further assume that β̂ does not get close to 1, then function Re(ϵ2(κ)) is also bounded, as
illustrated in Fig. 1(c) in Sec. 7. Thus if limk→+∞

dβ̂(s,k)
dk

= 0, then we can conclude that
β̂(s, κ(k)) ∼

k→+∞
β̂(s, k). Equation (43) can then be simplified into an explicit expression:

κ(k) = k + λ
16π

(
ıϵ1(k) +

1
k

(
ϵ2(k)− λϵ1(k)

8

(
ϵ1(k)
2π

+ ıS(∂V )
)))

. (46)

Note that the condition β̂ ̸= 1 is related to the condition κ ̸= kβ̂(s, k) that we mentioned
at the end of Sec. 3.4. Indeed, with the same substitution k ← κ(k) that we used here, the
latter condition yields β̂(s, κ(k)) ̸= 1.
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6.6. Wigner distribution
In the same way as in Badeau (2024, Sec. VI.F), substituting Eqs. (42) and (20) into

Eq. (21) leads to the following asymptotic expansion of the Wigner distribution of the random
process q, which holds when f → +∞:

Wq(x1,x2, f, t) =
c3

4
e−4πcIm(κ( f

c
))t

∫
s∈V

γ
(
x1 − s,x2 − s, f

c
+ ıIm(κ(f

c
))
)
dΛ̂1(f

c
, s), (47)

where the second order asymptotic expansion of function κ(k) was given in Eq. (46).
In Eq. (47), function γ is defined as ∀y1,y2 ∈ R3, ∀κ ∈ C,

γ(y1,y2, κ) = sinc

(
2π

√
(κy1 − κy2)

⊤ (κy1 − κy2)

)
(48)

where sinc(.) denotes the analytic continuation of the cardinal sine function on C, and
√

(.)
can denote any of the two complex square roots of opposite sign, since function sinc(.) in
Eq. (48) is even. In addition, the distorted spectral measure Λ̂1(k,V) in Eq. (47) is expressed
as

Λ̂1(k,V) = Λ̂0((Reκ)−1(k),V)
(Reκ)′((Reκ)−1(k))

, (49)

where the second order asymptotic expansion of Λ̂0(.,V) was given in Eq. (25).
Note that Eq. (47) can be rewritten

Wq(x1,x2, f, t) = Wq(x1,x2, f) e
−2α( f

c
)t, (50)

where

Wq(x1,x2, f) ≜ Wq(x1,x2, f, 0) =
c3

4

∫
s∈V

γ
(
x1 − s,x2 − s, f

c
+ ıIm(κ(f

c
))
)
dΛ̂1(f

c
, s),

(51)
and Eq. (46) yields the first order asymptotic expansion of the spectral attenuation:

α(k) ≜ 2πc Im(κ(k)) = λc
8

(
Re (ϵ1(k)) +

1
k

(
Im
(
ϵ2(k)− λ ϵ1(k)2

16π

)
− λS(∂V )

8
Re (ϵ1(k))

))
.

We note that the Wigner distribution Wq(x1,x2, f, t) in Eq. (50) has the same factorized
form as the Polack time-frequency distribution (Polack, 1988) (which was originally known
only for x1 = x2). Moreover, we get the closed-form expression of the reverberation time in
mixing rooms:

T60(f) ≜
3 ln(10)

α( f
c
)

= 24 ln(10)
c

|V |

Re(ϵ1( f
c ))+

c
f

Im

ϵ2( f
c )−

λϵ1( f
c )

2

16π

−
λS(∂V )

8
Re(ϵ1( f

c ))

 (52)

where functions ϵ1(.) and ϵ2(.) were defined in Eqs. (44) and (45). If the asymptotic expan-
sion of function κ(k) in Eq. (46) is truncated to the first order, then we retrieve the same
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closed-form expression of T60(f) as in Badeau (2024, Sec. VI.F). Moreover, we have proved
in Badeau (2024, Sec. VI.F) that this expression can be rewritten in the same form as
Eyring’s formula (Eyring, 1930). Therefore Eq. (52) refines Eyring’s formula by introducing
the first order term in the denominator, which decreases as 1

f
.

