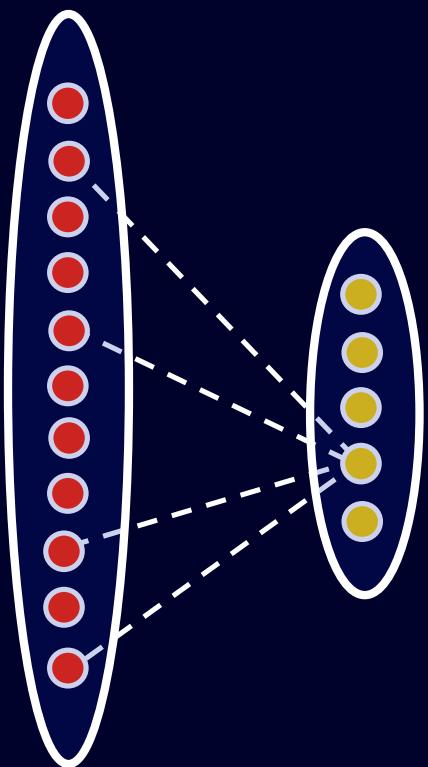

Expander codes, Euclidean sections, and compressed sensing



VENKATESAN GURUSWAMI

University of Washington
(visiting Carnegie Mellon University)

Based on joint works with

James Lee (U. Washington), *Alexander Razborov* (U. Chicago),
Avi Wigderson (IAS)

random Euclidean sections of L_1^N

- For $x \in \mathbb{R}^N$ we have $\|x\|_2 \leq \|x\|_1 \leq \sqrt{N} \|x\|_2$
- [Kashin 77, Figiel-Lindenstrauss-Milman 77]:
For a *random* subspace $X \subseteq \mathbb{R}^N$ with $\dim(X) = N/2$,
 L_2 and L_1 norms are equivalent up to universal factors

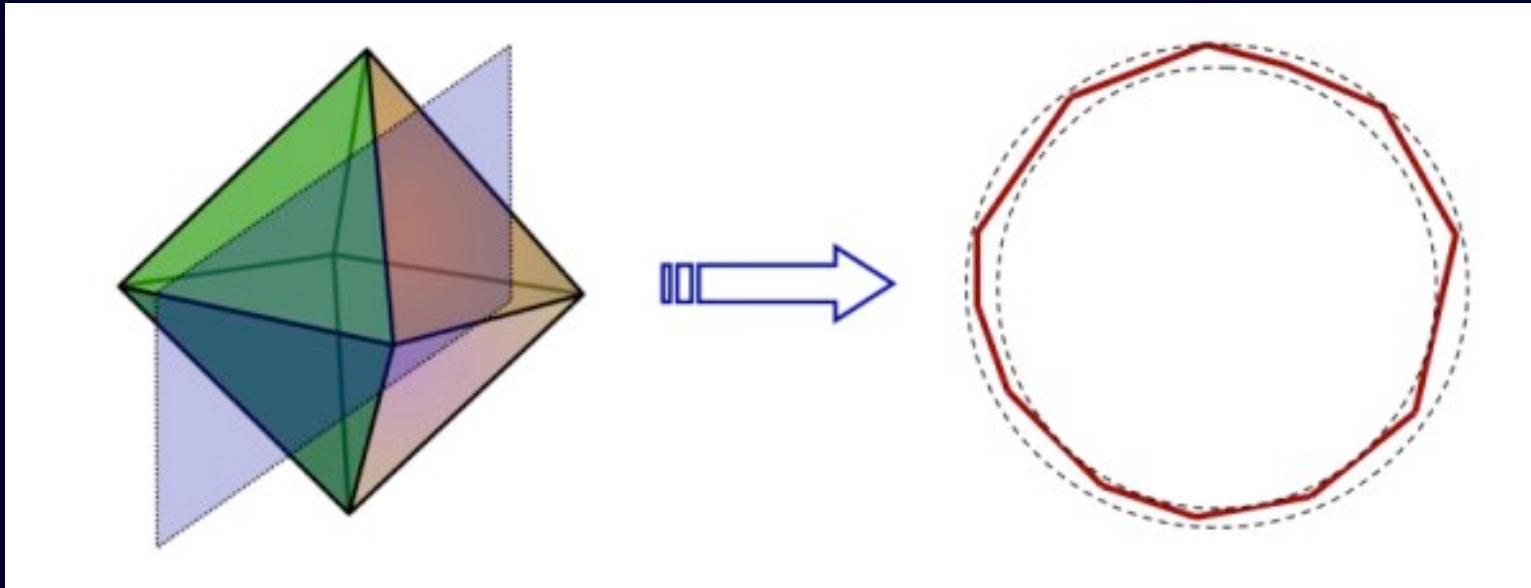
$$\|x\|_1 = \Theta(\sqrt{N}) \|x\|_2 \quad \forall x \in X$$

