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Abstract— Our motivation is the design of space-time coding
which is optimal under both maximum likelihood and iterativ e
decoding. We describe the construction of new full-rate space-
time codes with non-vanishing determinant that satisfy thegenie
conditions for iterative probabilistic decoding. The problem com-
bining the genie conditions and the rank criterion is rewritten in
terms of a quadratic form. The construction over Z[i] (the cubic
lattice) yields a family of codes defined by Pythagorean triples.
The space-time code built overZ[i] and involving the quaternion
algebra

“

i,5
Q(i)

”

is referred to as theAladdin-Pythagoras code. The
construction over Z[j] (the hexagonal lattice) also yields a full-
rate non-vanishing determinant code that is suitable for iterative
decoding on multiple antenna channels.

I. I NTRODUCTION

Algebraic constructions of space-time block codes [12][13]
for multiple antenna (MIMO) channels are usually based on
design criteria established by analyzing the pairwise error
probability under maximum likelihood (ML) decoding. These
space-time coding criteria, originally published in [9][17], led
to the design of coding for MIMO channels without taking
into account the presence of efficient error-correcting codes
or the potential use of iterative probabilistic decoding as
known in modern coding theory [15].

Some unusual space-time codes, in the context of full-rate
unitary linear precoding, have been proposed by applying two
constraints to make the code suitable for iterative decoding
[3][7]. These constraints, referred to as thegenie conditions,
were mainly used for linear precoding in bit-interleaved coded
modulations such as in [8]. The analysis of these codes from
a rank/determinant criterion point of view has never been
performed. The main difficulty is encountered when trying to
satisfy all constraints for both ML and iterative decoding.

In this paper, we propose a new space-time code satisfying
the double constraints of ML and iterative decoding. We focus
the study in this abstract on linear unitary precoders for2× 2
MIMO channels. The coherence time is assumed to be equal
to 2. The channel is supposed to be frequency non-selective
and its fading matrix (CSI) is perfectly known by the decoder.
There is no CSI at the encoder and no feedback information
from the decoder to the encoder. We briefly summarize the
method of linear unitary precoding for MIMO channels and
the genie conditions in the next section. Section III gives a

reformulation of the problem and a quadratic form reduction
in the2×2 case. Section IV shows how to get a non-vanishing
determinant under the genie conditions via algebraic number
theoretic tools and discusses the optimality of the Aladdin-
Pythagoras code. Some experimental results are illustrated in
the final section.

II. SPACE-TIME LINEAR UNITARY PRECODING

Consider an× n MIMO channel, i.e., withn transmit and
n receive antennas. A space-time codewordC of length N
may be written in matrix form

C =







c1
1 c1

2 . . . c1
N

...
...

...
cn
1 cn

2 . . . cn
N






.

Under ML decoding, the pairwise error probability is upper
bounded as (e.g., see [5])

P (C → C
′) ≤

(

1
∏t

i=1(1 + λiγ/4n)

)n

≤
(gγ

4n

)−tn

,

whereγ is the transmitted signal-to-noise ratio per symbol,
t = rank(C − C

′), the coding gain isg = (λ1λ2 · · ·λt)
1/t,

and{λi} are the eigen values of(C − C
′)(C − C

′)∗. Thus,
the famous design criteria [9][17] for ML decoding can be
recalled as follows:

• Rank: Full diversity is achieved ift = n.
• Product distance: Coding gain is maximized by maximiz-

ing the determinant.
Full diversity can be attained withN = n if a suitable
unitary matrix is applied to the codewordC. Let us write
the codeword in a linearized formc as a row of sizen2,
c = (c1, . . . , cn2). The new codeword to be transmitted on
the MIMO channel isX = cS, whereS is unitary. If the
components ofc belong to a bidimensional constellation
(QAM modulation) and without taking into account a possible
error-correcting code, the precoderS defines a space-time
code given by the set of all codewordsX.

Now, let us briefly establish the genie conditions for iterative
decoding [3][7]. For simplicity, taken = 2. The MIMO
channel is defined by its fading matrix

H0 =

(

h11 h12

h21 h22

)

,



where hij are iid andCN (0, 1) distributed. The non-noisy
part of the signal observed by the decoder isXH, where

H =

(

H0 0
0 H0

)

.