Finally, when x1 = x2, by substituting Eq. (48) into Eq. (51), we get the simplified
expression of the power distribution over space at frequency f :

Wq(x,x, f) =
c3

4

∫
s∈V

sinhc
(
4πIm(κ(f

c
))∥x− s∥2

)
dΛ̂1(f

c
, s),

where sinhc denotes the hyperbolic cardinal sine function: sinhc(u) = sinh(u)
u

.

7. Numerical analysis

In this section, we aim to investigate numerically how the specific admittance and the
curvature radii of the boundary surface impact the reverberation time. In order to simplify
the problem, we will assume that function β̂(s, κ) is equal to a constant β̂ ∈ C at high
frequency. Then ϵ1(κ) in Eq. (44) is also equal to a constant ϵ1 = ζ1 S(∂V ), where

ζ1 = 2
(
ln
(

1+β̂

1−β̂

)
− β̂2 ln

(
β̂+1

β̂−1

)
+ 2β̂

)
.

7.1. Surface term
Let us first investigate numerically the surface term. If we neglect the second order terms,

Eq. (52) is reduced to
T60(f) =

24 ln(10)
Re(ζ1)

|V |
cS(∂V )

.

Figure 1(a) represents the term Re(ζ1) that appears in the denominator of this last expres-
sion, as a function of β̂ ∈ C. As expected, it is always nonnegative, and we also note that
it reaches its maximum at a value β̂max ∈]0, 1[. By zeroing the derivative of Re(ζ1) w.r.t.
β̂, we get β̂max = tanh( 1

β̂max
), which can be computed numerically by means of a fixed-point

iteration. We thus get β̂max ≈ 0.8336, as can be seen in Fig. 1(a). For this particular value
of β̂, we get max (Re(ζ1)) ≈ 4.7987, which can also be seen in Fig. 1(a).

We can now make the following very important remark: At high frequency in mixing
rooms, the statistical wave field theory predicts that the reverberation time is lower bounded,
independently of the specific admittance (and even when β̂ depends on s ∈ ∂V and κ), by a
constant that depends on the room geometry only through its volume and surface:

T60(f) ≥ 24 ln(10)
4.7987

|V |
c S(∂V )

≈ 11.5160 |V |
c S(∂V )

. (53)

At first sight, this remark may seem surprising, because we claimed in Sec. 6.6 that the
closed-form expression of T60(f) in Badeau (2024, Sec. VI.F) can be rewritten in the same
form as Eyring’s formula, and Eyring’s formula is known to allow the reverberation time
to be zero when the average absorption coefficient is 1 on a portion of the boundary of
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(a) Re(ζ1) (b) Im(ζ1) (c) Re(ζ2)

(d) Im(ζ2) (e) Im(ζ2) (zoom in around
Im(β̂) = 0)

(f) Im(ζ2) for β̂ ∈ R

Figure 1: Numerical analysis of the surface and curvature terms

positive measure (Eyring, 1930). This apparent contradiction is resolved by noting that in
our expression of T60(f), the absorption coefficient is averaged over all possible directions
of incidence [see Eq. (125) in Badeau (2024)]; however, the angle-dependent absorption can
only reach the maximal value of 1 at a single angle of incidence [see Eq. (28) in Badeau
(2024)], therefore the average absorption coefficient is upper bounded by a value that is
strictly lower than 1, everywhere on the boundary ∂V .

In other respects, note that this remarkable result has been established by assuming that
the room has locally reacting boundary surfaces, which means that β̂ depends only on the
position s ∈ ∂V and on the wave number κ [as we assumed both in this paper and in Badeau
(2024)], but not on the angle of sound incidence. In other words, β̂ does not depend on the
orientation of the wave vector κ ∈ R3, but only on its norm. Consequently, this inequality
might be violated when the room surfaces are not locally reacting. Kuttruff (2014, Chap. 2)
explained that in practice, surfaces with local reaction are rather the exception than the
rule, and gave several examples of non-locally reacting surfaces. In future work, it will thus
be interesting to address the general case of a specific admittance that explicitly depends on
the wave vector κ.

Finally, if we neglect the second order terms, Eq. (46) is reduced to κ(k) = k+ ı ζ1
16π

S(∂V )
|V | ,
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so that the frequency distortion is

ν(f) ≜ cRe(κ(f
c
)) = f − Im(ζ1)

16π
cS(∂V )

|V | ,

where f = ck. Fig. 1(b) represents the term Im(ζ1). We can observe that, as expected, it is
bounded. Moreover, we retrieve a property that was described in Badeau (2024, Sec. III.E.1
): if Im(β̂) < 0, then frequency ν(f) is larger than f , else if Im(β̂) > 0, then ν(f) is lower
than f .

