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Public Key Cryptosystems

Alice sends a ciphertext to Bob
Only Bob can recover the plaintext

confidentiality

To recover the plaintext

to find the whole plaintext ?
to get some information about it ?

Which means can be used ?

just the public key ?
Some extra information ?
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Public Key Cryptosystems

Why Proving Security?

Once a cryptosystem is described, how can we prove its security?

by trying to exhibit an attack

attack found V system insecure!
attack not found V ?

by proving that no attack exists under some assumptions

attack found V false assumption

If a security proof is given, the system design cannot be incriminated by
anyone. But the assumption has to be reasonnable. . .
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Public Key Cryptosystems

Security Notions

Depending on the context in which a given cryptosystem is used, one
may formally defines a security notion for this system,

by telling what goal an adversary would attempt to reach,

and what means or information are made available to her (the
model).

A security notion (or level) is entirely defined by pairing an adversarial
goal with an adversarial model.

Examples: OW-PCA, IND-CCA2, NM-CCA2.
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Public-Key Encryption

An asymmetric encryption scheme is a triple of algorithms (K, E ,D)
where

K is a probabilistic key generation algorithm which returns random
pairs of secret and public keys (sk , pk) depending on the security
parameter κ,

E is a probabilistic encryption algorithm which takes on input a
public key pk and a plaintext m ∈M, runs on a random tape u ∈ U
and returns a ciphertext c ,

D is a deterministic decryption algorithm which takes on input a
secret key sk , a ciphertext c and returns the corresponding plaintext
m or the symbol ⊥. We require that if (sk , pk)← K, then
Dsk (Epk(m, u)) = m for all (m, u) ∈M×U .
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Public Key Cryptosystems

History of Security Goals

it shouldn’t be feasible to compute the secret key sk from the public
key pk (unbreakability or UBK). Implicitely appeared with public-key
crypto.

it shouldn’t be feasible to invert the encryption function over any
ciphertext under any given key pk (one-wayness or OW). Diffie and
Hellman, late 70’s.

it shouldn’t be feasible to recover even a single bit of information
about a plaintext given its encryption under any given key pk
(indistinguishability of encryptions or IND). Goldwasser and Micali,
1984.

it shouldn’t be feasible to transform some ciphertext into another
ciphertext such that plaintext are meaningfully related
(non-malleability or NM). Dolev, Dwork and Naor, 1991.
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History of Adversarial Models

Several types of computational resources an adversary has access to have
been considered:

chosen-plaintext attacks (CPA), unavoidable scenario.

non-adaptive chosen-ciphertext attacks (CCA1) (also known as
lunchtime or midnight attacks), wherein the adversary gets, in
addition, access to a decryption oracle before being given the
challenge ciphertext. Naor and Yung, 1990.

adaptive chosen-ciphertext attacks (CCA2) as a scenario in
which the adversary queries the decryption oracle before and after
being challenged; her only restriction here is that she may not feed
the oracle with the challenge ciphertext itself. This is the strongest
known attack scenario. Rackoff and Simon, 1991.
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Relations Among Security Notions

CPA CCA1 CCA2

UBK

OW

IND

NM
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Chosen-Ciphertext Security

Because IND-CCA2 ≡ NM-CCA2 is the upper security level, it is
desirable to prove security with respect to this notion. It is also denoted
by IND-CCA and called chosen ciphertext security.

Formally, an asymmetric encryption scheme is said to be (τ, ε)-IND-CCA
if for any adversary A = (A1,A2) with running time upper-bounded by τ ,

Advind(A) = 2× Pr
b

R←{0,1}

u
R←U

[
(sk, pk) ← K(1κ), (m0, m1, σ) ← A1(pk)

c ← Epk (mb, u) : A2(c, σ) = b

]
− 1 < ε ,

where the probability is taken over the random choices of A. The two
plaintexts m0 and m1 chosen by the adversary have to be of identical
length. Access to a decryption oracle is allowed throughout the game.
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IND-CCA: Playing the Game

A1

A2

Decryption

Random Encryption

Key Generator

pk

m  , m

cb

b'==b?

