The Aladdin-Pythagoras Space-Time Code

Joseph J. Boutros Hugues Randriambololona
Texas A&M University TELECOM ParisTech / LTCI CNRS UMR 5141
Department of Electrical Engineering Computer Science and Networks Department
Education City, Doha, Qatar Paris, France
boutros@tamu.edu randriam@enst.fr

Abstract— Our motivation is the design of space-time coding reformulation of the problem and a quadratic form reduction
which is optimal under both maximum likelihood and iterative inthe2 x 2 case. Section IV shows how to get a non-vanishing
decoding. We describe the construction of new full-rate sp-  gaterminant under the genie conditions via algebraic numbe

time codes with non-vanishing determinant that satisfy thegenie . . . . .
conditions for iterative probabilistic decoding. The problem com- theoretic tools and discusses the optimality of the Aladdin

bining the genie conditions and the rank criterion is rewritten in ~ Pythagoras code. Some experimental results are illudtiate
terms of a quadratic form. The construction over Z[i] (the cubic the final section.

lattice) yields a family of codes defined by Pythagorean trifes.

The space-time code built oveiZ[i] and involving the quaternion Il. SPACE-TIME LINEAR UNITARY PRECODING

algebra (ﬁ) is referred to as the Aladdin-Pythagoras code. The Consider an x n MIMO channel, i.e., withn transmit and
construction over Z[j] (the hexagonal lattice) also yields a full- n receive antennas. A space-time codew@df length N
rate non-vanishing determinant code that is suitable for ierative  may be written in matrix form

decoding on multiple antenna channels.

e R ¥
[. INTRODUCTION C=
Algebraic constructions of space-time block codes [17][13 R B

for multiple antenna (MIMO) channels are usually based ainder ML decoding, the pairwise error probability is upper
design criteria established by analyzing the pairwise rermgounded as (e.g., see [5])
probability under maximum likelihood (ML) decoding. These

space-time coding criteria, originally published in [9]]1led P(C—C) < ( 1 - (ﬂ)—tn
— 1_[ ) )

to the design of coding for MIMO channels without taking L1+ Ny /dn an

into account the presence of efficient error-correctingeeodWherey is the transmitted signal-to-noise ratio per symbol
or the potential use of iterative probabilistic decoding as_ rank(C — C'), the coding gain ig — (A A AVt '
- - ’ - 1A2 " At ’

known in modern coding theory [15]. and {);} are the eigen values dC — C’)(C — C’)*. Thus,

. . the famous design criteria [9][17] for ML decoding can be
Some unusual space-time codes, in the context of full-rart(§Called as follows:

unitary linear precoding, have been proposed by applyimy tw . Rank: Full diversity is achieved if  n.

constraints to make the code suitable for iterative degpdin . ) ) g . -
[3][7]. These constraints, referred to as thenie conditions  ° _Product dlstan(_:e. Coding gain is maximized by maximiz-
were mainly used for linear precoding in bit-interleaveded mg the_ determinant. _ _ ) _
modulations such as in [8]. The analysis of these codes frdiH!! diversity can be attained withiv. = n if a suitable
a rank/determinant criterion point of view has never beeHnitary matrix is applied to the codeword. Let us write
performed. The main difficulty is encountered when trying t§'€ codeword in a linearized form as a row of sizen?,
satisfy all constraints for both ML and iterative decoding. € = (¢1;:-+;¢x2). The new codeword to be transmitted on
the MIMO channel isX = ¢S, whereS is unitary. If the

In this paper, we propose a new space-time code satisfy ponents qfc beIong_ to a bidim(_ensional constellati_on
the double constraints of ML and iterative decoding. We goc @AM modulation) and without taking into account a possible
the study in this abstract on linear unitary precodersfer  €/Tor-correcting code, the precodsr defines a space-time
MIMO channels. The coherence time is assumed to be eqGafi€ given by the set of all codewords
to 2. The channel is supposed to be frequency non-selective ) i _ . .
and its fading matrix (CSI) is perfectly known by the decoder NOW et us briefly establish the genie conditions for iteat
There is no CSI at the encoder and no feedback informatifficoding [31[7]. For simplicity, taken = 2. The MIMO
from the decoder to the encoder. We briefly summarize tG82nnel is defined by its fading matrix
method of linear unitary precoding for MIMO channels and Ho — hi1 his
the genie conditions in the next section. Section Ill gives a 0 < ho1  hos > ’



where h;; are iid andCN(0,1) distributed. The non-noisy S, scaled by a factog/n. Explicitly, the (5, k) entry of M, is

part of the signal observed by the decodeKibI, where V18 (j—1)n+k- Then in matrix form the codeword associated
H 0 tOC:(Cl,...,an)iSXc:Ln(ClMl—i----—i-anan).
H= ( 00 H > Proposition 1: With S and the M; as defined, we can
0 reformulate the shaping and genie conditions as follows:

