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Abstract—We give a slight improvement on Xing’s lower
bound for frameproof codes constructed from algebraic curves.
Combined with some additional number-theoretic assumptions
(still conjectural) and a concatenation process, this should lead
to the existence of a family of binary 2-frameproof codes of
asymptotic rate going beyond the up to now best known (non-
constructive) lower bound.

I. INTRODUCTION

In [10], Körner considers the following problem:
How many different points can we find in the n-dimensional

Hamming space so that no three of them are on a line?
(We say three points in a metric space are on a line if they

satisfy the triangle inequality with equality. Recall also the
n-dimensional Hamming space is the set of length n binary
sequences, the Hamming distance between two sequences
being the number of coordinates in which they differ.)

Denote by M(n) the maximal size of such a configuration,
and define its asymptotic exponent

ρ = lim sup
n→∞

log2M(n)

n
.

It is shown in [10] that ρ satisfies the inequalities

1− 1

2
log2(3) ≤ ρ ≤ 1

2

where the derivation of the lower bound

1− 1

2
log2(3) ≈ 0.207518 . . .

is a typical example of the power of the so called probabilistic
method in extremal combinatorics.

This said, the gap between these two bounds is very big,
and the problem of narrowing it is still open. One of the main
results of this paper is that the lower bound could be (slightly!)
improved, under some additional number-theoretic assumption
whose validity is unfortunately still conjectural:

Conjecture A: Let p > 2 be an odd prime. Does there exist
infinitely many prime numbers N such that the Hecke operator
Tp acting on the space of weight 2 cusp forms S2(Γ0(N)) has
odd determinant?

Theorem 1: If Conjecture A holds true for p = 11, then the
asymptotic exponent ρ satisfies the lower bound

ρ ≥ 3

50
log2(11) ≈ 0.207565 . . .

The reader might wonder how our initial problem come
to be related to such a question from the theory of modular

forms. In fact, as noted in [10], estimating M(n) is an old
problem, and different equivalent versions had been considered
by people working in various areas. Its first occurence can
be traced to the paper [6], dealing with state assignment for
asynchronous automata. In this context, our configurations of
points (no three on a line) were known as (2, 1)-separating sys-
tems — see the recent survey [15] for more on this theory and
its history. Later, (s, 1)-separating codes were re-introduced
under the name of “s-frameproof codes” in a cryptographic
context, namely for digital fingerprinting purposes, and more
generally in relation with the theory of traitor-tracing schemes
(see [1] and [17]).

Frameproof codes were then extensively studied, and many
constructions were given. In [19] (reproduced in [14]), Xing
gives a criterion for an algebraic-geometry (AG) code to
be frameproof. Using this criterion, and a point-counting
argument on the Jacobian of the curve on which the code
is defined, he derives an asymptotic lower bound for the
achievable rate of such codes. In the next section, we look
carefully and rephrase some steps of this counting argument.
In some cases, this allows us to improve slightly on Xing’s
bound.

We then formulate some conjectures which lead to a much
bigger improvement. Loosely speaking, what we require is the
existence of curves having many points but whose class groups
have few s-torsion elements. For example, the modular curves
X0(N) are asymptotically maximal for the number of points
([9][18]), and have class number given by some determinant of
Hecke operators, so Conjecture A fits in this framework. We
will see some alternatives, weaker or stronger. The strongest
one, is that some family of maximal curves (e.g. modular
curves, or the tower in [8]) should satisfy the Cohen-Lenstra
heuristics ([4][7]). Although much stronger than what we need,
this is a natural assumption that looks very plausible.

From these conjectures, one deduces a new lower bound for
frameproof codes over “big” fields, and, using a concatenation
process, this leads to the lower bound for binary codes of
Theorem 1. As the reader noticed, this improvement over the
probabilistic bound is extremely small, so it really seems to
rely on the validity of our conjectures. A bare use of Xing’s
original result would not be sufficient.

In the final section of this paper, arguments supporting these
conjectures and possible strategies of proof are then discussed,
as well as constructiveness issues.



