The Wiretap Channel of type II

Code Alphabet

# Network Security with Network Coding

#### Salim El Rouayheb

#### ECE epartment, Texas A&M University

#### joint work with Emina Soljanin

Paris

March 1, 2007

ElRouayheb, Soljanin ()

Network Security with Network Coding

Aug 10, 2006 1 / 40

| Introduction |
|--------------|
| 000000       |
| 00000000000  |

Code Alphabet

Conclusion

# Outline

#### Introduction

- Secure Network Codes: Example
- The Wiretap Multicast Network

### The Wiretap Channel of type II

- Review
- Coset Codes for the Wiretap Network

### Code Alphabet

Bound on the Field Size

# Conclusion

∃ > < ∃</p>

**A b** 

The Wiretap Channel of type II

Code Alphabet

Conclusion

# Outline

#### Introduction

- Secure Network Codes: Example
- The Wiretap Multicast Network
- 2 The Wiretap Channel of type II
  - Review
  - Coset Codes for the Wiretap Network

### Code Alphabet

Bound on the Field Size

### Conclusion

The Wiretap Channel of type II

Code Alphabet

Conclusion

# What Is Network Coding?



Figure: The butterfly network

- Source node s
- Two destination nodes t<sub>1</sub> and t<sub>2</sub>
- Two bits per sec, *x* and *y*, are available at *s*
- All links are of capacity 1 bit/s

#### Problem

Multicast the information available at the source to all the destinations

The Wiretap Channel of type II

Code Alphabet

Conclusion

### **Classical Approach**



Figure: Routing (Steiner trees)

- Route the information along trees in the network
- we want to maximize the multicast rate to each destination
- → Problem of Packing Steiner trees in graphs. NP-hard!

• average rate here 1.5 bits/s

The Wiretap Channel of type II

Code Alphabet

Conclusion

### **Network Coding**



Figure: Network coding solution

Network coding

- Is an extension of routing
- Allows "mixing" of packets at intermediate nodes
- Achieves higher throughput

A (1) > A (2) > A

The Wiretap Channel of type II

Code Alphabet

Conclusion

### Linear Network Codes



Figure: Linear Network Codes

### Definition (Linear Network Code)

It is the collection of all the local encoding vectors for all the edges of a network.

- $s_1, s_2, s_3 \in GF(q)$
- $Y(e) = am_1 + bm_2$
- (a, b) is the local encoding vector of edge e
- $Y(e) = \alpha s_1 + \beta s_2 + \gamma s_3$
- $(\alpha, \beta, \gamma)$  global encoding vector of edge *e*

The Wiretap Channel of type II

Code Alphabet

Conclusion

# Wiretapped Butterfly



Figure: The butterfly network

- Assume the existence of a wiretapper
  - who can intercept the packets on any single edge of his choice
- How can we send data securely to both destinations?
  - i.e. without letting the wiretapper gain any information about the data

The Wiretap Channel of type II

Code Alphabet

Conclusion

# Secure Butterfly



Figure: Secure Solution

● *x*, *r* ∈ *GF*(3)

- *r* randomly generated
- One symbol (*x*) is sent securely to *t*<sub>1</sub> and *t*<sub>2</sub>
- The data is "hidden" from the wiretapper
- Note the need to use a field with a size larger than 2

The Wiretap Channel of type II

Code Alphabet

Conclusion

# The Wiretap Network Model





Network represented by an acyclic directed graph G(V, E); |E| = N

- Source *s* where *h* packets  $S = (s_1, ..., s_h)^T \in GF^h(q)$  are available
- *k* destination nodes  $t_1, \ldots, t_k$  that demand all the packets
- Min-cut between *s* and any *t<sub>i</sub>* is *n*

The Wiretap Channel of type II

Code Alphabet

Conclusion

# Model - The Wiretapper

#### The wiretapper

- Can access the packets carried by any  $\mu$  -n edges of his choice
- Knows the network code used
- Knows any keys shared between the *s* and the *t<sub>i</sub>*'s. (Key Cryptography is not possible here)



The Wiretap Channel of type II

Code Alphabet

Conclusion

### **Problem Definition**

### Definition (Secure Multicast Problem)

Given a wiretap network, find, if possible, a linear network code that will

- deliver h packets to all the destinations
- achieve perfect secrecy by hiding all the information data from the wiretapper