The genie condition is equivalent to perfect extrinsic infor-
mation (or a priori) generated by the error-correcting decoder.
Under perfect a priori information, the performance depends
on the squared Euclidean metricD2 = ‖XH − X

′
H‖2 =

‖(c − c
′)SH‖2 where(c − c

′) = (∆, 0, 0, 0), i.e., only one
component is different between the two codewords. Here,
we assumed that this difference is in the first position. If
s = (s11, s12, s13, s14) denotes the first row of the precoder
S, then the squared Euclidean metric becomes

D2 = ∆2
[

|s11h11 + s12h21|2 + |s11h12 + s12h22|2

+ |s13h11 + s14h21|2 + |s13h12 + s14h22|2
]

.

From the properties ofχ2 distributions [18][19], the best
situation is encountered when all complex gaussians withinthe
χ2 are independent and have equal variance. These properties
are translated into

• First genie condition:(s11, s12) must be orthogonal to
(s13, s14)

• Second genie condition:(s11, s12) and (s13, s14) must
have equal norms.

Of course, the 4 rows of the precoder should satisfy the genie
conditions as announced above for the first row. In the sequel,
the property ofS being unitary will be referred to as ashaping
condition. Also, following [14], a space-time code defined by
a unitaryS will be called perfect if it has a non-vanishing
determinant.

III. M ATRIX PRELIMINARIES

A. Intrinsic reformulation of the Genie conditions

For any integern, we endowMn(C), the space of square
n × n matrices, with the Hermitian scalar product

< A,B >n=
1

n
trAB

∗ =
1

n

∑

aijbij

for A = (aij) and B = (bij) in Mn(C). Notice the 1
n

normalization.
We recall also that the unitary groupU(n) is the subset of

the elementsV ∈ Mn(C) satisfying

VV
∗ = In.

Thus any suchV has norm

‖V‖n = 1.

Consider now a linear space-time code of ordern. In
linearized form, as described in the previous section, the
codeword associated to symbols(c1, . . . , cn2) is X =
(c1, . . . , cn2)S whereS = (sij) is the squaren2 × n2 matrix
of the precoder.

Alternatively, for any such matrixS, let M1, . . . ,Mn2 be
the squaren×n matrices whose linearizations are the rows of

S, scaled by a factor
√

n. Explicitly, the (j, k) entry ofMi is√
nsi,(j−1)n+k. Then in matrix form the codeword associated

to c = (c1, . . . , cn2) is Xc = 1√
n
(c1M1 + · · · + cn2Mn2).

Proposition 1: With S and the Mi as defined, we can
reformulate the shaping and genie conditions as follows:

1) The matrixS is unitary (that is, inU(n2)) if and only
if M1, . . . ,Mn2 form a unitary basis for the Hermitian
product< ., . >n in Mn(C).

2) The matrixS satisfies the genie conditions if and only
if M1, . . . ,Mn2 are inU(n).

Putting all this together:
Definition 1: We sayM1, . . . ,Mn2 satisfy (S+G) if they

are inU(n) and are mutually orthogonal inMn(C).
Let nowA be any constellation (finite or infinite) inC. We

define the minimum determinant ofM1, . . . ,Mn2 on A as
the infimum value of| detXc−c′ | for c, c′ ∈ An2

, c 6= c
′.

Our problem is then to findM1, . . . ,Mn2 satisfying (S+G)
and with minimum determinant non-zero, and ideally as large
as possible.

Definition 2: We say that two familiesM1, . . . ,Mn2 and
M

′
1, . . . ,M

′
n2 are equivalent if there existV,W ∈ U(n) such

that M′
i = VMiW for all i.

Proposition 2: SupposeM1, . . . ,Mn2 and M
′
1, . . . ,M

′
n2

are equivalent. Then:
1) M1, . . . ,Mn2 satisfy (S+G) if and only ifM′

1, . . . ,M
′
n2

do.
2) M1, . . . ,Mn2 and M

′
1, . . . ,M

′
n2 have the same mini-

mum determinant.
Proof: SinceU(n) is a group, ifMi is in U(n), then

M
′
i = VMiW also. IfMi ⊥ Mj in Mn(C), thenM

′
i ⊥ M

′
j

also becauseM′
iM

′
j
∗

= VMiWW
∗
M

∗
jV

∗ = VMiM
∗
jV

∗

so that trM
′
iM

′
j
∗

= trVMiM
∗
jV

∗ = trMiM
∗
jV

∗
V =

trMiMj = 0. Finally for c, c′ ∈ An2

one hasX′
c−c′ =

VXc−c′W so they have same determinant.