7.2. Curvature term
Let us now consider the curvature term. In addition to the previous simplification, we

also assume that function 1
R1(s)

+ 1
R2(s)

is equal to a constant 2
R
∈ R at high frequency, so

that ϵ2(κ) in Eq. (45) is also equal to a constant ϵ2 = ζ2 S(∂V )
R

, where

ζ2 =
1

πβ̂

(
ln
(

1+β̂

1−β̂

)
+ β̂2 ln

(
β̂+1

β̂−1

)
− 2β̂

)
.

Fig. 1(c) represents the real part of ζ2. We can observe that it presents a singularity at
β̂ = 1, which explains why in Sec. 6.5 we had to assume that β̂ never gets close to 1, in
order to guarantee that the term ϵ2(κ) stays bounded. Moreover, we also remark that Re(ζ2)
is nonnegative, which shows that convex boundaries always tend to increase the frequency
ν(f), whereas concave boundaries always tend to decrease it, as can be noticed from Eq. (46).

In other respects, Eq. (52) becomes

T60(f) =
24 ln(10)

Re(ζ1)+
cIm(ζ2)

fR
−λS(∂V )c

8f

(
Im(ζ21)

2π
+Re(ζ1)

) |V |
cS(∂V )

. (54)

In Eq. (54), the correction to the reverberation time that is related to the curvature is the
term cIm(ζ2)

fR
that appears in the denominator. In Sec. 3.4, we have listed the conditions

that are required for the asymptotic expansion (17) to hold true up to the second order
curvature term; these conditions imply c

fR
≪ 1. In addition, we have represented Im(ζ2) in

Fig. 1(d), as a function of β̂ ∈ C. It can be noted that it is bounded, therefore the correction
term cIm(ζ2)

fR
in the denominator in Eq. (54) is much lower than Re (ζ1), which corresponds

to the surface term. However, this correction term competes with the other second order

term λS(∂V )c
8f

(
Im(ζ21)

2π
+ Re (ζ1)

)
, which naturally appeared when pursuing the asymptotic

expansion of the wave numbers distortion up to order 2 (see Sec. 6.2). In addition, we
observe in Fig. 1(d) that the sign of Im(ζ2) depends on both the real and imaginary parts of
β̂. Therefore the sign of the correction term cIm(ζ2)

fR
in Eq. (54) depends not only on the sign

of the curvature radius R, but also on the value of β̂ ∈ C.
Fig. 1(e) represents a zoom in Fig. 1(d) for small values of Im(β̂) (the axes Im(β̂) = 0

and Re(β̂) = 1 are represented as red lines). In particular, it can be noticed that the abscissa
axis Im(β̂) = 0 corresponds to a ridge of Im (ζ2), both for Re(β̂) < 1 and Re(β̂) > 1. We
have thus represented the variations of Im (ζ2) when β̂ is real in Fig. 1(f). We observe that
in this case Im (ζ2) ≥ 0, thus we can see from Eq. (54) that a convex boundary reduces the
reverberation time, whereas a concave boundary increases it.
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8. Application of the theory to room acoustics

In Sec. 3.4, we listed the conditions for the asymptotic expansion of the modal density
to hold, up to the second order curvature term. In particular, these assumptions imply
that the wavelength is much lower than the curvature radii of the boundary surface. In
room acoustics however, the wavelength is generally larger than the fine details of the room
surfaces, so strictly speaking, this condition is generally not met. Thus one may wonder how
in practice the statistical wave field theory can be applied to room acoustics. The answer
is quite simple: the room geometry must be simplified, so as to stay macroscopic w.r.t. the
wavelength, as generally assumed in geometric acoustics (Kuttruff, 2014, Chap. 4).