Code Alphabet

### **Classical Security**

**Classical security** 

- Based on the conjectured hardness of some known problems such as *factoring* large integers
- Assume a computationally bounded adversary

Categories

- Symmetric Key Cryptography: DES, AES, hash functions
- Public Key Cryptography: RSA algorithm

The Wiretap Channel of type II

Code Alphabet

Conclusion

### Information-Theoretic Security

Information-theoretical security

- Based on concepts from information theory such as entropy
- No assumption on the strength of the adversary

Shannon, C. E., "A Communication Theory of Secrecy Systems," 1949, Bell Labs

Code Alphabet

# **Network Security**

- Let W the set of  $\mu$  edges observed by the wiretapper
- $Z_w = (z_1, \ldots, z_\mu)$  the observed packets
- $H(S|Z_w)$  = how much information we are hiding from the wiretapper when he observes the edges in *W*
- H(S) = how much information we are sending to the destinations

Definition (Security Condition)

We say that the network is secure iff

 $H(S|Z_w) = H(S) \quad \forall W \subset E$ 

| Introduction         | The Wiretap Channel of type II |
|----------------------|--------------------------------|
| 000000<br>0000000000 | 000000                         |

Code Alphabet

# **Network Security**

- Let W the set of  $\mu$  edges observed by the wiretapper
- $Z_w = (z_1, \ldots, z_\mu)$  the observed packets
- $H(S|Z_w)$ = how much information we are hiding from the wiretapper when he observes the edges in *W*
- H(S) = how much information we are sending to the destinations

Definition (Security Condition)

We say that the network is secure iff

 $H(S|Z_w) = H(S) \quad \forall W \subset E$ 

| Introduction         | The Wiretap Channel of type II | Code Alphabet |
|----------------------|--------------------------------|---------------|
| 000000<br>0000000000 | 000000                         | 00000         |

# **Network Security**

- Let W the set of µ edges observed by the wiretapper
- $Z_w = (z_1, \ldots, z_\mu)$  the observed packets
- $H(S|Z_w)$ = how much information we are hiding from the wiretapper when he observes the edges in *W*
- H(S) = how much information we are sending to the destinations

### **Definition (Security Condition)**

We say that the network is secure iff

 $H(S|Z_w) = H(S) \quad \forall W \subset E$ 

| Introduction         | The Wiretap Channel of type II | Code Alphabet | ( |
|----------------------|--------------------------------|---------------|---|
| 000000<br>0000000000 | 000000                         | 00000         |   |

# **Network Security**

- Let W the set of µ edges observed by the wiretapper
- $Z_w = (z_1, \ldots, z_\mu)$  the observed packets
- $H(S|Z_w)$ = how much information we are hiding from the wiretapper when he observes the edges in *W*
- H(S) = how much information we are sending to the destinations

#### **Definition (Security Condition)**

We say that the network is secure iff

 $H(S|Z_w) = H(S) \quad \forall W \subset E$ 

Code Alphabet

# Related Work (1)

- Cai & Yeung were first to define this problem (2002).
- They constructed multicast codes that can securely send  $h = n \mu$  packets  $(S = (s_1, \dots, s_h)^T)$  to all the destinations
  - **1** multicast informatitonpackets  $(S = (s_1, ..., s_h)^T)$  to all the destinations
  - 2 at at rate  $=\frac{h}{n}$  (i.e. by adding  $\mu = n h$  redundant packets)
  - achieve perfect secrecy

| Introduction  |
|---------------|
| 000000        |
| 0000000000000 |

Code Alphabet

Conclusion

### Secure Multicast Scheme



Figure: Secure Solution

Network Security with Network Coding

Aug 10, 2006 17 / 40

The Wiretap Channel of type II

Code Alphabet

Conclusion

### **Related Work**

### Theorem (1)

Let Y = TX. The resulting code is secure iff any set of vectors consisting of

- at most  $\mu$  l.i. global encoding vectors
- **2** vectors from the first h rows of  $T^{-1}$

is linearly independent. [Feldman et al. 2004, Cai&Yeung 2002]

3

The Wiretap Channel of type II

Code Alphabet

Conclusion

### Related Work (2)

### Theorem (2)

Secure linear network codes  $(h = n - \mu)$  exist over GF(q),  $\forall q > \binom{N}{\mu}$ 