0        1

(find stage)

(guess stage)

reject only cb
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Encrypting using trapdoor one-way functions

Trapdoor one-way functions

A trapdoor permutation is a one-to-one function f that anyone
can compute efficiently; however, inverting f is hard unless some
“trapdoor” information is also given.

Naively, a trapdoor permutation defines a simple public key
encryption scheme: the description of f is the public key and the
trapdoor is the secret key.

Unfortunately, the naive public key system is deterministic and hence
cannot achieve the indistinguishability of ciphertexts security notion.
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Trapdoor one-way functions: RSA

In 1978, Rivest, Shamir, and Adleman proposed the first candidate
trapdoor permutation.

The RSA setup consists of choosing two distinct large prime
numbers p and q, and computing the RSA modulus n = pq.

The public key is n together with an exponent e
(relatively prime to ϕ(n) = (p − 1)(q − 1)).

The secret key d is defined to be the multiplicative inverse of e
modulo ϕ(n).

Encryption and decryption are defined as follows:

E(m) = me mod n D(c) = cd mod n.
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RSA-like functions

In 1993, Smith and Lennon have proposed a system which uses a
special type of Lucas sequences and is an alternative to RSA: given
a and b two integers such that a2 − 4b is a non-square, the Lucas
sequence V is given by a second-order linear recurrence relation:
∀k > 1,

Vk+1(a, b) = aVk(a, b)− bVk−1(a, b),V1(a, b) = a,V0(a, b) = 2.

The polynomial of degree e, P(X ) ≡ Ve(X , 1) (mod n) with e
relatively prime to (p2 − 1)(q2 − 1) is a permutation of (Z/nZ)×

whose inverse is Vd(X , 1) (mod n) where d is the multiplicative
inverse of e modulo (p2 − 1)(q2 − 1).

In 1993, Demytko has suggested to replace the polynomials X e by
division polynomials of elliptic curves defined over a ring.
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Trapdoor one-way functions

These primitives do not provide an IND-CCA2 secure encryption
scheme

Under a slightly stronger assumption than the intractability of the
integer factorization, they give a cryptosystem that is only one-way
under chosen-plaintext attacks (a very weak level of security).

The main purpose of this talk is to propose new combinations of
these RSA-like problems giving rise to semantically secure public key
cryptosystem.

Notations. n will be an RSA modulus and P and Q will denote
monic polynomials of Z/nZ[X ] of respective degree eP and eQ , such
that the associate polynomial functions are one-way permutations of
(Z/nZ)×; R ∈ Z/nZ[X ,Y ] will denote a bivariate polynomial with
eR := degX (R).
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Polynomial permutations and new algorithmic problems

Definitions

Definitions

In order to fix the notations, we define the problem of inverting the
permutation induced by the polynomial P.

Punctual Inversion: P−1(n)

Given: α = P(a) ∈ (Z/nZ)×;

Find: a ∈ (Z/nZ)×.

We define a new family of algorithmic problems: the computation
polynomial Diffie-Hellman problems that generalize together the
punctual inversion problem and the dependent-RSA problem.

Computational Polynomial DH: C-POL-DH(n, P, Q, R)

Given: α = P(a) ∈ (Z/nZ)× and β = Q(b) ∈ (Z/nZ)×;

Find: R(a, b) ∈ (Z/nZ)×.
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In this talk, we deal only with the following cases:

R(X , Y ) = XY that we denote C-POL1(n, P, Q)
R(X , Y ) = P

`
(XY )k

´
that we denote C-POL2(n, k, P, Q)

R(X , Y ) = Q(X ) that we denote C-DPOL(n, P, Q)
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Definitions

Definitions

We define the decision problem D-POL-DH(n,P,Q,R) where an
element from (Z/nZ)× is given and the algorithm has to decide
whether it is a valid candidate for the C-POL-DH(n,P,Q,R)
problem.

Decisional Polynomial DH: C-POL-DH(n, P, Q, R)

Given: α = P(a) ∈ (Z/nZ)×, β = Q(b) ∈ (Z/nZ)× and
γ ∈ (Z/nZ)×;

Decide whether: γ = R(a, b).