- The L_2 mass of x is spread across many coordinates

$$\#\left\{i : |x_i| \approx N^{-\frac{1}{2}} \|x\|_2\right\} = \Omega(N)$$

- Compare with error-correcting codes: Subspace C of \mathbb{F}_2^N such that every nonzero $c \in C$ has $\Omega(N)$ Hamming weight.

Euclidean sections, embeddings



- $L_2 \rightarrow L_1$ embeddings: Write $X = \{ G y : y \in \mathbb{R}^{N/2} \}$ for an $N \times N/2$ matrix G with orthonormal columns
 - The map $y \rightarrow (G y)/\sqrt{N}$ gives an $O(1)$ distortion embedding from $L_2^{N/2}$ to L_1^N

existential vs. constructive results

- Prominent example of ubiquitous use of probabilistic method in asymptotic convex geometry
- Dilemma we know well:
 - Almost all subspaces are good, except we can't pinpoint even one!
- Question [Szarek, ICM'06; Milman, GAFA'01; Johnson-Schechtman, handbook'01]: Can we find an *explicit* subspace where L_1 and L_2 norms are equivalent?
 - Natural, fundamental question
 - Gain in recent popularity due to ever growing connections to combinatorics and theory CS

Computer Science connections

- explicit embeddings of L_2 to L_1 for nearest-neighbor search [Indyk]
- explicit compressed sensing maps $M : \mathbb{R}^N \rightarrow \mathbb{R}^k$ (for $k \ll N$) [Devore] (*more on this soon*)
- Coding over reals [Candes-Tao, Dwork-McSherry-Talwar]
- dimension reduction [Ailon-Chazelle]

Explicitness (or derandomization) has many benefits:

- Better understanding of underlying geometric structure
- Faster algorithms
- Certifiability

Distortion

For a subspace $X \subseteq \mathbb{R}^N$, define the distortion of X by

$$\Delta(X) = \max_{0 \neq x \in X} \frac{\sqrt{N} \|x\|_2}{\|x\|_1}$$

Clearly, $1 \leq \Delta(X) \leq \sqrt{N}$

Our goal: **low** distortion subspaces of **large** dimension

Random construction: For a random $X \subseteq \mathbb{R}^N$ with

$$\dim(X) = \Omega(N), \text{ w.h.p } \Delta(X) = O(1)$$

- (will mention exact trade-off shortly)

Main results

- [G.-Lee-Razborov'08] Explicit subspace $X \subseteq \mathbb{R}^N$ with $\dim(X) = N - o(N)$ & $\Delta(X) = (\log N)^{O(\log \log \log N)}$
- [G.-Lee-Wigderson'08] With N^δ random bits, can construct subspace X with $\dim(X) = N/2$ and $\Delta(X) = O(1)$ ($= \exp(1/\delta)$)
- Subspaces specified as kernel of sign matrix

previous explicit results

Sub-linear dimension (and constant distortion):

- Rudin'60 (and later LLR'94) achieved $\dim(X) \approx N^{1/2}$ and $\Delta(X) \leq 3$ ($X = \text{span } \{4\text{-wise independent vectors}\}$)
- Indyk'00: $\dim(X) \approx 2^{\sqrt{\log N}}$ and $\Delta(X) \leq 1+o(1)$
- Indyk'07: $\dim(X) \approx N / \exp((\log \log N)^2)$ and $\Delta(X) \leq 1+o(1)$

For $\dim(X) = \Omega(N)$:

