
Expander codes,
Euclidean sections, and compressed sensing

Venkatesan Guruswami

University of Washington

(visiting Carnegie Mellon University)

  Based on joint works with

James Lee (U. Washington), Alexander Razborov (U. Chicago),

Avi Wigderson (IAS)



random Euclidean sections of L1
N

• For x ∈ RN  we have ||x||2 ≤ ||x||1 ≤  √N ||x||2
• [Kashin 77, Figiel-Lindenstrauss-Milman 77]:

For a random subspace X µ RN with dim(X) = N/2,

      L2 and L1 norms are equivalent up to universal factors

• The L2 mass of x is spread across many coordinates

• Compare with error-correcting codes: Subspace C of F2
N such

that every nonzero c ∈ C has Ω(N) Hamming weight.



Euclidean sections, embeddings

• L2 → L1 embeddings: Write X = { G y : y ∈ RN/2 } for
an N x N/2 matrix G with orthonormal columns
– The map y → (G y)/√N  gives an O(1) distortion embedding

from L2
N/2 to L1

N



existential vs. constructive results

• Prominent example of ubiquitious use of probabilistic
method in asymptotic convex geometry

• Dilemma we know well:

– Almost all subspaces are good, except we can’t
pinpoint even one!

• Question [Szarek, ICM’06; Milman, GAFA’01; Johnson-
Schechtman, handbook’01]: Can we find an explicit
subspace where L1 and L2 norms are equivalent?
– Natural, fundamental question

– Gain in recent popularity due to ever growing connections
to combinatorics and theory CS



Computer Science connections

• explicit embeddings of L2 to L1 for nearest-neighbor
search [Indyk]

• explicit compressed sensing maps M : RN → Rk  (for k
<< N)  [Devore]  (more on this soon)

• Coding over reals [Candes-Tao, Dwork-McSherry-Talwar]

• dimension reduction [Ailon-Chazelle]

Explicitness (or derandomization) has many benefits:
– Better understanding of underlying geometric structure

– Faster algorithms

– Certifiability



Distortion

For a subspace X ⊆ RN , define the distortion of X by

Clearly, 1 ≤ Δ(X) ≤ √N

Our goal: low distortion subspaces of large dimension

Random construction: For a random X ⊆ RN with
dim(X) = Ω(N), w.h.p Δ(X) = O(1)

- (will mention exact trade-off shortly)



Main results

• [G.-Lee-Razborov’08] Explicit subspace X µ RN

with dim(X) = N - o(N) & Δ(X) = (log N)O(log log log N)

• [G.-Lee-Wigderson’08] With Nδ random bits, can
construct subspace X with dim(X) = N/2  and
Δ(X) = O(1)  (= exp(1/δ))

• Subspaces specified as kernel of sign matrix



previous explicit results

Sub-linear dimension (and constant distortion):
• Rudin’60 (and later LLR’94) achieved dim(X) ¼ N1/2 and Δ(X) · 3

(X = span {4-wise independent vectors})

• Indyk’00: dim(X) ¼ 2√log N and Δ(X) · 1+o(1)
• Indyk’07: dim(X) ¼ N / exp((log log N)2) and Δ(X) · 1+o(1)

For dim(X) = Ω(N):

• NO explicit construction known with Δ(X) smaller than N1/4

• { (x, Hx) : x ∈ RN/2 } where H is the N/2 x N/2 Hadamard
matrix has distortion N1/4

– Uncertainty principle

• Regime of interest for error-correction over reals
– constant rate codes



“derandomization” results

• Distortion-dimension trade-off of random subspaces
[Kashin’77, Garnaev-Gluskin’84]

– For a random k x N sign matrix Ak,N, almost surely

• Construction with O(N log N) random bits [Arstein-
Milman’06]

• Construction with O(N) random bits [Lovett-Sodin 07]

(and of course dim(ker(Ak, N)) ¸ N – k)



rest of talk

• Connection to compressed sensing
• Subspaces from expander/Tanner codes

• Constant distortion construction
• Explicit construction

– “Spread-boosting” theorem
– Using spread boosting: ingredients & analysis

• Conclusions



compressed sensing

Typical camera algorithm:
1. Captures an image, a signal in RN

2. Compresses image Comp : RN → Rr

Compression works because image is r-sparse in 
some basis (eg. Wavelet)
Camera still makes N >> r measurements since
it doesn’t a priori know which ones to make!