The genie condition is equivalent to perfect extrinsic mfo 1y The matrixS is unitary (that is, inU(n2)) if and only
mation (or a priori) generated by the error-correcting diero if M, ..., M, form a unitary basis for the Hermitian
Under perfect a priori information, the performance degend  product< ... >, in M, (C).
on the squared Euclidean metrie* = | XH — X'H[* = 2) The matrix satisfies the genie conditions if and only
H(C - C/)SHHQ where (C - C/) = (Aa 0,0, O)’ e, Only one if Ml, ey an are in U(n)

component is different between the two codewords. Here,pytting all this together:

we assumed that this difference is in the first position. If pefinition 1: We sayM;, ..., M, satisfy (S+G) if they
s = (s11,512, 513, 514) denotes the first row of the precodeiyre int/(n) and are mutually orthogonal i/, (C).

S, then the squared Euclidean metric becomes Let now.A be any constellation (finite or infinite) il. We
D2 = A2 [|s11h11 + $10ho1 |2 + |511 710 + S19f90|2 define the minimum determinant &1;,..., M, on A as
“ H i2h1] ARUE 12ha2] the infimum value of det X._/| for ¢,c’ € A" ¢ #c.
+ [s13h11 + s1aho1|? + [s13h12 + s14h22]?] . Our problem is then to find,, ..., M,,. satisfying (S+G)
and with minimum determinant non-zero, and ideally as large

From the properties of? distributions [18][19], the best
situation is encountered when all complex gaussians witten D
x? are independent and have equal variance. These properlt\if,s
are translated into %

« First genie conditiony(si1, s12) must be orthogonal to

as possible.
efinition 2: We say that two familiedM,, ..., M, and
...,M/, are equivalent if there exidf, W € U(n) such
that M, = VM, W for all 4.
Proposition 2: SupposeM, ..., M, and M},..., M/,
(s13,514) ) N are equivalent. Then:
« Second genie conditionisii, s12) and (s1s3, s14) mMust 1) My,..., M, satisfy (S+G)if and only iMT}, ..., M/

have equal norms. 4o, n*
Of course, the 4 rows of the precoder should satisfy the geniez) M;,...,M,2 andM/,...,M’, have the same mini-
conditions as announced above for the first row. In the sequel 1 um determinant.
the property ofS being unitary will be referred to asshaping Proof: SinceU(n) is a group, ifM; is in U(n), then

condition. Also, following [14], a space-time code defingd by — VM, W also. IfM; L M; in M, (C), thenM 1 M’
a unitary S will be called perfectif it has a non-vanishing alszo becausd'M’* = VML, WW*M*V* — VM?M*V*Z

. ¥ g J Ty
determinant. so thattr MM/, = tr VM;M;V* = trM,M;V*V —
[1I. M ATRIX PRELIMINARIES trM;M; = 0. Finally for ¢,c’ € A" one hasX, . =

c—c’

A. Intrinsic reformulation of the Genie conditions VXc-o'W so they have same determinant. u

For any integemy we endow]\/[n((C), the space of SquareB. The2 x 2 MIMO case: Reduction to a quadratic form

n X n_matrices, with the Hermitian scalar product approach
1 .1 _ We are now interested in the case= 2.
<AB>p=_trAB" =~ > aibi; Theorem 1:Any My, ..., My in M(C) satisfying (S+G)

are equivalent to some
for A = (a;;) and B = (b;;) in M,(C). Notice the L a

normalization. M, — < 10 ) . My= < a 0 >’
We recall also that the unitary grodp(n) is the subset of 0 1 0 —a
the element& € M,,(C) satisfying
o= (50 ) ()
VV* =1,. B 0 -y 0

for o, 8,7 € C with |a] = |5] = |v| = 1.