- NO explicit construction known with $\Delta(X)$ smaller than $N^{1/4}$
- $\{ (x, Hx) : x \in \mathbb{R}^{N/2} \}$ where H is the $N/2 \times N/2$ Hadamard matrix has distortion $N^{1/4}$
 - Uncertainty principle
- Regime of interest for error-correction over reals
 - constant rate codes

“derandomization” results

- Distortion-dimension trade-off of random subspaces [Kashin’77, Garnaev-Gluskin’84]
 - For a random $k \times N$ sign matrix $A_{k,N}$, almost surely

$$\Delta \left(\ker \left(A_{k,N} \right) \right) \lesssim \sqrt{\frac{N}{k}} \text{polylog} \left(\frac{N}{k} \right)$$

(and of course $\dim(\ker(A_{k,N})) \geq N - k$)

- Construction with $O(N \log N)$ random bits [Arstein-Milman’06]
- Construction with $O(N)$ random bits [Lovett-Sodin 07]

rest of talk

- Connection to compressed sensing
- Subspaces from expander/Tanner codes
- Constant distortion construction
- Explicit construction
 - “Spread-boosting” theorem
 - Using spread boosting: ingredients & analysis
- Conclusions

compressed sensing

Typical camera algorithm:

1. Captures an image, a signal in \mathbb{R}^N
2. Compresses image **Comp** : $\mathbb{R}^N \rightarrow \mathbb{R}^r$

Compression works because image is r -sparse in some basis (eg. Wavelet)

Camera still makes $N \gg r$ measurements since it doesn't a priori know which ones to make!

Compressed sensing: Find a map $A : \mathbb{R}^N \rightarrow \mathbb{R}^k$ s.t. any r -sparse $x \in \mathbb{R}^N$ can be recovered (efficiently & uniquely) from Ax (ideally $k = r \log N$)

HOT topic: <http://www.dsp.ece.rice.edu/cs/> [Donoho], [Candes-Tao], [Rudelson-Vershynin], [Candes-Romberg-Tao], , Two talks in ICM'06.

Properties of random matrices (restricted isometry, Gelfand width, distortion) play crucial role in these developments.

relation to distortion

- [Kashin-Temlyakov'07] make explicit a simple connection between distortion of $\ker(A)$ & compressed sensing using A :
 - Can uniquely and efficiently recover any r -sparse signal for $r < N / (4 \Delta(\ker(A))^2)$
- Algorithm is basis pursuit or L_1 minimization:
 - given data y , output x that minimizes $\|x\|_1$ subject to $Ax=y$
 - easy by linear programming (L_0 minimization is NP-hard)
 - handles almost sparse x (very important in practice!)
- Plugging in optimal distortion bound $(N/k \log(N/k))^{1/2}$ gives (optimal) $k \approx r \log N$ measurements!
 - Explicit construction open

proof of connection (for zero noise case)

Let $X = \ker(A)$.

Suppose $y = Ax$ and $|\text{supp}(x)| \leq r < N/4\Delta(X)^2$

Need to prove: For any nonzero $u \in X$, $\|x+u\|_1 > \|x\|_1$

Let $S = \text{supp}(x)$, and $T = S^c$

$$\begin{aligned}\|x+u\|_1 &\geq \|x\|_1 - \sum_{j \in S} |u_j| + \sum_{j \in T} |u_j| \\ &\geq \|x\|_1 + \|u\|_1 - 2 \sum_{j \in S} |u_j|\end{aligned}$$

Claim: For nonzero u , $\sum_{j \in S} |u_j| < \|u\|_1/2$

Proof: LHS $\leq \sqrt{|S|} \|u\|_2 \leq \sqrt{r} (\|u\|_1 \Delta(X)/\sqrt{N}) < \|u\|_1/2$