B. The 2 × 2 MIMO case: Reduction to a quadratic form
approach

We are now interested in the casen = 2.
Theorem 1:Any M1, . . . ,M4 in M2(C) satisfying (S+G)

are equivalent to some

M1 =

(

1 0
0 1

)

, M2 =

(

α 0
0 −α

)

,

M3 =

(

0 β
β 0

)

, M4 =

(

0 γ
−γ 0

)

,

for α, β, γ ∈ C with |α| = |β| = |γ| = 1.
Proof: After replacing eachMi with M

−1
1 Mi, we can

supposeM1 = I2. Now by the diagonalization theorem for
unitary matrices we can findV ∈ U(2) such thatVM2V

∗ is
diagonal. After replacing eachMi with VMiV

∗ (which does
not modify M1), we can supposeM2 is diagonal, and since

M2 ⊥ M1, it is of the formM2 =

(

α 0
0 −α

)

.

Now M3 is orthogonal toM1 and M2, so it must be

anti-diagonal, sayM3 =

(

0 β
β′ 0

)

. Then we putW =



(

1 0

0
√

β/β′

)

, and after replacing eachMi with WMiW
∗

(which does not modifyM1 norM2), we can supposeβ = β′.
Finally, M4 is orthogonal toM1,M2,M3 so it must be as
indicated.

For u, v, w ∈ C with |u| = |v| = |w| = 1, consider the
quadratic form [11]

qu,v,w(z) = z2
1 − uz2

2 − vz2
3 + wz2

4 ,

for z = (z1, z2, z3, z4) ∈ C4. Now for any constellationA in
C, put

maxqmin(A) = sup
|u|=|v|=|w|=1






inf

c,c′∈A4

c6=c
′

|qu,v,w(c − c
′)|






.

In particular ifA is an additive subgroup ofC,

maxqmin(A) = sup
|u|=|v|=|w|=1

(

inf
c∈A4\{0}

|qu,v,w(c)|
)

.

Corollary 1: With these notations, the supremum value of
the minimum determinant of2× 2 linear space-time codes on
A satisfying the shaping and genie conditions is

1

2
maxqmin(A).

In particular, a perfect2× 2 space-time code forA satisfying
the genie conditions exists if and only ifmaxqmin(A) > 0.

Moreover, if maxqmin(A) > 0 is attained for a particular
value ofu, v, w, then there exists a corresponding code with
optimal coding gain.

Proof: This is a consequence of propositions 1 and 2,
theorem 1, and the following observation:

For M1, . . . ,M4 as in the theorem and forc ∈ A4, one

hasXc = 1√
2

(

c1 + αc2 βc3 + γc4

βc3 − γc4 c1 − αc2

)

so that

detXc =
1

2
(c2

1 − α2c2
2 − β2c2

3 + γ2c2
4) =

1

2
qu,v,w(c),

whereu = α2, v = β2, w = γ2. To conclude, remark then
that u, v, w can take any values independently in the circle
|z| = 1 whenα, β, γ do so.

IV. T HE ALADDIN -PYTHAGORAS SPACE-TIME CODE

CONSTRUCTION

A. Number theoretic considerations

Having corollary 1 in mind, we search for a lower bound on
maxqmin(A) for A = Z[i] or Z[j]. In order to achieve that, a
sufficient condition is to pick some convenient value foru, v, w
and then give a lower bound on|qu,v,w(c)| for c ∈ A4 \ {0}.
This will be done using algebraic number theory [16][21].

Let K = AQ = Q(i) or Q(j). Observe that if we take
u, v ∈ K andw = uv, thenqu,v,w is the reduced norm form
of the generalized quaternion algebra

(

u,v
K

)

in the naturally
associated basis. If this quaternion algebra is a division alge-
bra, thenqu,v,w does not represent0. Moreover, if d ∈ A is
a common denominator foru, v, w, thenqu,v,w(c) ∈ 1

dA for

c ∈ A4, so that if it is non-zero, one has|qu,v,w(c)| ≥ 1
|d| .

