Expander codes,
Euclidean sections, and compressed sensing
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random Euclidean sections of L;N

e For x € RN we have ||X||2 < ||X||1 < VN ”X”Z

[Kashin 77, Figiel-Lindenstrauss-Milman 77]:
For a random subspace X C RN with dim(X) = N/2,
L, and L, norms are equivalent up to universal factors

|21 = O N) |zl Va &

* The L, mass of x is spread across many coordinates

e Compare with error-correcting codes: Subspace C of F,N such
that every nonzero c € C has Q(N) Hamming weight.




Euclidean sections, embeddings

* L, — L, embeddings: Write X ={ Gy :y & RN?2} for
an N x N/2 matrix G with orthonormal columns

— The map y — (G y)/VN gives an O(1) distortion embedding
from L,V?to LN




existential vs. constructive results

* Prominent example of ubiquitious use of probabilistic
method in asymptotic convex geometry

e Dilemma we know well:

— Almost all subspaces are good, except we can’t
pinpoint even one!

* Question [Szarek, ICM’06; Milman, GAFA’0I; Johnson-
Schechtman, handbook’01]: Can we find an explicit
subspace where L, and L, norms are equivalent?
— Natural, fundamental question

— Gain in recent popularity due to ever growing connections
to combinatorics and theory CS




Computer Science connections

* explicit embeddings of L, to L, for nearest-neighbor
search [Indyk]

explicit compressed sensing maps M : RN — Rk (for k
<< N) [Devore] (more on this soon)

Coding over reals [Candes-Tao, Dwork-McSherry-Talwar]

dimension reduction [Ailon-Chazelle]

Explicitness (or derandomization) has many benefits:

— Better understanding of underlying geometric structure
— Faster algorithms
— Certifiability




Distortion

For a subspace X C RN | define the distortion of X by

Clearly, 1 = A(X) < VN

Our goal: low distortion subspaces of large dimension

Random construction: For a random X C RN with
dim(X) = Q(N), w.h.p A(X) = O(1)

- (will mention exact trade-off shortly)




Main results

[G.-Lee-Razborov'08] Explicit subspace X C RN
with dim(X) = N - o(N) & A(X) =

[G.-Lee-Wigderson’08] With N° random bits, can

construct subspace X with dim(X) = N/2 and
A(X) = (= exp(1/9))

Subspaces specified as kernel of sign matrix




previous explicit results

Sub-linear dimension (and constant distortion):

* Rudin’60 (and later LLR’94) achieved dim(X) ~ N2 and A(X) < 3
(X = span {4-wise independent vectors})

» Indyk’00: dim(X) ~ 2"leN and A(X) < 1+0(1)

« Indyk’07: dim(X) =~ N / exp((log log N)?) and A(X) < 1+0(1)

For dim(X) = Q(N):
* NO explicit construction known with A(X) smaller than N/

e { (% Hx):x € RN2} where H is the N/2 x N/2 Hadamard
matrix has distortion N1/4

— Uncertainty principle

* Regime of interest for error-correction over reals
— constant rate codes




“derandomization” results

* Distortion-dimension trade-off of random subspaces
[Kashin’77, Garnaev-Gluskin’84]

— For a random k x N sign matrix A, \, almost surely

(and of course dim(ker(A, y)) > N - k)

e Construction with O(N log N) random bits [Arstein-
Milman’06]

e Construction with O(N) random bits [Lovett-Sodin 07]




rest of talk

Connection to compressed sensing

Subspaces from expander/Tanner codes

Constant distortion construction

Explicit construction
— “Spread-boosting” theorem
— Using spread boosting: ingredients & analysis

Conclusions




compressed sensing

Typical camera algorithm:

1. Captures an image, a signal in RN
2. Compresses image Comp : RN — Rf

Compression works because image is r-sparse in
some basis (eg. Wavelet)

Camera still makes N >> r measurements since
it doesn’t a priori know which ones to make!