We also define the decision problems D-POL1(n,P,Q),
D-POL2(n, k,P,Q) and D-DPOL(n,P,Q) for the cases
R(X ,Y ) = XY , R(X ,Y ) = P

(
(XY )k

)
and R(X ,Y ) = Q(X ).
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and R(X ,Y ) = Q(X ).
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Complexity of the new problems

The C-POL1 problem

We define an extraction problem, E-POL-DH(n,P,Q,R):
Given P(a), Q(b) and R(a, b), find a and b.
We denote as before E-POL1, E-POL2, E-DPOL the extraction problems
for the special values of R.

For the C-POL1 problem, we have the straightforward theorem:

Theorem:
D-POL1(n,P,Q)

P⇐= C-POL1(n,P,Q)
P⇐⇒ P−1(n) ∧ Q−1(n).
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The C-POL2 problem

For the C-POL2 problem, we use the extraction problem to state a
similar theorem.

Theorem:
For an RSA integer n, and two permutation polynomials P and Q of
(Z/nZ)×,

C-POL2∧E-POL2
P⇐⇒ P−1 ∧ Q−1 P

=⇒
C-POL2

E-POL2

P
=⇒ D-POL2 .
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Complexity of the new problems

Difficulty of D-POL1 and D-POL2

The best known way to solve these problems is to solve the
corresponding extraction problem (cf. Coppersmith, Franklin,
Patarin and Reiter 1996).

We know the values of P(a), Q(b) and R(a, b) and we want to find
the values of a and b. To do this, we compute the resultant with
respect to the variable Y :
S(X ) = ResY (R(X ,Y )− R(a, b), Q(Y )− Q(b)).

This gives a polynomial S(X ) of degree eReQ with S(a) = 0, so

(X − a) | gcd(S(X ),P(X )− P(a)).

In fact, in many cases, we will have
(X − a) = gcd(S(X ),P(X )− P(a)), and this method allows to
recover a. The value of b is recovered by a symmetric method.
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Difficulty of D-POL1 and D-POL2

The computation of the resultant can be done in
O(e2

ReQ log2(eReQ) log log(eReQ)) operations in Z/nZ.

Note that eR = 1 for E-POL1 and eR = keP for E-POL2, so, if k is
large enough, this method will be infeasible even if eP is small.

If eQ and eR are greater than, say 221, this method will fail.

The computation of the gcd can be done in O(e log2 e log log e)
operations in Z/nZ, where e = max(eReQ , eP).

If ep and eQ are greater than, say 260, this method will fail.
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Difficulty of D-POL1 and D-POL2

If the polynomial Q induces a morphism of (Z/nZ)× (in particular, if Q
is associated to the RSA function), it is possible to make another
reduction from Q−1(n) to C-POL2(n, k,P,Q) when k = 1.

Theorem:
Let n be an RSA integer and P and Q two permutation polynomials of
(Z/nZ)× of respective degrees eP and eQ . Suppose that Q is a
morphism and that I is the support of P.
If the gcd of I equals 1, then we can solve the Q−1(n) problem with #I
queries to an oracle for the C-POL2(n, 1,P,Q) problem with O((eP)3)
operations in Z/nZ.
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Difficulty of D-POL1 and D-POL2
Proof:
We denote by m the cardinal of I. Note that if m = 1, and eQ = eP , the
problem C-POL2(n, 1,P,Q) is trivial.
Given an element Q(b) ∈ (Z/nZ)×, we want to recover b.

We start by choosing randomly m couples (sj , tj) ∈ (Z/nZ)× × (Z/nZ)×,
with j = 1, . . . ,m. We assume that all the sj and the tj with
j = 1, . . . ,m are distinct.

For each j ∈ {1, . . . ,m}, we give the values P(sj) and
Q(btj) = Q(b)Q(tj) to an oracle for C-POL2(n, 1,P,Q) which give the
value of P(sj tjb) in reply. Note that the m queries to the oracle are
independent.