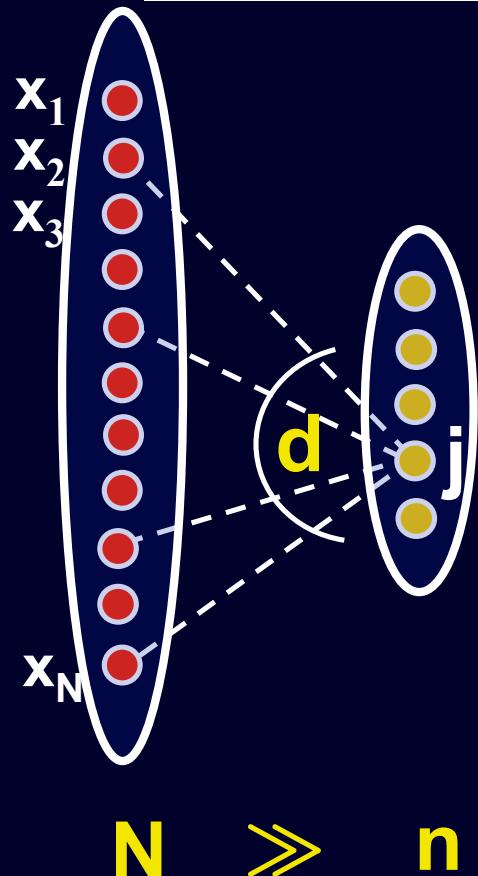
outline

- Connection to compressed sensing
- Subspaces from expander/Tanner codes
- Constant distortion construction
- Explicit construction
 - “Spread-boosting” theorem
 - Using spread boosting: ingredients & analysis
- Conclusions

Expander/LDPC code construction

bipartite graph $G = ([N], [n], E)$; d right-regular, $L \subseteq \mathbb{R}^d$

$$X(G, L) = \left\{ x \in \mathbb{R}^N : x_{\Gamma(j)} \in L \quad \forall j \in [n] \right\}$$



Continuous analog of Gallager LDPC codes and extension by Tanner

- Global structure from local constraints
- Like in Sipser-Spielman analysis, **expansion** of G plays a crucial role

We show: if L is good, and G is an expander, then $X(G, L)$ is good (or even better in some parameters)

spread subspaces

Key notion: $L \subseteq \mathbb{R}^d$ is (t, ε) -spread if every $x \in L$ satisfies

$$\min_{|S| \leq t} \|x_{\bar{S}}\|_2 \geq \varepsilon \cdot \|x\|_2$$

“No t coordinates hog most of the mass”

Equivalent notion to distortion (easier to work with)

- $O(1)$ distortion $\Leftrightarrow (\Omega(d), \Omega(1))$ -spread
- (t, ε) -spread \Rightarrow distortion $O(\varepsilon^{-2} \cdot (d/t)^{1/2})$

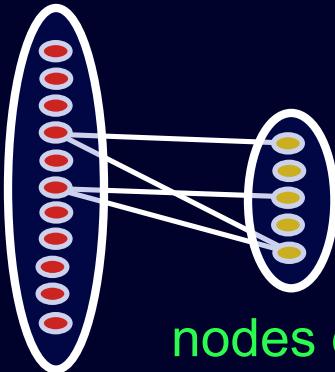
Note: Every subspace is trivially $(1/2, 1)$ -spread.

Goal: Increase t while not losing too much mass.

- (t, ε) -spread $\rightarrow (t', \varepsilon')$ -spread

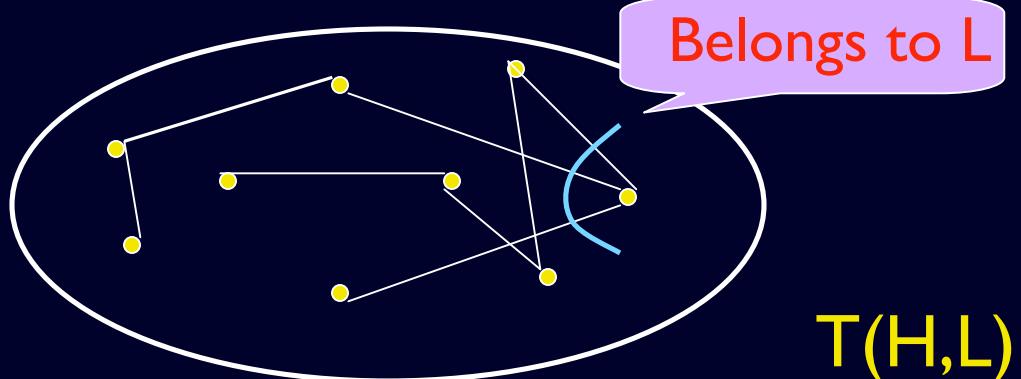
constant distortion construction

edges of H



nodes of H

Take unbalanced expander to be edge-vertex incidence graph of d -regular expander $H(V, E)$



Subspace = $\{x \in \mathbb{R}^E \mid x_{E(v)} \in L \ \forall v \in V\}$

where $E(v)$ = set of d edges incident on v .