Proof: After replacing eachM; with Ml_lMl-, we can
(V|n=1. supposeM; = I,. Now by the diagonalization theorem for
unitary matrices we can fin¥ € U(2) such thatVM,V* is
diagonal. After replacing eadiI; with VMM, V* (which does
”ﬁ%t modify M), we can supposdl, is diagonal, and since

Thus any suchl/ has norm

Consider now a linear space-time code of orderIn
linearized form, as described in the previous section,

codeword associated to symbolg;,...,c,2) is X = o a 0

(c1,...,cq2)S WhereS = (s;;) is the squares? x n? matrix M2 L My, itis of the formM, = (= _

of the precoder. Now M; is orthogonal toM; and M, so it must be
Alternatively, for any such matriss, let My,...,M,,> be

Oar\nti-diagonal, sayMs3 = ( g, g ) Then we putW =

the square: x n matrices whose linearizations are the rows



1 0 . .
, and after replacing ead¥l; with WM, W*
( 0 BIF ) pasing

(which does not modifgM; norMs), we can supposé = 3'.
Finally, M, is orthogonal toM;, M5, M3 so it must be as
indicated.

For u,v,w € C with |u| = |v| = |w| = 1, consider the
quadratic form [11]

2 2

2 2
Qu,ow(Z) = 21 — uzy —v23 +wzjy,

for z = (21, 22, 23, 24) € C*. Now for any constellation4 in
C, put

sup inf

maxqmin(A)
ful=lo|=lw|=1 | e.c'€A
C C/

B |Gu,v,w (€ — C/)|

In particular if A is an additive subgroup df,

i f u,v,w N
(ceiﬁl\m} |Gu,0, (C)I)

maxqmin(.A)

sup
lul=|v|=|w[=1

Corollary 1: With these notations, the supremum value of

c € A%, so that if it is non-zero, one hds, . ., (c)| >
This will give our lower bound.

Our task is then to findi, v € K, with |u| = |v| = 1, and
such that(%2) is a division algebra, that is such thatis
not a square ik andv is not a norm fromk (y/u) to K. It
would also be pleasant to keep their denominators as small as
possible.

Lemma 1:For each primep in Z that splits inK (that is

ldl*

p=1 mod 4 for A =7Z[i] andp =1 mod 3 for A =Z][j])

chose a factorizatiop = x, 7, in K.

Then the subgroupz| 1 of K* is the direct sum
of the group of units inA (that is {£1,+i} for Z[i] and
{£1, 47, +£5%} for Z[;]) and of the free cyclic groups gener-
ated by ther, /@,.

Proof: Consequence of the unique factorizationdn |

Lemma 2:The units in.4 that are not squares ik are
{£i} for A = Z[i] and {-1, —j, —j°} for A = Z][j].

If we takew such a unit, then all other units are norms from
K(y/u) to K.
Proof: Direct (and easy) computation.

the minimum determinant of x 2 linear space-time codes on Since we want to keep denominators as small as possible,

A satisfying the shaping and genie conditions is
% maxqgmin(A).
In particular, a perfec? x 2 space-time code fad satisfying

the genie conditions exists if and onlyrifaxqmin(A4) > 0.
Moreover, if maxqmin(4) > 0 is attained for a particular

the first part of this lemme allows us to take= i for A = Z]i]
andu = —1 for A = Z[j]. However, because of the second
part of this same lemma, we cannot taka unit, so we will
take it asv = z,/7, for p a small convenient prime. This
will give the lower bound|q, . (c)| > % \IW (when
non-zero).

Lemma 3:With these notations, a necessary and sufficient

value ofu, v, w, then there exists a corresponding code Withydition forwv not to be a norm fromk (/) to K, is that

optimal coding gain.
Proof: This is a consequence of propositions 1 and
theorem 1, and the following observation:

For My,...,M, as in the theorem and far € A%, one
_ 1 [ atacz Pezgtya
hasX, = 7 ( Bes —es 1 — acy so that
1 1
det X, = 5(0? — azcg — ﬁ2c§ + 720421) = §Qu,v7w(c)a

whereu = o2, v = 3%, w = v

2,

=5 mod 8 for A = ZJi], orp =7 mod 12 for A = Z][j].
Proof: We treat only the cased = Z[i], and we
prove only the ’'sufficient’ part since this is the only onettha
will be used in the sequel (for completeness, one proof of
the 'necessary’ part, using Hensel’s lifting and Hasse’smo

theorems, will be given in a forthcoming paper).
So let K = Q(i) andu = 4. Supposep = 5 mod 8 and
v = x, /T, is a norm fromK (y/u) to K. Thenp = 7,%v also