N is the number of edges in the Network

•  $\mu$  is the number of edges that the wiretapper can observe [Cai&Yeung 2002]

3

| Introduction<br>0000000000 | The Wiretap Channel of type II | Code Alphabet | Conclusio |
|----------------------------|--------------------------------|---------------|-----------|
|                            |                                |               |           |

# Contributions

- We look at the wiretap multicast network as an *generaliztion* of the wiretap channel of type II (WTCII) [Ozarow & Wyner 1984]
- We study a secure multicast scheme using coset codes, originally proposed for the WTCII
- We show that this scheme is *equivalent* to the previously described one. Nevertheless it allows to recover very easily Theorem 1 (and therefore Theorem 2)
- We also improve on the bound on the field size, by showing that secure multicast codes exist over GF(q), ∀q ≥ (<sup>h<sup>3</sup>k<sup>2</sup>+δ</sup>/<sub>μ-1</sub>) + k; δ is the source node degree

Code Alphabet

Conclusion

# Outline

#### Introduction

- Secure Network Codes: Example
- The Wiretap Multicast Network

### The Wiretap Channel of type II

- Review
- Coset Codes for the Wiretap Network

### Code Alphabet

Bound on the Field Size

### Conclusion

Code Alphabet

# WTCII- Ozarow & Wyner 84



- A transmitter can send *n* symbols  $X = (x_1, ..., x_n)$  to a receiver through a noiseless channel
- A wiretapper can observe Z<sub>w</sub> = (z<sub>1</sub>,..., z<sub>μ</sub>), a subset W of his choice of size μ < n of the transmitted symbols</li>
- The transmitter wants to communicate *h* symbols *S* = (*s*<sub>1</sub>,..., *s*<sub>h</sub>) securely to the receiver

• The problem is to find an encoding of *S* into *X* that maximizes  $\Delta = \min_{W} H(S/Z_{W})$ 

3

Code Alphabet

Conclusion

# Example of a Code for the WTCII



Set of all possible transmitted symbols

- *n* = 2; *h* = μ = 1
- Code
  - $s = 0 \longrightarrow A_0 = \{00, 11\}$
  - $s = 1 \longrightarrow A_1 = \{01, 10\}$
- If the input to the encoder is s, then the output is a random element of As
- It can be shown that this code achieves perfect secrecy, i.e.  $\Delta = 1$

The Wiretap Channel of type II

Code Alphabet

Conclusion

### Codes for the WTCII



**Figure:** Partition  $\Sigma^n$ 

ElRouayheb, Soljanin ()

Network Security with Network Coding

Aug 10, 2006 24 / 40

э

The Wiretap Channel of type II

Code Alphabet

Conclusion

### **Coset Codes**



Figure: Partition by cosets  $GF(q)^n/C$ 

- $\Sigma = GF(q)$
- Let C be (n, n − h) q-ary code (i.e. a linear subspace of dim n − h)
- The partitions A<sub>i</sub>'s are the cosets of C (x + C)
- Let *H* be the *n* × *h* parity check matrix of C
- Choose the subset A<sub>S</sub> associated with S ∈ GF<sup>h</sup>(q) to be

$$A_{\mathcal{S}} = \{X \in GF^n(q); HX = S\}$$

The Wiretap Channel of type II

Code Alphabet

Conclusion

### **Example Revisited**



Set of all possible transmitted symbols

#### The previous code is a coset code where $H = \begin{bmatrix} 1 & 1 \end{bmatrix}$

The Wiretap Channel of type II

Code Alphabet

Conclusion

### Performance of Coset Codes

#### Theorem (Ozarow& Wyner)

Consider a coset code of parity check matrix H of columns  $h_i$  ( $1 \le i \le n$ ). Let  $W \subseteq \{1, 2, ..., n\}$ . Then,

$$\Delta = \min_{|W|=n-\mu} \operatorname{rank}\{h_j; j \in W\}$$

3

Code Alphabet

Conclusion

# Coset Codes for the Wiretap Network



Figure: Wiretap network equivalent to the WTCII

- WTCII can be regarded as an instance of the wiretap network
- Use coset codes to achieve security for the wiretap multicast network:
  - ► Encode S = (s<sub>1</sub>,..., s<sub>h</sub>)<sup>T</sup> into Y = (y<sub>1</sub>,..., y<sub>n</sub>)<sup>T</sup> using a coset code of parity check matrix H
  - Use a network code to multicast Y to all the destinations