This will give our lower bound.
Our task is then to findu, v ∈ K, with |u| = |v| = 1, and

such that
(

u,v
K

)

is a division algebra, that is such thatu is
not a square inK andv is not a norm fromK(

√
u) to K. It

would also be pleasant to keep their denominators as small as
possible.

Lemma 1:For each primep in Z that splits inK (that is
p ≡ 1 mod 4 for A = Z[i] andp ≡ 1 mod 3 for A = Z[j])
chose a factorizationp = xpxp in K.

Then the subgroup|z| = 1 of K× is the direct sum
of the group of units inA (that is {±1,±i} for Z[i] and
{±1,±j,±j2} for Z[j]) and of the free cyclic groups gener-
ated by thexp/xp.

Proof: Consequence of the unique factorization inA.
Lemma 2:The units inA that are not squares inK are

{±i} for A = Z[i] and{−1,−j,−j2} for A = Z[j].
If we takeu such a unit, then all other units are norms from

K(
√

u) to K.
Proof: Direct (and easy) computation.

Since we want to keep denominators as small as possible,
the first part of this lemme allows us to takeu = i for A = Z[i]
and u = −1 for A = Z[j]. However, because of the second
part of this same lemma, we cannot takev a unit, so we will
take it asv = xp/xp for p a small convenient prime. This
will give the lower bound|qu,v,w(c)| ≥ 1

|xp| = 1
|√p| (when

non-zero).
Lemma 3:With these notations, a necessary and sufficient

condition for v not to be a norm fromK(
√

u) to K, is that
p ≡ 5 mod 8 for A = Z[i], or p ≡ 7 mod 12 for A = Z[j].

Proof: We treat only the caseA = Z[i], and we
prove only the ’sufficient’ part since this is the only one that
will be used in the sequel (for completeness, one proof of
the ’necessary’ part, using Hensel’s lifting and Hasse’s norm
theorems, will be given in a forthcoming paper).

So let K = Q(i) and u = i. Supposep ≡ 5 mod 8 and
v = xp/xp is a norm fromK(

√
u) to K. Thenp = xp

2v also
is a norm, so there arex, y ∈ K with x2 − iy2 = p. Since
p ≡ 1 mod 4, the polynomialX2 + 1 is split in Fp, so it
admits a rootI there, and by Hensel lifting it admits a root
I in Zp. We thus get an embedding ofK in Qp by sending
i to I, and we getx′, y′ ∈ Qp satisfying x′2 − Iy′2 = p.
Since I ∈ Zp and vp(p) = 1, one cannot have bothvp(x

′)
andvp(y

′) > 0. Let thusm = −min(vp(x
′), vp(y

′)) ≥ 0, so
thatx′′ = pmx′ andy′′ = pmy′ are inZp, one of them at least
is a unit, and they satisfyx′′2 − Iy′′2 = p2m+1. Then inFp

one hasx′′2 − Iy′′2 = 0, so thatx′′ andy′′ both are non-zero
and I = (x′′/y′′)2 is a square inFp. But I has order4 in
F×

p , so its square root has order8, and by Lagrange’s theorem
p ≡ 1 mod 8, a contradiction.

Taking p = 5, we have proved:

maxqmin(Z[i]) ≥ 1√
5

(1)

and in the same waymaxqmin(Z[j]) ≥ 1√
7
.



B. Optimality of the Aladdin-Pythagoras code

We explicit the codes so constructed forA = Z[i]. Letp ≡ 5
mod 8 be prime. Then one hasp = a2 + b2 for xp = a + ib.
Let also x2

p = c + id, so c = a2 − b2 and d = 2ab. Then
p2 = c2 + d2, and(c, d, p) is known as a Pythagorean triple.
For u = i, v = xp/xp = x2

p/p andw = uv the quadratic form
qu,v,w is given by

qu,v,w(z) = (z2
1 − iz2

2) − c+id
p (z2

3 − iz2
4),

and the code can be constructed by putting in theorem 1α =√
u = eiπ/4, β =

√
v = xp/

√
p and γ =

√
w = αβ. It has

minimum determinant at least12|xp| = 1
2
√

p .
Since the construction of these codes involves Pythagorean

triples, they could be named Pythagorean codes.
For the particular casep = 5 one can takex5 = 2+ i (with

associated triple(3, 4, 5)) so that

• α = 1+i√
2

= eiπ/4

• β = 2+i√
5

= ei atan(1/2)

• γ = 1+3i√
10

= ei atan(3).