II. ON XING’S LOWER BOUND

A. Frameproof codes

If n, M and q are three integers, we define an (n,M)q-
code as any subset C ⊂ Qn of size |C| ≥ M , where Q is
a finite set (the “alphabet”) of size |Q| = q. Elements of C
are called “codewords”. The rate of C is defined as the real
number logq |C|

n ≥ logq M

n .
If q is a prime power, we denote by Fq the field with q

elements, and if n, k are two integers, we define an [n, k]q-
(linear) code as any vector subspace C ⊂ (Fq)n of dimension
dimFq

C ≥ k. Clearly an [n, k]q-code is then also an (n, qk)q-
code, with rate at least k

n .
If C ⊂ Qn is a code and S ⊂ C is any set of codewords,

we define the set desc(S) of descendants of S, as the set of all
w ∈ Qn such that for all 1 ≤ i ≤ n, there is at least one c ∈ S
having same i-th coordinate as w. For any integer s ≥ 2, one
says that C is s-frameproof if for any S ⊂ C of size |S| ≤ s,
the intersection desc(S) ∩ (C \ S) is empty.

An (n,M)q-code (resp. an [n, k]q-code) that is also s-
frameproof will be denoted an s-FPC(n,M)q (resp. an
s-FPC[n, k]q). We define Mq(n, s) (resp. kq(n, s)) as the
maximum M (resp. the maximum k) for which there exists
an s-FPC(n,M)q (resp. an s-FPC[n, k]q). We also define the
asymptotic rates

Rq(s) = lim sup
n→∞

logqMq(n, s)

n

Rlin
q (s) = lim sup

n→∞

kq(n, s)

n
.

B. Curves and their Jacobians

We fix q a non-trivial power of some prime number p.
If X is an algebraic curve (smooth, projective, absolutely
irreducible 1-dimensional scheme) over Fq , we denote by
g = g(X) its genus and J = J(X) its Jacobian. We suppose
given a point P0 ∈ X(Fq), we let j = jP0

be the correspond-
ing Abel-Jacobi embedding of X in J , j(P ) = [P − P0]. We
let W1 = j(X) be its image and, for any r, Wr the r-fold
sum of W1 with itself (i.e. the image of Xr under the r-fold
Abel-Jacobi map j(r)). These Wr form an increasing sequence
of closed subvarieties of J . In particular, Wg is the whole of
J , while Wg−1 = Θ is its theta divisor. By convention we set
W0 = {0J} and Wr = ∅ for r < 0.

We say that a divisor on X is a simple effective divisor
(s.e.d.) if it is a (formal) sum of pairwise distinct Fq-points of
X , each with multiplicity 1. From now on we choose such a
s.e.d. G, let n = degG ≤ |X(Fq)| its degree, and choose an
ordering P1, . . . , Pn of the points in its support, so

G = P1 + · · ·+ Pn

(these points are pairwise distinct, although one of them maybe
equal to P0). We also denote by κG its image in J ,

κG = j(n)(G) = [G− nP0].

Remark that on X there is a biggest s.e.d., namely the sum
of all points in X(Fq). We will denote it by G∗.

For any integer s ≥ 2, we denote by s·(J(Fq)) the image of
the multiplication-by-s map acting on the group of Fq-points
of J , and by J(Fq)[s] its kernel, i.e. the s-torsion subgroup
of the class group of X .

Definition 2: For s ≥ 2, let the s-frameproof Xing number
of (X,G) be the biggest integer xs = xs(X,G) such that the
translate s · (J(Fq))− κG is not contained in Wxs

.
Remark xs < g, since Wg = J .
Later on we will need normalized versions of the quantities

just introduced. So we define:

α(X) =
|X(Fq)|

g
δs(X) =

logs |J(Fq)[s]|
g

ν(X,G) =
n

g
=

degG

g
ξs(X,G) =

xs(X,G)

g
.

Proposition 3: These quantities satisfy:
(i) ν(X,G) ≤ α(X)

(ii) ξs(X,G) < 1
(iii) if s = s1s2 with s1, s2 relatively prime, then

δs(X) = δs1(X) logs s1 + δs2(X) logs s2

(iv) 0 ≤ δs(X) ≤ 2 for any s
(v) 0 ≤ δs(X) ≤ 1 if s a power of p.