Code Alphabet

# Questions

- How is the coset code scheme different than the one proposed by Cai & Yeung?
- How should the parity check matrix H be chosen to ensure the security condition?

| Introduction         | The Wiretap Channel of type II | Code Alphabet | Conclusion |
|----------------------|--------------------------------|---------------|------------|
| 000000<br>0000000000 | 000000                         | 00000         |            |
|                      |                                |               |            |

### Equivalence

C&Y secure network code ( $\mu = n - h$ )

• Randomly generate  $R = (r_1, \ldots, r_{n-h})^T$ 

**2** 
$$Y = T * (s_1, ..., s_h, r_1, ..., r_{n-h})$$

**③** Use a network code to multicast  $Y = (y_1, \ldots, y_n)^T$ 

#### Lemma

*C*&*Y* secure network code is equivalent to a coset code of parity check matrix  $H = T^*$ , where  $T^*$  is formed by taking the first h rows of  $T^{-1}$ 

Code Alphabet

# The Parity Check Matrix

- Let  $W \subset E$  be the set of the  $\mu = n h$  wiretapped edges
- $Z_w$  the packets observed on these edges
- WLOG, the global encoding vectors of these edges are linearly independent
- $C_w$  an  $(n-h) \times n$  matrix formed by these vectors

### Theorem (III)

A coset code with a parity check matrix H satisfies the security condition iff  $M_w = \begin{bmatrix} H \\ C_w \end{bmatrix}$  is invertible  $\forall W$ 

Theorem 3 is equivalent to Theorem 1.

Code Alphabet

# The Parity Check Matrix

- Let  $W \subset E$  be the set of the  $\mu = n h$  wiretapped edges
- $Z_w$  the packets observed on these edges
- WLOG, the global encoding vectors of these edges are linearly independent
- $C_w$  an  $(n-h) \times n$  matrix formed by these vectors

### Theorem (III)

A coset code with a parity check matrix H satisfies the security condition iff  $M_w = \begin{bmatrix} H \\ C_w \end{bmatrix}$  is invertible  $\forall W$ 

Theorem 3 is equivalent to Theorem 1.

ElRouayheb, Soljanin ()

The Wiretap Channel of type II

Code Alphabet

Conclusion

# Simple Proof

- Remember
  - Data vector  $S = (s_1, \ldots, s_h)$
  - ► Transmitted vector Y = (y<sub>1</sub>,..., y<sub>n</sub>) chosen randomly among the solutions of HY = S
  - $Z_w = (z_1, \ldots, z_{n-h})$  wiretapped data;  $Z_w = C_w Y$
- $H(Y|S, Z_w) = H(S|Y, Z_w) + H(Y|Z_w) H(S|Z_w)$
- $H(S|Y, Z_w) = 0$  cosets are disjoint
- $H(S|Z_w) = H(S) = k$  security condition
- $H(Y|Z_w) = n rank(C_w) = n (n h) = h$
- $\Rightarrow$   $H(Y|S, Z_w) = 0$  and the system  $HY = S \& C_w Y = Z_w$  has a unique solution

< 日 > < 同 > < 回 > < 回 > < 回 > <

The Wiretap Channel of type II

Code Alphabet

Conclusion

# Simple Proof

- Remember
  - Data vector  $S = (s_1, \ldots, s_h)$
  - ► Transmitted vector Y = (y<sub>1</sub>,..., y<sub>n</sub>) chosen randomly among the solutions of HY = S
  - $Z_w = (z_1, \ldots, z_{n-h})$  wiretapped data;  $Z_w = C_w Y$
- $H(Y|S, Z_w) = H(S|Y, Z_w) + H(Y|Z_w) H(S|Z_w)$
- $H(S|Y, Z_w) = 0$  cosets are disjoint
- $H(S|Z_w) = H(S) = k$  security condition
- $H(Y|Z_w) = n rank(C_w) = n (n h) = h$
- $\Rightarrow$   $H(Y|S, Z_w) = 0$  and the system  $HY = S \& C_w Y = Z_w$  has a unique solution