Compressed sensing: Find a map A : RN — RK s.t. any r-sparse x € RN
can be recovered (efficiently & uniquely) from Ax (ideally k = r log N)

tOpiC: http://www.dsp.ece.rice.edu/cs/ [Donoho], [Candes-Tao],
[Rudelson-Vershynin], [Candes-Romberg-Tao],, .... Two talks in ICM’06.

Properties of random matrices (restricted isometry, Gelfand width,
distortion) play crucial role in these developments.




relation to distortion

[Kashin-Temlyakov’07] make explicit a simple connection
between distortion of ker(A) & compressed sensing using A:

— Can uniquely and efficiently recover any r-sparse signal
for r <N/ (4 A(ker(A))?)

Algorithm is basis pursuit or L, minimization:
— given data y, output x that minimizes ||x||, subject to Ax=y
— easy by linear programming (L, minimization is NP-hard)

— handles almost sparse x (very important in practice!)

Plugging in optimal distortion bound (N/k log(N/k))'’? gives
(optimal) k = r log N measurements!
— Explicit construction open




proof of connection (for zero noise case)

Let X = ker(A).
Suppose y = Ax and [supp(x)| = r < N/ 4A(X)?

Need to prove: For any nonzero u € X, ||xt+ul[, > [[x]],

Let S = supp(x), and T=S°¢

|[x+ul]; 2 |X||1'Ej€S|uj| +EjeT |uj|
> [l + lully -2 2 ¢ s [y

Claim: For nonzero u, . ¢ [u|<||u],/2
Proof: LHS < V[S| {Jull = Vr ([lu]l; A(X)/ VN) <|u]],/2




outline

* Subspaces from expander/Tanner codes




Expander/LDPC code construction

bipartite graph G=([N], [n], E); d right-regular, L C Rd

X(G,1) = s BN o€V el

Continuous analog of Gallager LDPC
codes and extension by Tanner
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- Global structure from local constraints

/

- Like in Sipser-Spielman analysis,
expansion of G plays a crucial role

\

We show: if L is good, and G is an
expander, then X(G,L) is good (or even
better in some parameters)
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spread subspaces

Key notion: L C R9is (t, €)-spread if every x € L satisfies

Mmin |lzsllo > - ||lx
min ]2 > < 1.

“No t coordinates hog most of the mass”

Equivalent notion to distortion (easier to work with)
— O(1) distortion < ( Q(d), (1) )-spread
— (t, €)-spread = distortion O(e2 - (d/t)'?)

Note: Every subspace is trivially (1/2, 1)-spread.

Goal: Increase t while not losing too much mass.
— (t, €)-spread — (t’, €’)-spread




constant distortion construction

Take unbalanced expander to be edge-vertex
edges of H incidence graph of d-regular expander H(V,E)

Belongs to L

N

@
o

nodes of H

Subspace = {z € R” | zg,) € LYv €V

here E(v) = set of d edges incident on wv.

L € RY is a random subspace
- has O(1) distortion, say is (d/10, 0.1)-spread
For d = n%2, can pick L using n® random bits.




distortion/spread analysis

e Thm: If H is an (n,d,\)-expander with A < d%° and L is
(d/10,0.1)-spread, then distortion of T(H,L) is n©¢!/log d

— O(1) = exp(1/0) distortion with d = n®?

e Show T(H,L) is (N/200, n-Ot/log d))_gpread

— (N =nd/2 1s # edges of H)

Suffices to show:
For unit vector x € T(H,L)

& set W of < n/20 vertices

2 —O(1/ log d)
i =>n -

ZEW)




spread outside induced subgraphs

* Define Z = {z & W :z has >d/10 neighbors in W }
* By local (d/10,0.1)-spread property, mass in W \ Z “leaks out”

By expander mixing lemma,
|Z] < O((Md)?) W] < O(IW|/d>?)