In Fig. 2, we illustrated two examples of such simplifications. First, Fig. 2(a) represents
a boundary characterized by curvatures at two different scales: one that is smaller than
the wavelength, and one that is larger than the wavelength. Figure 2(b) represents the
geometric simplification that is needed to apply the statistical wave field theory: only the
large curvature radius is kept, the small oscillations are smoothed out. Even though we
have not studied here the second order edge term (which is left for a future publication, see
Sec. 9), we also illustrated in Fig. 2(c) a boundary with edges at two different scales: one
that is smaller than the wavelength, and one that is larger than the wavelength. Figure 2(d)
represents the geometric simplification that is needed to apply the statistical wave field
theory: only the edge with long sides is kept, the ones with short sides are smoothed out.

(a) Detailed curved
boundary

(b) Smoothed curved
boundary

(c) Detailed bound-
ary with edges

(d) Smoothed bound-
ary with edges

Figure 2: Geometric simplifications in room acoustics

In other respects, we have reminded in the introduction that irregular (rough) surfaces
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produce wave scattering, so one might be afraid that smoothing out the fine details of the
room surfaces would result in canceling out, or at least reducing, diffusion. Fortunately, this
is not the case: since we assumed right from the beginning, both in Badeau (2024) and in
this paper, that the room shape is mixing, diffusion is innately taken into account in the
framework of the theory by sticking to this mixing assumption.

9. Conclusion

In this paper, we have refined the results of the statistical wave field theory presented
in Badeau (2024), by investigating the impact of a curved boundary surface on the wave field
statistics, in the case of mixing rooms. To do so, we have proved that under mild assumptions
the set of complex eigenfunctions of the Robin Laplacian forms a pseudo-orthonormal basis of
L2(V ), and we have exploited the asymptotic expansion of the modal density up to the second
order curvature term, which was given in Balian and Bloch (1970). Compared to Badeau
(2024), these improved results rely on the same physical assumptions, plus a few additional
ones: the boundary surface is twice continuously differentiable, the specific admittance is
Lipschitz continuous with a small Lipschitz constant, the wave number is much greater than
the inverse of the curvature radii, and the specific admittance never gets close to 1.

In particular, we were able to provide an improved Eyring-like formula of the reverbera-
tion time in mixing rooms, which holds at lower frequency by accounting for reflections on
curved surfaces, as explained in Sec. 6.6. To the best of our knowledge, this is the first time
that this kind of correction is brought to Eyring’s formula. Of course, the improved formula
of the reverberation time still needs to be tested by experiments in future work.

In other respects, our numerical analysis of the impact of the surface and curvature terms
on the reverberation time has permitted us to draw two important conclusions. First, at
high frequency in mixing rooms, the reverberation time is lower bounded, independently of
the value of the specific admittance, by a constant that depends on the room geometry only
through its volume and surface. Second, the impact of the curvature on the reverberation
time depends jointly on the curvature radii and on the value of the specific admittance.
Finally, we discussed the simplifications that are required in practice to apply the statistical
wave field theory to room acoustics.

In future work, in order to address geometric shapes involving a piecewise twice continu-
ously differentiable boundary including edges and vertices, which is e.g. the case of polyhedral
surfaces, we will need to explicitly account for edge diffraction. In particular, we will show
that vertices actually generate negligible terms in the asymptotic expansion, whereas edges
generate a second order edge term, which will be expressed in closed-form. Equipped with
the two second order curvature and edge terms, the improved predictions of the statistical
wave field theory will then hold at lower frequencies for a large variety of geometric shapes,
including both curved surfaces and edges/vertices.

Acknowledgments

The author would like to warmly thank the anonymous reviewers for their very helpful
comments. In particular, Secs. 7 and 8, and Appendix A, would not have existed without

22



their very insightful questions.

Author Declarations

Conflict of Interest: The author of this paper has no conflict of interest to disclose.

Data Availability

Data sharing is not applicable to this article as no new data were created or analyzed in
this study.

Appendix A. Proof of equation (11)

The following proposition formulates sufficient conditions for Eq. (11) to hold.

Proposition 1. Let V be a simply connected bounded domain of R3, whose boundary ∂V is
a Lipschitz continuous 2D manifold. We assume that the specific admittance β̂(x, k) ∈ C is
an essentially bounded function of the position x ∈ ∂V . Then the set of eigenvalues κn(k)
and (generalized) eigenfunctions φn(x, k) that are solutions to Eqs. (9) and (10) is discrete
and indexed by n ∈ N.