The precoder matrix is

S =
1√
2









1 0 0 1
α 0 0 −α
0 β β 0
0 γ −γ 0









and forc ∈ Z[i]4, one has

Xc =
1√
2

(

c1 + αc2 βc3 + γc4

βc3 − γc4 c1 − αc2

)

with determinant

detXc = 1
2 ((c2

1 − ic2
2) − 2+i

2−i(c
2
3 − ic2

4))

= 1
2 ((c2

1 − ic2
2) − 3+4i

5 (c2
3 − ic2

4))

always at least 1
2
√

5
for non-zeroc. In fact | detXc| = 1

2
√

5
is

attained forXc = (0, i, 1, i), so this is the exact value of its
minimum determinant.

Observe that the quaternion algebra involved in the con-
struction of this code is

(

i,5
Q(i)

)

, the same as for the Golden
Code [1] (although we use a different lattice in this algebra).
Since this code contains a genie and is somewhat Golden, it
could be named Aladdin-Pythagoras Code.

Theorem 2:Aladdin-Pythagoras Code is a perfect2 × 2
space-time code overZ[i] satisfying the genie conditions,
with minimum determinant 1

2
√

5
. Moreover, it has optimal

coding gain: any code satisfying these properties has minimum
determinant strictly less than1

2
√

5
, unless it is equivalent to

Aladdin-Pythagoras Code.
In fact, this optimality property already holds when re-

stricted to a16-QAM.
Proof: We computemaxqmin(16-QAM). This is a finite

optimization problem: maximize

min
c,c′∈(16-QAM)4

c6=c
′

|qu,v,w(c − c
′)|,

for |u| = |v| = |w| = 1. This can be performed exactly, and
find a unique solution (up to obvious changes of variables),
which is as beforeu = i = eiπ/2, v = 3+4i

5 = ei atan(4/3),
w = uv, with |qu,v,w| minimum equal to 1√

5
for c − c

′ =

(0, i, 1, i). Thus

1√
5

= maxqmin(16-QAM) ≥ maxqmin(Z[i]) ≥ 1√
5
,

so all these inequalities are equalities, and we conclude with
corollary 1.

In the same way, one can construct a perfect2 × 2 space-
time code overZ[j] satisfying the genie conditions, with
optimal coding gain. Its minimum determinant is1

2
√

7
. At first

sight this looks worse than the1
2
√

5
obtained before, however

comparing the performances of these two codes would require
a closer analysis, since one should keep in mind thatZ[j] has
higher density thanZ[i].

V. EXPERIMENTAL RESULTS

In this section, probabilistic decoding in presence of a genie
is simulated on a computer with bothA = QPSK and
A = 256 − QAM modulations. There is no need for a soft-
output version of the Sphere Decoder [20], flipping one symbol
is sufficient while computing the decoding metrics. Different
precoders are compared: The cyclotomic rotations found in [2]
and modified as in [3][7] to match the genie conditions, the
Golden code as defined in [1], the Dayal-Varanasi code [4],
the Tilted QAM proposed in [22], and our Aladdin-Pythagoras
code. Other interesting precoders can be found in the literature
such as the GIOM (Genie+Information Outage Minimization)
[10] and the TAST code [6]. As expected, the SNR difference
between the best precoders is negligible (even a random
selection among 2000 matrices as for GIOM yields a relatively
excellent precoder). As known, the Golden code and Dayal-
Varanasi exhibit equivalent performance. The tilted QAM is
outperformed by the other precoders. Also as expected, the
cyclotomic rotation shows performance similar to Aladdin-
Pythagoras code. In the future work, deeper comparisons
should be made between unitary space-time codes, mainly we
should look for more equivalences and determine unknown
determinant value for some codes in the non-vanishing case.
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Fig. 2. QPSK with different space-time precoders (Zoom on Fig. 1).
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Fig. 3. 256-QAM with different space-time precoders.
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Fig. 4. 256-QAM with different space-time precoders (Zoom on Fig. 3).