2 To conclude. remark theniS @ norm, so there are,y € K with 22 —iy* = p. Since

_ _ en ™ < L . . :
that u, v, w can take any values independently in the circlé = 1 mod 4, the polynomialX* + 1 is split in F,,, so it

|z| = 1 whena, 8,~ do so. [ ]

IV. THE ALADDIN-PYTHAGORAS SPACETIME CODE
CONSTRUCTION

A. Number theoretic considerations

Having corollary 1 in mind, we search for a lower bound o
maxqmin(A) for A = Z[i] or Z[j]. In order to achieve that, a

sufficient condition is to pick some convenient valuedon, w
and then give a lower bound dg, . .,(c)| for c € A*\ {0}.
This will be done using algebraic number theory [16][21].
Let K = Ag = Q(i) or Q(j). Observe that if we take
u,v € K andw = wuv, theng, .., is the reduced norm form
of the generalized quaternion alget(ré)’(ﬁ) in the naturally
associated basis. If this quaternion algebra is a divisiga-a
bra, theng, , ., does not represeiit Moreover, ifd € A is
a common denominator far, v, w, theng, ,..(c) € éA for

admits a root/ there, and by Hensel lifting it admits a root
I in Z,. We thus get an embedding & in Q, by sending

i to I, and we getr’,y’ € Q, satisfyingz'? — Iy? = p.
Sincel € Z, andv,(p) = 1, one cannot have both,(z’)
andwv,(y’') > 0. Let thusm = — min(v,(2'), v,(y’)) > 0, SO
thatz” = p™2’ andy” = p™y’ are inZ,, one of them at least

1§ a unit, and they satisfy”? — Iy"? = p?™*1. Then inF,

one Das?Q_— EQ =0, so thatz”” andy” both are non-zero
andI = (2”/y”)? is a square inF,. But I has order4 in
¥, so its square root has ordgrand by Lagrange’s theorem

p=1 mod 8, a contradiction. [ |
Taking p = 5, we have proved:
1
maxqmin(Z[i]) > e (1)
and in the same wayaxqmin(Z[j]) > -



B. Optimality of the Aladdin-Pythagoras code for |u| = |v| = |w| = 1. This can be performed exactly, and
We explicit the codes so constructed for= Z[i]. Letp = 5 finq a _unique solution (up to obvious changes.of variables),

mod 8 be pr|me Then one hqs— a? + b2 for z, = a+ib. Which is as befores =i = ey = 3241 = ewta“(‘l/?’),

Let also:v —¢+id, soc = a?—b? andd = 2ab. Then W = uv, With [g, ;.| minimum equal to = forc—c =

p? =c?+ d2 and(c, d, p) is known as a Pythagorean triple. (O,z, 1,7). Thus

Foru =i, v = x, /T, = = /p andw = uv the quadratic form 1
Gu.o.w iS given by VAN = maxqmin(16-QAM) > maxqmin(Z[i]) > \/_
Quow(z) = (2] —i23) — C“d (23 —iz3), so all these inequalities are equalities, and we conclude wi
corollary 1. [ |

and the c§>4de can be constructed by putting in theorem=1 In the same way, one can construct a perteet2 space-
— T . ’
Vu=e g tﬂ \/—t_txf’/\/— anE7 = Vw =af. thas e code overZ[j] satisfying the genie conditions, with
minimum determinant a ea§ﬁ_ - ({ optlmal coding gain. Its minimum determmanHé— At first
Since the construction of these codes involves Pythagorea
triples, they could be named Pythagorean codes S|ght this looks worse than t obtained before however
' ’ comparing the performances o\(hese two codes would require

aszgcr:i:l(;dpztirriml:;?iazrl C;;ps: ,Er)hgtne can takers =2+ (with a closer analysis, since one should keep in mind &gt has
Pi&2, 4, higher density tharZ[i].