Now we got m equations:∑
i∈I

pi (sj tj)
ibi = P(sj tjb),

with the m unknowns (bi )i∈I .
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Proof (continued):
If we denote I := {i1, i2, . . . , im}, with 0 < i1 < i2 < · · · < im = eP , the
system of equations is associated with the following matrix:

M :=


pi1(s1t1)

i1 pi2(s1t1)
i2 · · · pim(s1t1)

im

...
...

...

pi1(smtm)i1 pi2(smtm)i2 · · · pim(smtm)im


The method successes if det(M) ∈ (Z/nZ)×. We focus on the study of
det(M) 6= 0.
If m = 1, then M = ((s1t1)

ep ) so there is no problem, else, we have

det(M) =

 m∏
j=1

pij


∣∣∣∣∣∣∣∣

1 c i2−i1
1 · · · c im−i1

1

...
...

...

1 c i2−i1
m · · · c im−i1

m

∣∣∣∣∣∣∣∣
where cj := sj tj for j = 1, . . . ,m.
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Proof (continued):
This last determinant, D, is a generalized Vandermonde determinant.
One can see that

D =

 ∏
1≤i<j≤m

(cj − ci )

 T (c1, c2, . . . , cm),

where T is a polynomial of degree im − i1 −m + 1 in cm.
So, if all the (cj)j=1,...,m are distinct, once all the (sj)j=1,...,m, all the
(tj)j=1,...,m−1 have been chosen, less than (im − i1 −m + 1)2 values of tm
can make the method fail.
So with standard Gauss elimination, we can recover the (bi )i∈I with
O(e3

P) operations in Z/nZ and m independent queries to the oracle.
As gcd(I) = 1, there exists a linear combination of the elements of I
that equals 1, therefore we can recover b.



Trapdoor Permutation Polynomials of Z/nZ and Public Key Cryptosystems

Polynomial permutations and new algorithmic problems

Complexity of the new problems

Difficulty of D-POL1 and D-POL2

Proof (continued):
This last determinant, D, is a generalized Vandermonde determinant.
One can see that

D =

 ∏
1≤i<j≤m

(cj − ci )

 T (c1, c2, . . . , cm),

where T is a polynomial of degree im − i1 −m + 1 in cm.
So, if all the (cj)j=1,...,m are distinct, once all the (sj)j=1,...,m, all the
(tj)j=1,...,m−1 have been chosen, less than (im − i1 −m + 1)2 values of tm
can make the method fail.
So with standard Gauss elimination, we can recover the (bi )i∈I with
O(e3

P) operations in Z/nZ and m independent queries to the oracle.
As gcd(I) = 1, there exists a linear combination of the elements of I
that equals 1, therefore we can recover b.



Trapdoor Permutation Polynomials of Z/nZ and Public Key Cryptosystems

Polynomial permutations and new algorithmic problems

Complexity of the new problems

Difficulty of D-POL1 and D-POL2

Proof (continued):
This last determinant, D, is a generalized Vandermonde determinant.
One can see that

D =

 ∏
1≤i<j≤m

(cj − ci )

 T (c1, c2, . . . , cm),

where T is a polynomial of degree im − i1 −m + 1 in cm.
So, if all the (cj)j=1,...,m are distinct, once all the (sj)j=1,...,m, all the
(tj)j=1,...,m−1 have been chosen, less than (im − i1 −m + 1)2 values of tm
can make the method fail.
So with standard Gauss elimination, we can recover the (bi )i∈I with
O(e3

P) operations in Z/nZ and m independent queries to the oracle.
As gcd(I) = 1, there exists a linear combination of the elements of I
that equals 1, therefore we can recover b.



Trapdoor Permutation Polynomials of Z/nZ and Public Key Cryptosystems

Polynomial permutations and new algorithmic problems

Complexity of the new problems

Difficulty of D-POL1 and D-POL2

Proof (continued):
This last determinant, D, is a generalized Vandermonde determinant.
One can see that

D =

 ∏
1≤i<j≤m

(cj − ci )

 T (c1, c2, . . . , cm),

where T is a polynomial of degree im − i1 −m + 1 in cm.
So, if all the (cj)j=1,...,m are distinct, once all the (sj)j=1,...,m, all the
(tj)j=1,...,m−1 have been chosen, less than (im − i1 −m + 1)2 values of tm
can make the method fail.
So with standard Gauss elimination, we can recover the (bi )i∈I with
O(e3

P) operations in Z/nZ and m independent queries to the oracle.
As gcd(I) = 1, there exists a linear combination of the elements of I
that equals 1, therefore we can recover b.