Compressed sensing: Find a map A : RN → Rk s.t. any r-sparse x ∈ RN

can be recovered (efficiently & uniquely) from Ax  (ideally k = r log N)

HOT topic: http://www.dsp.ece.rice.edu/cs/  [Donoho], [Candes-Tao], 
[Rudelson-Vershynin], [Candes-Romberg-Tao], , …. Two talks in ICM’06.

Properties of random matrices (restricted isometry, Gelfand width, 
distortion) play crucial role in these developments.



relation to distortion

• [Kashin-Temlyakov’07] make explicit a simple connection
between distortion of ker(A) & compressed sensing using A:
– Can uniquely and efficiently recover any r-sparse signal

for r < N / ( 4 Δ(ker(A))2 )

• Algorithm is basis pursuit or L1 minimization:
– given data y, output x that minimizes ||x||1 subject to Ax=y

– easy by linear programming (L0 minimization is NP-hard)

– handles almost sparse  x (very important in practice!)

• Plugging in optimal distortion bound (N/k log(N/k))1/2 gives
(optimal) k ≈ r log N measurements!
– Explicit construction open



proof of connection (for zero noise case)

Let X = ker(A).
Suppose y = Ax and |supp(x)| ≤ r < N/ 4∆(X)2

Need to prove: For any nonzero u ∈ X, ||x+u||1 > ||x||1

Let S = supp(x), and T=Sc

||x+u||1 ≥ ||x||1 - ∑j 2 S |uj|  + ∑j 2 T  |uj|
   ≥ ||x||1 + ||u||1  - 2 ∑j 2 S |uj|

Claim: For nonzero u,   ∑j 2 S |uj| < ||u||1/2
Proof: LHS ≤ √|S| ||u||2 ≤ √r ( ||u||1 ∆(X)/ √N) < ||u||1/2
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Expander/LDPC code construction

bipartite graph G=([N], [n], E);  d right-regular,   L µ Rd

Continuous analog of Gallager LDPC
codes and extension by Tanner
    - Global structure from local constraints

     - Like in Sipser-Spielman analysis,
       expansion of G plays a crucial role

N nÀ

d j

x1
x2
x3

xN
We show: if L is good, and G is an
expander, then X(G,L) is good (or even
better in some parameters)



spread subspaces

Key notion: L µ Rd is (t, ε)-spread if every x 2 L satisfies

“No t coordinates hog most of the mass”

Equivalent notion to distortion (easier to work with)
– O(1) distortion ⇔ ( Ω(d), Ω(1) )-spread
– (t, ε)-spread ⇒ distortion O(ε-2· (d/t)1/2)

Note: Every subspace is trivially (1/2, 1)-spread.

Goal: Increase t while not losing too much mass.
– (t, ε)-spread → (t’, ε’)-spread



constant distortion construction

nodes of H

edges of H
Take unbalanced expander to be edge-vertex 
incidence graph of d-regular expander H(V,E)

 

Belongs to L

L ⊆ Rd  is a random subspace 
-  has O(1) distortion, say is (d/10, 0.1)-spread

For d = nδ/2, can pick L using nδ random bits.

T(H,L)



distortion/spread analysis

• Thm: If H is an (n,d,λ)-expander with λ ≤ d0.9, and L is
(d/10,0.1)-spread, then distortion of T(H,L) is nO(1/log d)

– O(1) = exp(1/δ) distortion with d = nδ/2

• Show T(H,L) is (N/200, n-O(1/log d))-spread
– (N = nd/2 is # edges of H)

Suffices to show:
For unit vector x ∈ T(H,L)
& set W of < n/20 vertices

W
V



spread outside induced subgraphs

W

• Define Z = { z ∈ W : z has > d/10 neighbors in W }
• By local (d/10,0.1)-spread property, mass in W \ Z “leaks out”

Z

V

By expander mixing lemma,

|Z| < O((λ/d)2) |W| < O(|W|/d0.2)

It follows that

Iterating this logd n times, claim follows.
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spread-boosting theorem (general bipartite expanders)

setup: bipartite graph G=([N], [n], E);  d right-regular;  