In addition, let us assume that the Robin Laplacian is diagonalizable, and that the set
{φn(x, k)}n∈N forms a basis of L2(V ). Then without loss of generality, the set {φn(x, k)}n∈N
can be chosen so as to form a pseudo-orthonormal basis of L2(V ), which means that Eq. (11)
holds.

Before proving Proposition 1, let us comment the two assumptions made in the second
part of this proposition. First, we assumed that the Robin Laplacian is diagonalizable.
In Bögli et al. (2022, p. 12), a counterexample of non-diagonalizable Robin Laplacian is
provided in 1D, where two different Neumann eigenvalues are mapped to the same Robin
eigenvalue, creating a non-trivial eigennilpotent. However, such a case is completely singular,
in the sense that it can only happen for a very special combination of both the geometry
of ∂V and the function β̂(x, k) defined on ∂V . In other words, the first assumption holds
almost surely in general.

Second, we assumed that the set {φn(x, k)}n∈N forms a basis of L2(V ). A weaker property
is proved in Bögli et al. (2022, Theorem 5.7): for any space dimension, this set forms an Abel
basis of L2(V ), which is actually not a basis of L2(V ) in the usual sense [see Bögli et al.
(2022, Definition 5.5)]. On the contrary, in dimension 1, it forms a Riesz basis of L2(V ),
which is a stronger property [see Bögli et al. (2022, Definition 5.3)]. The authors leave open
the question of whether this set continues to be a Riesz basis in any dimension (Bögli et al.,
2022, p. 17). Indeed, no counterexample which would violate the Riesz basis property is
known to the best of our knowledge. This question is actually related to another one: is it
possible for an eigenfunction φn to be such that

∫
V
φn(x, k)

2dx = 0? The authors also leave
this question as an open problem (Bögli et al., 2022, p. 13), but Proposition 1 shows that
this is not possible when the set {φn(x, k)}n∈N is a basis of L2(V ). Anyway, even if this
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set were only an Abel basis,
∫
V
φn(x, k)

2dx = 0 might only occur for very special values of
β̂(x, k), because the squared eigenfunctions are meromorphic (i.e. holomorphic except for a
set of isolated points) functions of β̂(x, k), as proved in Bögli et al. (2022, Theorem 1.1).
In particular, this cannot happen when β̂(x, k) is in a mathematical neighborhood of zero,
since

∫
V
φn(x, k)

2dx depends continuously on β̂(x, k), and when β̂(x, k) = 0 (Neumann’s
boundary condition),

∫
V
φn(x, k)

2dx = 1. In the same way, since the set {φn(x, k)}n∈N
depends continuously on β̂(x, k), and when β̂(x, k) = 0, it is a Hilbert basis of L2(V ), it
seems very reasonable to conjecture that it still behaves nicely, i.e. it is still a Riesz basis as
Bögli et al. (2022) suggest, at least when β̂(x, k) stays in a mathematical neighborhood of
zero. So the second assumption should hold in practice under mild conditions.

Let us now prove Proposition 1:

Proof of Proposition 1. First, ∀n1, n2 ∈ N, since φn1 is an eigenfunction of the Robin Lapla-
cian, we have

4π2κn1(k)
2
∫
V
φn1(x, k)φn2(x, k)dx

=
∫
V
∆φn1(x, k)φn2(x, k)dx

=
∫
∂V

∂φn1 (x,k)

∂n(x)
φn2(x, k)dS(x)−

∫
V
(∇φn1(x, k))

⊤ (∇φn2(x, k)) dx

= −2ıπk
∫
∂V
β̂(x, k)φn1(x, k)φn2(x, k)dS(x)−

∫
V
(∇φn1(x, k))

⊤ (∇φn2(x, k)) dx.

In the same way, we also have

4π2κn2(k)
2
∫
V
φn1(x, k)φn2(x, k)dx

= −2ıπk
∫
∂V
β̂(x, k)φn1(x, k)φn2(x, k)dS(x)−

∫
V
(∇φn1(x, k))

⊤ (∇φn2(x, k)) dx.

By subtracting the two equalities, we get(
κn1(k)

2 − κn2(k)
2
) ∫

V

φn1(x, k)φn2(x, k)dx = 0.