Trapdoor Permutation Polynomials of Z/nZ and Public Key Cryptosystems

Polynomial permutations and new algorithmic problems
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The C-DPOL problem

The C-DPOL can be rewritten as follows:
Given P(a), find Q(a);
and the extraction problem, E-DPOL, can be rewritten:
Given P(a) and Q(a), find a.

Theorem: For an RSA integer n, and two permutation polynomials P
and Q of (Z/nZ)×,

C-DPOL∧E-DPOL
P⇐⇒ P−1 P

=⇒
C-DPOL

E-DPOL

P
=⇒ D-DPOL .
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Complexity of the new problems

The C-DPOL problem
Let’s try to solve the E-DPOL problem. We know the values of P(a) and
Q(a) and we want to compute the value of a. We have

(X − a) | gcd(P(X )− P(a),Q(X )− Q(a)),

and again, in many cases, we will have an equality. The complexity of the
computation of the gcd is O(e log2 e log log e) operations in Z/nZ, where
e = max(eQ , eP).

Again, suppose that the polynomial P induces a morphism of (Z/nZ)×:
we can also make another reduction from C-DPOL(n,P,Q) to P−1(n).
Theorem:
Let n be an RSA integer and P and Q two permutation polynomials of
(Z/nZ)× of respective degrees eP and eQ . Suppose that P is a morphism
and that I is the support of Q.
If gcd(I) = 1 then we can solve the P−1(n) problem with #I queries to
an oracle for the C-DPOL(n,P,Q) problem with O((eQ)3) operations in
Z/nZ.
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IND-CPA-secure public key cryptosystems

IND-CPA-secure public key cryptosystems

Let f be a trapdoor permutation and g be another function with the
following pseudo-randomness property:

”The distribution of (f (k), g(k)) induced by a random k cannot be
distinguished (by a polynomially bounded adversary) from a

randomly distributed (f (k), r).”

Then the encryption E (m) = (f (k), g(k)⊕m) is semantically secure.

We revisit this approach by using for the function g a trapdoor
permutation.
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IND-CPA-secure public key cryptosystems

Following this paradigm, we define three new encryption schemes where
the public key is (n,P,Q) or (n,P,Q,R) and the corresponding secret
key is P−1 or (P−1,Q−1). To encrypt a message m ∈ (Z/nZ)×, a user

picks at random r ∈ (Z/nZ)× (or (r0, r1) ∈ (Z/nZ)×
2
) and uses one of

the three following encryption functions:

Function 1: (m, r0, r1) 7→
(
P(r0),Q(r1),mR(r0, r1)

)
Function 2: (m, r) 7→

(
P(r),mQ(r)

)
Function 3: (m, r) 7→

(
P(mr),Q(r−1)

)
To decrypt, a user uses his knowledge P−1 or (P−1,Q−1) to recover r or
(r0, r1) then m.
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The previous schemes are one-way and semantically secure against
Chosen Plaintext Attack relative to the following problems:

Encryption function One-wayness Semantic security

Function 1, R(X , Y ) = XY C-POL1(n, P, Q) D-POL1(n, P, Q)

Function 1, R(X , Y ) = P
`
(XY )k

´
C-POL2(n, k, P, Q) D-POL2(n, k, P, Q)

Function 2 C-DPOL(n, P, Q) D-DPOL(n, P, Q)

Function 3 C-POL1(n, P, Q) D-POL1(n, P, Q)(∗)

(∗) If P or Q is a morphism.
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Efficiency considerations
From the encryption functions above, we design five practical
cryptosystems, three with Function 1; one with Function 2; and one with
Function 3.

For the polynomial P we use the LUC polynomial Ve(X , 1) and for the
polynomial Q, the RSA polynomial of the same degree, i.e. Q(X ) = X e .