イロト 不得 トイヨト イヨト

The Wiretap Channel of type II

Code Alphabet

Conclusion

# Simple Proof

- Remember
  - Data vector  $S = (s_1, \ldots, s_h)$
  - ► Transmitted vector Y = (y<sub>1</sub>,..., y<sub>n</sub>) chosen randomly among the solutions of HY = S
  - $Z_w = (z_1, \ldots, z_{n-h})$  wiretapped data;  $Z_w = C_w Y$
- $H(Y|S, Z_w) = H(S|Y, Z_w) + H(Y|Z_w) H(S|Z_w)$
- $H(S|Y, Z_w) = 0$  cosets are disjoint
- $H(S|Z_w) = H(S) = k$  security condition
- $H(Y|Z_w) = n rank(C_w) = n (n h) = h$
- $\Rightarrow$   $H(Y|S, Z_w) = 0$  and the system  $HY = S \& C_w Y = Z_w$  has a unique solution

イロト 不得 トイヨト イヨト

The Wiretap Channel of type II

Code Alphabet

Conclusion

# Simple Proof

- Remember
  - Data vector  $S = (s_1, \ldots, s_h)$
  - ► Transmitted vector Y = (y<sub>1</sub>,..., y<sub>n</sub>) chosen randomly among the solutions of HY = S
  - $Z_w = (z_1, \ldots, z_{n-h})$  wiretapped data;  $Z_w = C_w Y$
- $H(Y|S, Z_w) = H(S|Y, Z_w) + H(Y|Z_w) H(S|Z_w)$
- $H(S|Y, Z_w) = 0$  cosets are disjoint
- $H(S|Z_w) = H(S) = k$  security condition
- $H(Y|Z_w) = n rank(C_w) = n (n h) = h$
- $\Rightarrow$   $H(Y|S, Z_w) = 0$  and the system  $HY = S \& C_w Y = Z_w$  has a unique solution

The Wiretap Channel of type II

Code Alphabet

Conclusion

# Simple Proof

- Remember
  - Data vector  $S = (s_1, \ldots, s_h)$
  - ► Transmitted vector Y = (y<sub>1</sub>,..., y<sub>n</sub>) chosen randomly among the solutions of HY = S
  - $Z_w = (z_1, \ldots, z_{n-h})$  wiretapped data;  $Z_w = C_w Y$
- $H(Y|S, Z_w) = H(S|Y, Z_w) + H(Y|Z_w) H(S|Z_w)$
- $H(S|Y, Z_w) = 0$  cosets are disjoint
- $H(S|Z_w) = H(S) = k$  security condition
- $H(Y|Z_w) = n rank(C_w) = n (n h) = h$
- $\Rightarrow$   $H(Y|S, Z_w) = 0$  and the system  $HY = S \& C_w Y = Z_w$  has a unique solution

The Wiretap Channel of type II

Code Alphabet

Conclusion

# Simple Proof

- Remember
  - Data vector  $S = (s_1, \ldots, s_h)$
  - ► Transmitted vector Y = (y<sub>1</sub>,..., y<sub>n</sub>) chosen randomly among the solutions of HY = S
  - $Z_w = (z_1, \ldots, z_{n-h})$  wiretapped data;  $Z_w = C_w Y$
- $H(Y|S, Z_w) = H(S|Y, Z_w) + H(Y|Z_w) H(S|Z_w)$
- $H(S|Y, Z_w) = 0$  cosets are disjoint
- $H(S|Z_w) = H(S) = k$  security condition
- $H(Y|Z_w) = n rank(C_w) = n (n h) = h$
- $\Rightarrow$   $H(Y|S, Z_w) = 0$  and the system  $HY = S \& C_w Y = Z_w$  has a unique solution

| Introduction |
|--------------|
| 000000       |
| 00000000000  |

Code Alphabet

Conclusion

# Outline

#### Introduction

- Secure Network Codes: Example
- The Wiretap Multicast Network
- 2 The Wiretap Channel of type II
  - Review
  - Coset Codes for the Wiretap Network

### Code Alphabet

Bound on the Field Size

### Conclusion

A (10) A (10) A (10)

The Wiretap Channel of type II

Code Alphabet

Conclusion

# A Different Approach

#### Previous approach

 Use a secure code on top of an already designed network code to achieve security

#### New approach

- Incorporate the security condition in the algorithm that constructs the network code
- We gain better bound on the field size