Therefore, either κn1(k)
2 = κn2(k)

2, which means that the two eigenfunctions φn1(x, k) and
φn2(x, k) are in the same eigenspace of the Robin Laplacian, or

∫
V
φn1(x, k)φn2(x, k)dx = 0,

in which case we will say that the two eigenfunctions φn1(x, k) and φn2(x, k) are pseudo-
orthogonal.

Let us now prove that ∀n ∈ N,
∫
V
φn(x, k)

2dx ̸= 0. First, if κn(k) is a simple eigenvalue,
then we have already proved that φn(x, k) is pseudo-orthogonal to all the other eigenfunctions
{φm(x, k)}m ̸=n. If we assume that in addition

∫
V
φn(x, k)

2dx = 0, then φn(x, k) is pseudo-
orthogonal to the whole set of eigenfunctions, which spans L2(V ) since it forms a basis of
L2(V ). Therefore φn(x, k) is pseudo-orthogonal to any function in L2(V ). However, its
conjugate φn(x, k) belongs to L2(V ), thus φn(x, k) is pseudo-orthogonal to φn(x, k), which
means that

∫
V
φn(x, k)φn(x, k)dx =

∫
V
|φn(x, k)|2 dx = 0. Therefore φn(x, k) is zero on V ,

which is in contradiction with the fact that it is an eigenfunction of the Robin Laplacian.
We thus conclude that

∫
V
φn(x, k)

2dx ̸= 0. So without loss of generality, we can assume
that

∫
V
φn(x, k)

2dx = 1 (we then say that φn(., k) is pseudo-unitary).
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Next, if κn(k) is a multiple eigenvalue, let M be its multiplicity. Since we assumed
that the Robin Laplacian is diagonalizable, there is a basis {φn(x, k), . . . , φn+M−1(x, k)} of
eigenfunctions of the corresponding eigenspace. Let us then define the M ×M matrix H of
entries [H ]i,j =

∫
V
φn+i(x, k)φn+j(x, k)dx for i, j ∈ {0 . . .M − 1}. If we assume that H is

singular, then the same line of reasoning as in the previous case shows that the matrix G of
entries [G]i,j =

∫
V
φn+i(x, k)φn+j(x, k)dx is also singular, which is in contradiction with the

fact that the set {φn(x, k), . . . , φn+M−1(x, k)} is linearly independent (since it is a subset
of a basis of L2(V )). We thus conclude that matrix H is non-singular, therefore we can
apply a Gram–Schmidt-like process to make the set {φn(x, k), . . . , φn+M−1(x, k)} pseudo-
orthonormal (i.e. pseudo-orthogonal and such that

∫
V
φm(x, k)

2dx = 1 ∀m ∈ {n, . . . , n+M−
1}). So without loss of generality, we can assume that the set {φn(x, k), . . . , φn+M−1(x, k)}
is pseudo-orthonormal.

To sum up, we have proved that, without loss of generality, the whole set of eigenfunctions
{φn(x, k)}n∈N is a pseudo-orthonormal basis of L2(V ), which is equivalent to Eq. (11).

Let us now study the uniqueness of the decomposition in Eq. (11). First, if κn(k) is
a simple eigenvalue, then its two possible pseudo-unitary eigenfunctions are φn(x, k) and
−φn(x, k), so the product φn(x, k)φn(y, k) is unique. In the same way, if κn(k) is a mul-
tiple eigenvalue, then any pseudo-orthonormal basis of eigenfunctions of the correspond-
ing eigenspace will result in the same sum of products

∑M
i=0 φn+i(x, k)φn+i(y, k). Finally,

let us investigate the uniqueness of the pseudo-dual set of the pseudo-orthonormal basis
{φn(x, k)}n∈N. Here, pseudo-duality is defined as follows: a set {ψn(x, k)}n∈N is pseudo-
dual to {φn(x, k)}n∈N if and only if ∀m,n ∈ N,

∫
y∈V ψm(y, k)φn(y, k)dy = δm,n. Note that

Eq. (11) means that ∀ψ ∈ L2(V ),

ψ(x) =
∑
n∈N

φn(x, k)

(∫
y∈V

ψ(y)φn(y, k)dy

)
.

By applying this equation to every function ψn, we get ψn(x, k) = φn(x, k), which proves
the uniqueness of the pseudo-dual set: the pseudo-orthonormal basis {φn(x, k)}n∈N is self-
pseudo-dual.
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