(t,ε)-spread local subspace L µ Rd

(left-to-right) expansion profile of G:

theorem: If X(G,L) is (T,δ)-spread, then X(G,L) is

applying the thm: Think ε, D as constants. Want t ΛG(T)/T

large to get from (1/2,1)-spread to say (Ω(N), γ)-spread in few iterations
(γ is exponentially small in # iterations)



proving spread-boosting theorem

X(G,L) is (T,δ)-spread ⇒ X(G,L) is

Let S arbitrary with |S| ≤ t ΛG(T)/D

Idea: S should “leak” L2 mass outside
(since L is spreading and G is an expander),
unless most of the mass in S is concentrated
on small subset B (impossible by assumption)

Details:
– Q = right nodes with > t neighbors in S
– |Q| < |S| D / t ≤ ΛG(T)
– B = nodes in S whose neighbors are all in Q
– |B| < T so it can’t contain too much mass
– Mass in S - B leaks out

S

B

Q
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using spread-boosting

• Take G = edge-vertex incidence graph of d-regular Ramanujan
graph H (with second eigenvalue O(d1/2) )

• [Alon-Chung] (expander mixing lemma):

• Suppose L is (t, 0.1)-spread
• (T,δ) → ( Ω( t ΛG(T) ) , Ω(δ) )-spread
• (T,δ) → ( Ω( T t d-1/2 ) , Ω(δ) )-spread

• If t >> d1/2 , we compensate for the factor d1/2  loss in expansion
and get increase in T

• Optimal/random L has t = Ω(d)
– Can construct efficiently only for small d, say d = log N
– Problem: # iterations ≈ logd N, so need d large (say N0.1 )

edges of H

nodes of H

Goal: Construct explicit (d0.51, Ω(1))-spread
subspace of large dimension



explicit somewhat well-spread subspace

Mutually Unbiased Bases from Kerdock codes [Kerdock’72,
Cameron-Seidel’73]:

Explicit set of k/2 orthonormal bases B1, …, Bk/2 µ k-1/2 {-1,1}k

such that u 2 Bi and v 2 Bj, i ≠ j ) |hu,vi| = k-1/2.

• A = [ B1, …, Bm ] for any 1 ≤ m ≤ k/2

• One can show that ker(A) is (Ω(d1/2), Ω(1))-spread

• Gives (Ω(d1/2), Ω(1))-spread subspace of dimension (1-ε)d for
any ε > 0

• But too weak to work with Ramanujan construction :(



sum-product expander

• Need (N,n,d)-expander with expansion factor better
than 1/√d  factor for sets of size up to N0.51

• Sum-product theorems [Bourgain-Katz-Tao, …]: For A µ Fp with
|A| < p0.9 ,

(a,b,c) ∈ Fp
3 (1,a), (2,b), (3,c), (4, a· b+c)

[Barak-Kindler-Shaltiel-Sudakov-Wigderson,

 Barak-Impagliazzo-Wigderson]: For some ξ >0

ΛG(m) ≥ min ( p0.9 , m1/3+ξ )

       For L = Kerdock, G = sum-product expander: 
above + spread-boosting theorem ⇒ L’ = X(G,L) 
is (d1/2+c, Ω(1))-spread for some c > 0.



the final construction

• Now plug L’ into X(G’,L’) with G’ = edge-vertex
graph of Ramanujan and get non-trivial boosting

• Actual construction is intersection of many such
“parallel” constructions
– To minimize iterations, need right degree d large
– 1/√d expansion stops at N/d, so can’t use a single large d

– Idea: using many graphs with different degrees, each
efficiently boosting in a different range of sizes

• di+1 = di^(βi)

• Degrees reduce from N to log log N in O(log log N)
steps (lose factor log log N in L2 mass in each step)



concluding remarks

• Subspaces of RN of dimension Ω(N)
– Explicit with distortion (log N)O(log log log N)

– Using Nδ random bits, distortion O(1)
– Continuous analog of expander/Tanner codes
– Ingredients in explicit construction: Ramanujan graphs,

Kerdock codes, sum-product theorem in finite fields

• Some questions:
– Explicit construction with dim Ω(N) and distortion O(1)
– Better dependence of distortion on co-dimension

(important for compressed sensing application)
– Iterative near-linear time decoding (for Tanner codes)

• some results in [Xu-Hassibi, G.-Lee-Wigderson]