Proof: For (i), remark n ≤ |X(Fq)| by definition. We
know xs < g, hence (ii). Then (iii) is the Chinese remainder
theorem, while (iv)–(v) follow from [13] p. 39 (or p. 64).

C. AG codes

Given a (Fq-rational) divisor D on X , we denote by O(D)
the associated invertible sheaf, L(D) its space of global
sections, and l(D) = dimFq

L(D). The “Riemann” part of the
Riemann-Roch theorem asserts that l(D) ≥ degD + 1 − g,
with equality when degD ≥ 2g − 1. Also, l(D) > 0 if and
only if [D − (degD)P0] lies in WdegD.

For each i, choose a local parameter ti at Pi. From
this choice one deduces a trivialization of the 1-dimensional
vector space O(D)|Pi ' Fq . We then define a linear code
C(G,D) ⊂ Fn

q by evaluation at the Pi (relatively to these
trivializations) of the functions in L(D). As noted by Xing,
this construction generalizes Goppa’s evaluation codes, while
allowing the supports of G and D to overlap (in fact Xing’s
original definition also asked D to be positive, but this
condition is clearly unnecessary). He then proves:

Theorem 4 (Xing’s criterion, [19] Th. 3.5): Suppose
degD < n and

l(sD −G) = 0.

Then C(G,D) is an s-FPC[n, l(D)]q .
Corollary 5: Suppose n ≥ g. Then there exists an

s-FPC[n, bn+xs

s c+ 1− g]q.

Proof: Set d = bn+xs

s c. Then, from n ≥ g > xs and
s ≥ 2, one deduces d < n. On the other hand, by construction
sd−n ≤ xs, which means there is a degree 0 divisor D0 such
that s · [D0]−κG is not in Wsd−n. This implies that the degree
d divisor D = D0 + dP0 satisfies the hypotheses in Xing’s



criterion. Thus C(G,D) is frameproof, and its dimension is
l(D) ≥ d+ 1− g by Riemann-Roch.

This corollary motivates the search for lower bounds on xs:
Proposition 6: Set c(q) = 1 + logq

(3
√
q−1)

(q−1)(√q−1) . Then

xs ≥
⌊
g − logq |J(Fq)[s]| − logq g − c(q)

⌋
.

Proof (compare with [19], Lemmas 3.7–3.10): To ease
notations, let H = J(Fq) and h = |H|. By the rank theorem,
s · H is a subgroup of index |H[s]| in H. Thus

logq |s · H − κG| = logq |s · H| = logq h− logq |H[s]|.

On the other hand, for 0 ≤ r < g, [19], Lemma 3.9 (proved
in [14], Lemma 2.24) gives

logq |Wr(Fq)| < logq h+ r − g + logq g + c(q).

Now, if s · H − κG is to be contained in Wr, it will in fact
be contained in Wr(Fq). This implies |s ·H−κG| ≤ |Wr(Fq)|
hence

r > g − logq |H[s]| − logq g − c(q)

and the lower bound on xs follows.
Remark that this lower bound on xs does not depend on G.

D. Asymptotics

Say that a sequence of curves Xk over Fq form an ∞-
sequence if g(Xk) tends to infinity as k tends to infinity.

Let A(q) be the largest real number such that there exists
an ∞-sequence of curves Xk over Fq with

α(Xk) −→
k→∞

A(q).

Let δ−s (q) be the smallest real number such that there exists
an ∞-sequence of curves Xk over Fq satisfying:{

α(Xk) −→ A(q)
δs(Xk) −→ δ−s (q).

Let ξ+s (q) be the biggest real number such that there exists
an ∞-sequence of curves Xk over Fq , and Gk s.e.d. on Xk,
satisfying: {

ν(Xk, Gk) −→ A(q)
ξs(Xk, Gk) −→ ξ+s (q).

With these notations:
Theorem 7: Let q be a prime power. Then:
(i) if A(q) > 1,

Rlin
q (s) ≥ 1

s
− 1

A(q)
+
ξ+s (q)

sA(q)

(ii) ξ+s (q) ≥ 1− δ−s (q) logq s.