The Wiretap Channel of type II

Code Alphabet

# Jaggi's Algorithm

Sketch of Jaggi's et al. algorithm for finding (not necessarily secure) network codes



Figure: Flows

- Find k (# of destinations) flows
  - $(F_1, \ldots, F_k)$  each of *h* disjoint paths
- Visit the network edges in topological order
- Let  $B_{F_i}$  an  $h \times h$  matrix formed by the h global encoding vectors of the last processed edges of flow  $F_i$
- Find the encoding vector for the currently visited edge such that all the k matrices B<sub>Fi</sub> are invertible

Code Alphabet

### Bound on the Field Size

#### Theorem

There is always a linear multicast network code over GF(q),  $\forall q \ge k$  [Jaggi et al. 2003]

- The proof is by construction and follows from the correctness of Jaggi's algorithm
- A field of size *q* ≥ *k* is sufficient for keeping the *k* matrices *B<sub>F<sub>i</sub></sub>* invertible

#### Theorem (I)

Secure linear network codes exist over GF(q),  $\forall q > \binom{N}{\mu}$ . [Cai&Yeung 2002]

Code Alphabet

# Bound on the Field Size

#### Theorem

There is always a linear multicast network code over GF(q),  $\forall q \ge k$  [Jaggi et al. 2003]

- The proof is by construction and follows from the correctness of Jaggi's algorithm
- A field of size *q* ≥ *k* is sufficient for keeping the *k* matrices *B<sub>F<sub>i</sub></sub>* invertible

#### Theorem (I)

Secure linear network codes exist over GF(q),  $\forall q > \binom{N}{\mu}$ . [Cai&Yeung 2002]

3

| Introduction<br>000000<br>0000000000 | The Wiretap Channel of type II | Code Alphabet<br>○○○●○ | Conclusion |
|--------------------------------------|--------------------------------|------------------------|------------|
|                                      |                                |                        |            |

### **Special Case**

- Assume the wiretapper can intercept only one edge ( $\mu = 1$ )
- Coset code of parity check matrix *H* is to be used
- We modify Jaggi's algorithm so it outputs a secure network code in the following way
  - ► When looping over the edges of the network, choose the global encoding vector U(e) such that

2) The matrix 
$$\begin{bmatrix} H \\ U(e) \end{bmatrix}$$
 is invertible (Theorem 3)

- k + 1 constraints  $\Rightarrow$  A field of size  $q \ge k + 1$  is sufficient
- Compare to the <sup>N</sup><sub>1</sub> = N bound (N is the number of edges in the network)

イロト 不得 トイヨト イヨト

The Wiretap Channel of type II

Code Alphabet

Conclusion

### Bound for the General Case

#### Theorem

Secure linear network codes for a wiretap multicast network exist over  $GF(q), \forall q \ge {\binom{N-1}{\mu-1}} + k.$ 

#### Theorem

Secure linear network codes for a wiretap multicast network exist over  $GF(q), \forall q \ge {\binom{\hbar^3 k^2 + \delta}{\mu - 1}} + k; \delta$  is the source node degree

The Wiretap Channel of type II

Code Alphabet

Conclusion

### Bound for the General Case

#### Theorem

Secure linear network codes for a wiretap multicast network exist over  $GF(q), \forall q \ge {N-1 \choose \mu-1} + k$ .

#### Theorem

Secure linear network codes for a wiretap multicast network exist over  $GF(q), \forall q \ge {\binom{h^3k^2+\delta}{\mu-1}} + k; \delta$  is the source node degree

| Introduction |
|--------------|
| 000000       |
| 00000000000  |

Code Alphabet

Conclusion

# Outline

#### Introduction

- Secure Network Codes: Example
- The Wiretap Multicast Network
- 2 The Wiretap Channel of type II
  - Review
  - Coset Codes for the Wiretap Network

### Code Alphabet

Bound on the Field Size

### Conclusion

The Wiretap Channel of type II

Code Alphabet

# Summary

- We considered the problem of designing network code that will guaranty security in a network with multicast demands
- Building on an analogy with the wiretap channel of type II, we proposed using coset codes for the multicast channel
- We showed that coset codes are equivalent to other codes already studied in literature. Nevertheless, they permit an easy recovery of some important results.
- We also gave an improved lower bound on the field size sufficient for the existence of secure network code