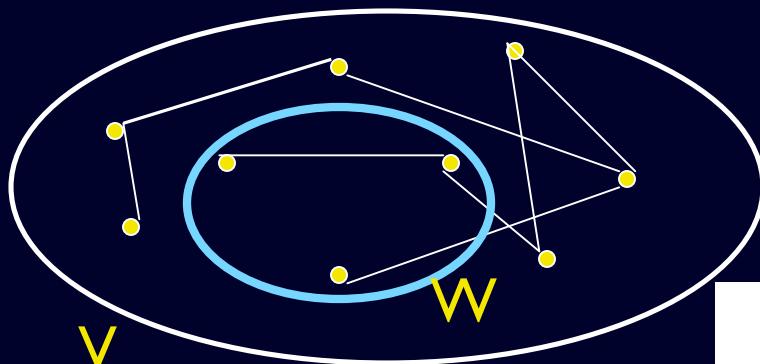
$L \subseteq \mathbb{R}^d$ is a random subspace

- has $O(1)$ distortion, say is $(d/10, 0.1)$ -spread

For $d = n^{\delta/2}$, can pick L using n^δ random bits.

distortion/spread analysis

- Thm: If H is an (n, d, λ) -expander with $\lambda \leq d^{0.9}$, and L is $(d/10, 0.1)$ -spread, then distortion of $T(H, L)$ is $n^{O(1/\log d)}$
 - $O(1) = \exp(1/\delta)$ distortion with $d = n^{\delta/2}$
- Show $T(H, L)$ is $(N/200, n^{-O(1/\log d)})$ -spread
 - $(N = nd/2$ is # edges of H)



Suffices to show:

For unit vector $x \in T(H, L)$
& set W of $< n/20$ vertices

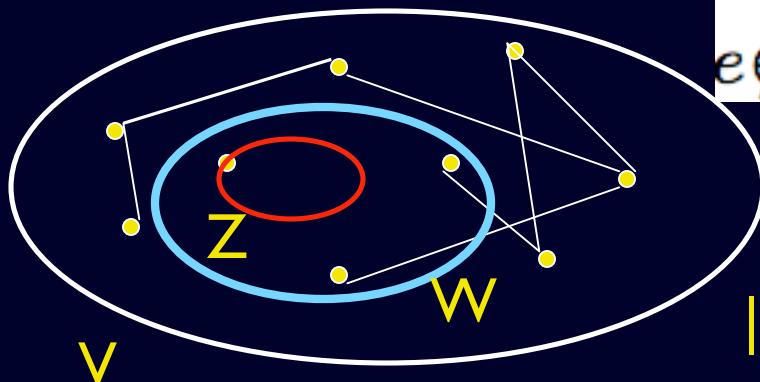
$$\sum_{e \notin E(W)} x_e^2 \geq n^{-O(1/\log d)}$$

spread outside induced subgraphs

- Define $Z = \{ z \in W : z \text{ has } > d/10 \text{ neighbors in } W \}$
- By local $(d/10, 0.1)$ -spread property, mass in $W \setminus Z$ “leaks out”

$$\sum_{e \in E(W, \bar{W})} x_e^2 \geq \frac{1}{100} \sum_{v \in W \setminus Z} \|x_{N(v)}\|_2^2$$

It follows that



$$\sum_{e \notin E(W)} x_e^2 \geq \frac{1}{100} \sum_{e \notin E(Z)} x_e^2$$

By expander mixing lemma,

$$|Z| < O((\lambda/d)^2) \quad |W| < O(|W|/d^{0.2})$$

Iterating this $\log_d n$ times, claim follows.