Proof: Inequality (i) is just the asymptotic version of
Corollary 5: consider an ∞-sequence of curves Xk over Fq ,
and Gk s.e.d. on Xk, such that ν(Xk, Gk) −→ A(q) > 1 and
ξs(Xk, Gk) −→ ξ+s (q). Then for k big enough one can apply
Corollary 5 to (Xk, Gk), which gives an s-frameproof code
of rate lower bounded by

1

n

(⌊
n+ xs
s

⌋
+ 1− g

)
≥ 1

n

(
n+ xs
s
− g
)

(where n = degGk, xs = xs(Xk, Gk), g = g(Xk)). Now
when k tends to infinity, this last quantity tends to

1

A(q)

(
A(q) + ξ+s (q)

s
− 1

)
so (i) follows.

In the same way, inequality (ii) is the asymptotic ver-
sion of Proposition 6, applied to any ∞-sequence of curves
Xk satisfying α(Xk) −→ A(q) and δs(Xk) −→ δ−s (q),
by choosing Gk = G∗k the maximal s.e.d. on Xk (hence
ν(Xk, Gk) = α(Xk)).

Combining (i) and (ii) gives:
Corollary 8: Suppose A(q) > 1. Then:

Rlin
q (s) ≥ 1

s
− 1

A(q)
+

1− δ−s (q) logq s

sA(q)
.

For this to be useful, we need upper bounds on δ−s (q). For
example, Proposition 3 (iv) gives δ−s (q) ≤ 2, and this is essen-
tially how in [19] Xing derives: Rlin

q (s) ≥ 1
s−

1
A(q) +

1−2 logq s

sA(q) .
We can do slightly better, as follows:

Proposition 9: Let vp denote the p-adic valuation, so q =
pvp(q), and write s = pvp(s)s′ (so s′ is prime to p). Then

δ−s (q) ≤ 2 logs s
′ + logs p

vp(s) = 2− vp(s)

vp(q)
logs q.

Proof: Follows from Proposition 3 (iii)–(v).
Corollary 10: With the same notations, if A(q) > 1, then

Rlin
q (s) ≥ 1

s
− 1

A(q)
+

1− 2 logq s+
vp(s)
vp(q)

sA(q)
.

Remark that when s is prime to p, this gives again Xing’s
lower bound. When p divides s, it improves on it by vp(s)

sA(q)vp(q)
.

III. CONJECTURES AND APPLICATION TO R2(2)

We would like to improve still further on the previous
results, but for this we will rely on one of the following two
conjectures, which should hold for any prime power q:

Conjecture B-1: δ−s (q) = 0.
Conjecture B-2: ξ+s (q) = 1.
Proposition 11: Conjecture B-1 implies Conjecture B-2,

which in turn implies

Rlin
q (s) ≥ 1

s
− 1

A(q)
+

1

sA(q)
.

Proof: Use Proposition 3 (ii) and Theorem 7.
Recall ([5]) that if C1 is an (n1,M1)q1 -code and C2 an

(n2,M2)q2 -code with q1 ≤ M2, then from any choice of
mapping Q1 into C2 (where Q1 is the alphabet of C1) one
deduces a “concatenated code” C1 ◦ C2, which will be an
(n1n2,M1)q2 -code. The rate of this code is

r1 logq2
q1

n2
≤ r1r2

where ri is the rate of Ci. One then easily checks:
Lemma 12: If C1 and C2 are s-FPC, then so is C1 ◦ C2.

From this one deduces:
Lemma 13: If C2 is an s-FPC(n2,M2)q2 then, for any

integer q1 ≤M2,

Rq2(s) ≥
logq2 q1

n2
Rq1(s).



Proof: Let Q1 be an alphabet of size q1, take C1 in
a family of s-FPC over Q1 of asymptotic rate Rq1(s), and
concatenate with C2.

Theorem 14: If Conjecture B-1 (or B-2) is true for p = 11,
q = p2, s = 2, then

R2(2) ≥ 3

50
log2(11) ≈ 0.207565 . . .