In order to compare the efficiency of these schemes, we use an RSA
modulus of 1024 bits and we adjust the parameter e (and k) in order to
achieve a 280 security (heuristic !!!)

Scheme Ciphertext Public keys

Scheme 1 Ve(ro , 1), r1
e , mr0r1 e = 267 + 3.

Scheme 2 Ve(ro , 1), r1
e , mVe(r0r1) e = 223 + 9.

Scheme 3 Ve(ro , 1), r1
e , mVe

`
(r0r1)

k
´

e = 5 and k = 231 + 65

Scheme 4 Ve(r , 1), mr e e = 267 + 3.

Scheme 5 Ve(mr , 1), r−e e = 267 + 3.
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Efficiency considerations

Now, we compare the concrete efficiency of our new schemes.

For the D-RSA scheme of Pointcheval we use e = 267 + 3 and for the
scheme of Catalano , we use e = 216 + 1. The unity of complexity is the
cost of a multiplication modulo n.

We use the following estimations: a multiplication modulo n2 costs as
much as three multiplications modulo n, an inversion costs 10
multiplications, a multiplication modulo p costs 1/3 multiplication
modulo n and a multiplication modulo p2 costs one multiplication
modulo n. We use the CRT for the decryption process of all schemes.

Scheme D-RSA Catalano Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5

Input 1024

Output 2048 3072 2048

Encryption 139 52 205 119 44 204 214

Decryption 567 570 1204 1234 1228 736 1196
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IND-CCA2-secure public key cryptosystems in the ROM

In the random oracle model, we apply standard techniques to obtain
chosen ciphertext security from these new primitives.

The public key is now (n,P,Q, h) or (n,P,Q,R, h) where h is a
cryptographic hash function (seen like a random oracle) and the
corresponding secret key is P−1 or (P−1,Q−1).

To encrypt a message m ∈ (Z/nZ)×, a user picks at random

r ∈ (Z/nZ)× (or (r0, r1) ∈ (Z/nZ)×
2
) and uses one of the three

following encryption functions:

Function 1: (m, r0, r1) 7→ (P(r0),Q(r1),mR(r0, r1), h(m||r0||r1))
Function 2: (m, r) 7→ (P(r),mQ(r), h(m||r))
Function 3: (m, r) 7→ (P(mr),Q(r−1), h(m||r))
The decryption process is done as above except that the message is
returned only if the hash value is correct.
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The previous schemes are semantically secure against Adaptive Chosen
Ciphertext Attack in the Random Oracle Model relative to the following
problems:

Encryption function Semantic security

Function 1, R(X ,Y ) = XY D-POL1(n,P,Q)

Function 1, R(X ,Y ) = P
(
(XY )k

)
D-POL2(n, k,P,Q)

Function 2 D-DPOL(n,P,Q)

Function 3 D-POL1(n,P,Q)(∗)

(∗) If P or Q is a morphism.
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Security proof: Notion of plaintext awareness

The intuitive idea behind plaintext awareness is that it’s hard to
construct a new ciphertext for which you can’t easily guess the
plaintext (or guess that the ciphertext is invalid).

Such an idea would imply security against chosen ciphertext attack –
since the adversary effectively knows the plaintext anyway, the
decryption oracle is useless.

The formalization introduces a plaintext extractor – an algorithm
which, given a ciphertext and possibly the random oracle queries of
the program which created it, returns the corresponding
plaintext.
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We have defined new algorithmic problems, derived from the RSA
assumption, and discuss their computational difficulty.

We have applied them to design public key encryption protocols with
IND-CPA-security and IND-CCA2-security in the random oracle
model under the assumption of the intractability of their decisional
variants.

The ideas developed in this extended abstract can be used to design
encryption schemes with higher security.

It is possible to modify our schemes in order to make them
IND-CCA2 in the random oracle model relative to the corresponding
computational problems.
It is possible to construct the most efficient known IND-CCA1-secure
encryption scheme with security analysis in the standard security
model.
In addition, by using the approach proposed by Cramer and Shoup in
2003, we have been able to design a concrete encryption scheme that
is proven IND-CCA2-secure in the standard.
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