outline

- Connection to compressed sensing
- Subspaces from expander/Tanner codes
- Constant distortion construction
- Explicit construction
 - “Spread-boosting” theorem
 - Using spread boosting: ingredients & analysis
- Conclusions

spread-boosting theorem (general bipartite expanders)

setup: bipartite graph $G = ([N], [n], E)$; d right-regular;

(t, ε) -spread local subspace $L \subseteq \mathbb{R}^d$

(left-to-right) expansion profile of G :

$$\Lambda_G(m) = \min \{ |\Gamma_G(S)| : |S| \geq m, S \subseteq [N] \}$$

theorem: If $X(G, L)$ is (T, δ) -spread, then $X(G, L)$ is

$$\left(\frac{t}{D} \Lambda_G(T), \frac{\varepsilon \delta}{\sqrt{2D}} \right) \text{-spread}$$

applying the thm: Think ε, D as constants. Want $t \Lambda_G(T)/T$ large to get from $(1/2, 1)$ -spread to say $(\Omega(N), \gamma)$ -spread in few iterations (γ is exponentially small in # iterations)

proving spread-boosting theorem

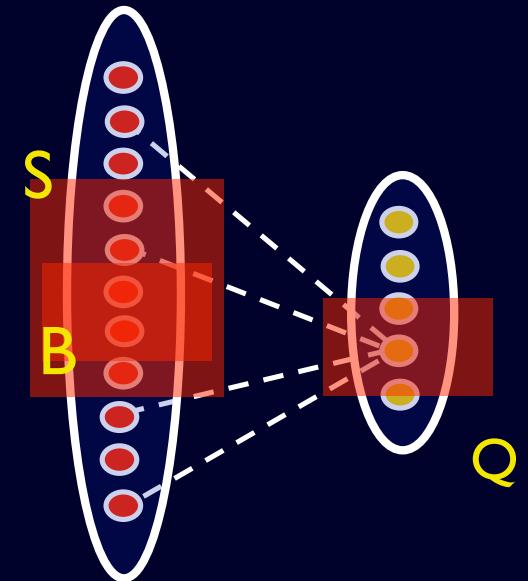
$X(G, L)$ is (T, δ) -spread $\Rightarrow X(G, L)$ is $\left(\frac{t}{D} \Lambda_G(T), \frac{\varepsilon \delta}{\sqrt{2D}}\right)$ -spread

Let S arbitrary with $|S| \leq t \Lambda_G(T)/D$

Idea: S should “leak” L_2 mass outside
(since L is spreading and G is an expander),
unless most of the mass in S is concentrated
on small subset B (impossible by assumption)

Details:

- $Q =$ right nodes with $> t$ neighbors in S
- $|Q| < |S| D / t \leq \Lambda_G(T)$
- $B =$ nodes in S whose neighbors are all in Q
- $|B| < T$ so it can't contain too much mass
- Mass in $S - B$ leaks out



outline

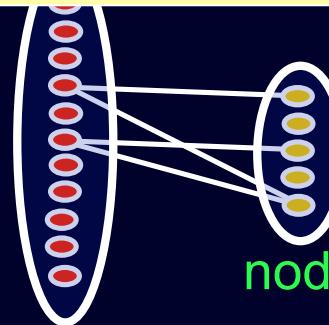
- Connection to compressed sensing
- Subspaces from expander/Tanner codes
- Constant distortion construction
- Explicit construction
 - “Spread-boosting” theorem
 - Using spread boosting: ingredients & analysis
- Conclusions

using spread-boosting

Goal: Construct explicit $(d^{0.51}, \Omega(1))$ -spread subspace of large dimension

«From Change» (expander mixing lemma).