Proof: From [11] we know the one-shortened Kerdock
code K(2m − 1, 22m−1) for m ≥ 4 is 2-frameproof. We let
C2 be this code for m = 4, hence C2 is a 2-FPC(15, 128)2.
Applying the lemma with q1 = q = 121 will give

R2(2) ≥ 2 log2 11

15
R121(2).

On the other hand, for q = p2, we know A(q) =
√
q−1 = 10

([9][18]). Proposition 11 then gives

R121(2) ≥ Rlin
121(2) ≥ 1

2
− 1

10
+

1

20
=

9

20
= 0.45

which gives the result.
As noted before, it is known that R2(2) satisfies

1

2
≥ R2(2) ≥ 1− 1

2
log2(3) ≈ 0.207518 . . .

so our (conjectural) Theorem gives a slight improvement on
the lower bound. Remark that Xing’s lower bound in [19] gives

R121(2) ≥ 1

2
− 1

10
+

1− 2 log121 2

20
≈ 0.435546 . . .

hence only

R2(2) ≥ 3

50
log2(11)− 1

150
≈ 0.200899 . . .

One should also remark that, although Proposition 11 deals
with linear codes over Fq , the binary codes we obtain after
concatenation are nonlinear. By comparison, for a linear code,
being 2-frameproof is equivalent to being an intersecting code,
hence ([12][3]):

x∗ ≥ Rlin
2 (2) ≥ 1− 1

2
log2(3)

where the upper bound x∗ ≈ 0.283476 is solution of x =
H( 1

2 −
√
x(1− x)) (if the Varshamov-Gilbert bound were

exact, one could even replace x∗ with x∗∗ ≈ 0.227092 solution
of x = 1 − H(x)). So, as expected, the upper bound in the
linear case is smaller, and in fact much smaller, than in the
non-linear case. On the other hand, it is quite remarkable that
the (non-conjectural but also non-constructive) lower bounds
for R2(2) and Rlin

2 (2) are the same.

IV. MORE ABOUT THE CONJECTURES

A. Conjecture B-1 and B-2 and constructiveness

First we deal with the weaker of these two conjectures,
which is B-2 (see Proposition 11). What makes Conjecture B-2
plausible is that, on any algebraic curve X , a “generic” divisor
B of degree b = degB < g has l(B) = 0, or equivalently,
the image of B in the Jacobian does not lie in Wb.

One would like to apply this idea with B of the form B =
sD−G with the notations of Theorem 4. Of course this does
not work because such a B is not “generic”. However, by
letting the curve X and the divisor G vary, and taking b a
little smaller than g, we see there are many degrees of freedom.
Remark that one wants G to be almost of the size of X(Fq),
so it is convenient to write G = G∗ − T where G∗ consists
of all points in X(Fq) (i.e. G∗ is the maximal s.e.d. on X),
and T is a “small” subset in G∗. This suggests the following
constructive form of Conjecture B-2:

Construct an ∞-sequence of curves Xk over Fq and a
sequence of integers tk, with tk

g(Xk)
−→ 0, and Tk s.e.d. on

Xk of degree deg Tk ≤ tk, such that for each k one can find
explicitly an element of the translate s · (Jk(Fq))−κG∗

k
+κTk

that does not belong to Wg−tk .
Or equivalently:
Construct an ∞-sequence of curves Xk over Fq , and Dk

divisor on Xk, and Tk s.e.d. on Xk, such that:

|Xk(Fq)|
g(Xk)

−→ A(q)
deg Tk
g(Xk)

−→ 0

deg(sDk + Tk −G∗k)

g(Xk)
−→ 1 l(sDk +Tk−G∗k) = 0.

This would lead to a constructive proof of the lower bound
Rlin

q (s) ≥ 1
s −

1
A(q) + 1

sA(q) in Proposition 11, and hence also
to a constructive proof of R2(2) ≥ 3

50 log2(11).
Consider now Conjecture B-1. The key point in the proof

that Conjecture B-1 implies Conjecture B-2 is Proposition 6.
In this Proposition, one proves that s · (J(Fq)) − κG is not
included in Wr(Fq) by proving that the former has cardinality
larger than the latter. This is a strong requirement, indicating
that Conjecture B-2 should be quite easier to prove than
Conjecture B-1, and at the same time it is a non-constructive
argument. Thus even a constructive proof for Conjecture B-1
would not lead to an effective construction of good frameproof
codes.