_ 14 _ im/4
e (¥ = \/5 = e
. 3= 2}1 _ piatan(1/2) V. EXPERIMENTAL RESULTS
5 . . . . ye . . . .
o« v = H\/l%z — etatan(3) In this section, probabilistic decoding in presence of agen

is simulated on a computer with botd = QPSK and

The precoder matrix is ! )
A = 256 — QAM modulations. There is no need for a soft-

Lo 0 1 output version of the Sphere Decoder [20], flipping one syimbo
g_ L | @0 0 —a is sufficient while computing the decoding metrics. Diffetre
vol 0 B B 0 precoders are compared: The cyclotomic rotations found]in [
0O v — 0 and modified as in [3][7] to match the genie conditions, the

Golden code as defined in [1], the Dayal-Varanasi code [4],
the Tilted QAM proposed in [22], and our Aladdin-Pythagoras
1 ( c1t+acy  fez+ e ) code. Other interesting precoders can be found in the titexa
V2 \ Bes—vcs o —acy such as the GIOM (Genie+Information Outage Minimization)
with determinant [10] and the TAST code [6]. As expected, the SNR difference
between the best precoders is negligible (even a random

and forc € Z[i]*, one has

X =

det X = %((Cf —ic3) — %(03 —icj)) selection among 2000 matrices as for GIOM yields a relativel
= %((Cf —ic3) — 3+4l (c3 —ic?)) excellent precoder). As known, the Golden code and Dayal-
L i Varanasi exhibit equivalent performance. The tilted QAM is
always at least = for non-zeroc. In fact| det Xc[ = 3721 gutperformed by the other precoders. Also as expected, the
attained forX. = (0,4, 1,4), so this is the exact value of itscyclotomic rotation shows performance similar to Aladdin-
minimum determinant. Pythagoras code. In the future work, deeper comparisons

Observe that the quaternion algebra involved in the coghould be made between unitary space-time codes, mainly we
struction of this code IS<@( )) the same as for the Goldenshould look for more equivalences and determine unknown
Code [1] (although we use a different lattice in this alg¢bradeterminant value for some codes in the non-vanishing case.
Since this code contains a genie and is somewhat Golden, it
could be named Aladdin-Pythagoras Code.

Theorem 2:Aladdin-Pythagoras Code is a perfeztx 2 [1] J.-C. Belfiore, G. Rekaya, and E. Viterbo,"The golden eod 2x2 full-

; . i ofigi ; i rate space-time code with non-vanishing determinanEZE Trans. on
space-time code oveZ[i| satisfying the genie conditions, Inf. Theory vol. 51, no. 4, pp. 1432-1436, Apr. 2005.

with minimum determ|nant2—- Moreover, it has optimal [2] j.J. Boutros and E. Viterbo, “Signal space diversity: ewer and
coding gain: any code sat|sfy|ng these properties has nuimm bandwidth efficient diversity technique for the Rayleighlifay channel,”

IEEE Trans. on Inf. Theoryol. 44, no. 4, pp. 1453-1467, Jul. 1998.
determinant SmCtIy less thaﬁ , unless it is equwalent to [3] J.J. Boutros, N. Gresset, and L. Brunel,“Turbo coding aecoding for

Aladdin-Pythagoras Code. multiple antenna channeldyit. Symp. on Turbo CodgBrest, Sept. 2003.
In fact, this optimality property already holds when re- Downloadable ahttp:/www.josephboutros.org/coding _
stricted to a16-QAM [4] P. Dayal and M.K. Varanasi,"An optimal two transmit amt@ space-time

) . L . code and its stacked extension$Z?EE Trans. on Inf. Theoryvol. 51,
Proof: We computenaxqmin(16-QAM). This is a finite no. 12, pp. 4348-4355, Dec. 2005.
optimization problem: maximize [5] H. El Gamal and A.R. Hammons,Jr., “On the design of alg&bspace-
time codes for MIMO block-fading channel$EEE Trans. on Inf. Theory
; _ o vol. 49, no. 1, pp. 151-163, Jan. 2003.
min c—c ; . .
c.c’ €(16-QAM)* |q“’”’w( )l’ [6] H. EI Gamal and M.O. Damen,“Universal space-time codindEE
c#c Trans. on Inf. Theoryvol. 49, no. 5, pp. 1097-1119, May 2003.
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