$$\Lambda_G(m) \approx \min \left\{ \frac{m}{\sqrt{d}}, \frac{\sqrt{Nm}}{d} \right\}$$



nodes of H

- Suppose L is $(t, 0.1)$ -spread
- $(T, \delta) \rightarrow (\Omega(t \Lambda_G(T)), \Omega(\delta))$ -spread
- $(T, \delta) \rightarrow (\Omega(T t d^{-1/2}), \Omega(\delta))$ -spread
- If $t \gg d^{1/2}$, we compensate for the factor $d^{1/2}$ loss in expansion and get increase in T
- Optimal/random L has $t = \Omega(d)$
 - Can construct efficiently only for small d , say $d = \log N$
 - Problem: # iterations $\approx \log_d N$, so need d large (say $N^{0.1}$)

explicit somewhat well-spread subspace

Mutually Unbiased Bases from Kerdock codes [Kerdock'72, Cameron-Seidel'73]:

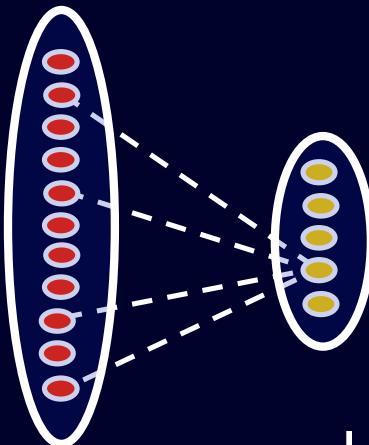
Explicit set of $k/2$ orthonormal bases $B_1, \dots, B_{k/2} \subseteq k^{-1/2} \{-1, 1\}^k$ such that $u \in B_i$ and $v \in B_j$, $i \neq j \Rightarrow |\langle u, v \rangle| = k^{-1/2}$.

- $A = [B_1, \dots, B_m]$ for any $1 \leq m \leq k/2$
- One can show that $\ker(A)$ is $(\Omega(d^{1/2}), \Omega(1))$ -spread
- Gives $(\Omega(d^{1/2}), \Omega(1))$ -spread subspace of dimension $(1-\varepsilon)d$ for any $\varepsilon > 0$
- But too weak to work with Ramanujan construction :(

sum-product expander

- Need (N, n, d) -expander with expansion factor better than $1/\sqrt{d}$ factor for sets of size up to $N^{0.51}$
- Sum-product theorems [Bourgain-Katz-Tao, ...]: For $A \subseteq \mathbb{F}_p$ with $|A| < p^{0.9}$, $|A + A| \geq |A|^{1+\delta_0}$ or $|A \cdot A| \geq |A|^{1+\delta_0}$

$$(a, b, c) \in \mathbb{F}_p^3 \rightarrow (1, a), (2, b), (3, c), (4, a \cdot b + c)$$



[Barak-Kindler-Shaltiel-Sudakov-Wigderson, Barak-Impagliazzo-Wigderson]: For some $\xi > 0$

$$\Lambda_G(m) \geq \min (p^{0.9} , m^{1/3+\xi})$$

For $L = \text{Kerdock}$, $G = \text{sum-product expander}$:
above + spread-boosting theorem $\Rightarrow L' = X(G, L)$
is $(d^{1/2+c}, \Omega(1))$ -spread for some $c > 0$.

the final construction

- Now plug L' into $X(G', L')$ with G' = edge-vertex graph of Ramanujan and get non-trivial boosting
- Actual construction is intersection of many such “parallel” constructions
 - To minimize iterations, need right degree d large
 - $1/\sqrt{d}$ expansion stops at N/d , so can't use a single large d
 - Idea: using many graphs with different degrees, each efficiently boosting in a different range of sizes
 - $d_{i+1} = d_i \wedge (\beta^i)$
 - Degrees reduce from N to $\log \log N$ in $O(\log \log N)$ steps (lose factor $\log \log N$ in L_2 mass in each step)

concluding remarks

- Subspaces of \mathbb{R}^N of dimension $\Omega(N)$
 - Explicit with distortion $(\log N)^{O(\log \log \log N)}$
 - Using N^δ random bits, distortion $O(1)$
 - Continuous analog of expander/Tanner codes
 - Ingredients in explicit construction: Ramanujan graphs, Kerdock codes, sum-product theorem in finite fields
- Some questions:
 - Explicit construction with $\dim \Omega(N)$ and distortion $O(1)$
 - Better dependence of distortion on co-dimension (important for compressed sensing application)
 - Iterative near-linear time decoding (for Tanner codes)
 - some results in [Xu-Hassibi, G.-Lee-Wigderson]