Anyway this should not prevent us to try to prove Conjec-
ture B-1 constructively. We formulate it explicitely:

Construct an ∞-sequence of curves Xk over Fq such that
α(Xk) −→ A(q) and δs(Xk) −→ 0.

When s = l is a prime number, Jk(Fq)[l] is a Z/lZ-vector
space, and logl |Jk(Fq)[l]| is its dimension, so this can be re-
written as:

Construct an ∞-sequence of curves Xk over Fq , of genus
gk, and with Jacobian Jk, such that:

|Xk(Fq)|
gk

−→ A(q)
dimZ/lZ Jk(Fq)[l]

gk
−→ 0.

For q = p2, several families of curves attaining A(q) = p−1
have been constructed. For example in [8] such curves are
given by an explicit tower of Artin-Schreier extensions. Then
a way to prove Conjecture B-1 would be to control the l-
primary part of the class number in such a tower.



B. Modular curves and Cohen-Lenstra heuristics

Another family of curves attaining A(q), when q = p2,
is given by the modular curves X0(N). The class number
of these curves is then given by the following, which is a
consequence of the Eichler-Shimura relation:

Proposition 15: For N prime to p, and q = p2, denote by
Tp(N) the Hecke operator Tp acting on the space of weight
2 cusp forms S2(Γ0(N)). Then

|J0(N)(Fq)| = det((p+ 1)2 − Tp(N)2).

Corollary 16: With the same notations,

dimZ/lZ J0(N)(Fq)[l] ≤ vl(det((p+ 1)2 − Tp(N)2)).

From this we see that in order to prove Conjecture B-1, it
would suffice to prove:

lim inf
N−→∞
(N,p)=1

vl(det((p+ 1)2 − Tp(N)2))

g0(N)
= 0.

This could be put in a more general framework. The Cohen-
Lenstra heuristics [4] predict the distribution of the l-primary
part of class groups in families of number fields. They were
later extended to algebraic curves in [7]. If one knew that these
heuristics hold for the modular curves X0(N), one would
know the precise distribution of the J0(N)(Fq)[l], and all the
previous conjectures would follow.

A possible approach for results of this type would follow the
lines of [16]. There, Serre first estimates the trace of powers of
Tp(N), given explicitely by the Eichler-Selberg trace formula.
From this he then derives an equidistribution result for the
eigenvalues of Tp(N), relative to the Archimedean topology.
What one would like to do is the analogue for the l-adic
topology.

As a conclusion, we consider the case l = 2. There it is
easy to relate Conjectures A and B-1: if p is an odd prime,
then detTp(N) is odd if and only if det((p+ 1)2 − Tp(N)2)
is, so Conjecture A would give an infinite number of primes
N such that v2(det((p+ 1)2 − Tp(N)2) = 0. This is already
more than what we need, but we could ask even more: do
these primes form a set of positive Dirichlet density?

So let p > 2 be prime, and let Σ(p) be the set of prime
numbers N such that Tp(N) has odd determinant.

Observe that a matrix M , with coefficients in Z, has odd
determinant, if and only if the matrix M , obtained by reducing
its coefficients modulo 2, is invertible. Now for any integer
g define Pg as the probability that a uniformly distributed
random matrix M ∈ Mg(Z/2Z) is invertible. It is easily
shown that Pg = (1 − 1/2)(1 − 1/4) · · · (1 − 1/2g), which
tends to

P ∗ =
∏

k≥1
(
1− 1

2k

)
≈ 0.288788...

as g tends to infinity. From this discussion we see that P ∗

would be a natural candidate for the density of Σ(p). In fact, as
noted in [7], this is precisely what the Cohen-Lenstra heuristics
would predict. As a first step in this direction, one can prove
the following:

Proposition 17: Let p > 2 be prime. Then, except perhaps
for a finite number of values, all N ∈ Σ(p) satisfy:

1) −N is quadratic residue modulo p
2) N 6= 1 mod 8.
Remark that condition 1) eliminates half of the primes,

while condition 2) eliminates one fourth, independently.
Hence, Σ(p) is included in a subset of Dirichlet density(

1− 1
2

) (
1− 1

4

)
= 0.375

in the set of all prime numbers. It is very tempting to see this
as the first two factors in the infinite product defining P ∗.
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