Iterating this log, n times, claim follows.




outline

* Explicit construction

— “Spread-boosting” theorem
— Using spread boosting: ingredients & analysis




spread-boosting theorem (general bipartite expanders)

setup: bipartite graph G=([N], [n], E); d right-regular;
(t,e)-spread local subspace L C R
(left-to-right) expansion profile of G:

applying the thm: Think ¢, D as constants. Want t Ag(T)/T

large to get from (1/2,1)-spread to say (2(N), y)-spread in few iterations
(v is exponentially small in # iterations)




proving spread-boosting theorem

X(G,L) is (T,0)-spread = X(G,L) is
Let S arbitrary with |S| = t Ag(T)/D

Idea: S should “leak” L, mass outside

(since L is spreading and G is an expander),
unless most of the mass in S is concentrated
on small subset B (impossible by assumption)

Details:

— Q =right nodes with >t neighbors in S
Q| < |S|D/t<s Ag(T)
B = nodes in S whose neighbors are all in Q
|IB| < T so it can’t contain too much mass
Mass in S - B leaks out




outline

— Using spread boosting: ingredients & analysis




using spread-boosting

Goal: Construct explicit (d°!, ©(1))-spread
subspace of large dimension

' =0

nodes of H

Suppose L is (t, 0.1)-spread
(T,0) = (Q(tAg(T) ), €2(0) )-spread
(T,0) = (Q(Ttd'"?), Q) )-spread

If t >> d!’?, we compensate for the factor d'?> loss in expansion
and get increase in T

Optimal/random L has t = €2(d)

— Can construct efficiently only for small d, say d = log N
— Problem: # iterations = log, N, so need d large (say N°')




explicit somewhat well-spread subspace

Mutually Unbiased Bases from Kerdock codes [Kerdock’72,
Cameron-Seidel’73]:

Explicit set of k/2 orthonormal bases B, ..., B,,, C k12 {-1,1}*
such that u € Bjand v € B;, i = j = |(u,v)| = k"2,

A=[B,, ...,B,]forany 1 <m < k/2

One can show that ker(A) is ((d'2), Q(1))-spread

Gives (Q(d'?), Q(1))-spread subspace of dimension (1-¢)d for
any € > 0

But too weak to work with Ramanujan construction :(




sum-product expander

* Need (N,n,d)-expander with expansion factor better
than 1/Vd factor for sets of size up to NO-3!

* Sum-product theorems [Bourgain-Katz-Tao, ...]: For A C ]Fp with

YIRS Sl | | 1| > 4100 or [A.A| > |40

(a,b,c) € ]Fp3 —» (1,2), (2,b), (3,¢), (4, a2 b+c)

[Barak-Kindler-Shaltiel-Sudakov-Wigderson,
Barak-Impagliazzo-Wigderson]: For some & >0

AG(m) > min ( P0.9 : m1/3+§)

For L = Kerdock, G = sum-product expander:
above + spread-boosting theorem = L’ = X(G,L)

is (d'/2*c, Q(1))-spread for some ¢ > 0.




the final construction

* Now plug L’ into X(G’,L’) with G’ = edge-vertex
graph of Ramanujan and get non-trivial boosting

* Actual construction is intersection of many such
“parallel” constructions
— To minimize iterations, need right degree d large

— 1/Vd expansion stops at N/d, so can’t use a single large d

— ldea: using many graphs with different degrees, each
efficiently boosting in a different range of sizes

* d, = dA(pB)
* Degrees reduce from N to log log N in O(log log N)
steps (lose factor log log N in L, mass in each step)




concluding remarks

* Subspaces of RN of dimension Q(N)
— Explicit with distortion (log N)©(ogloglogN)
— Using N° random bits, distortion O(1)
— Continuous analog of expander/Tanner codes

— Ingredients in explicit construction: Ramanujan graphs,
Kerdock codes, sum-product theorem in finite fields

* Some questions:
— Explicit construction with dim €2(N) and distortion O(1)

— Better dependence of distortion on co-dimension
(important for compressed sensing application)

— lterative near-linear time decoding (for Tanner codes)
e some results in [Xu-Hassibi, G.-Lee-Wigderson]




