I just realized that the requirement that the degree function is bounded from above, in Definition 1 (page 5), is redundant. So I propose to simplify Definition 1 as follows.

Definition 1. A Harder-Narasimhan lattice is a modular lattice L of finite length equipped with a lower semimodular function $\deg: L \to \mathbb{R}$.

I think this is nice since it provides a very minimalistic combinatorial framework for Harder-Narasimhan theory. (Besides this boundedness condition, previously I also got rid of the Northcott-type condition, as explained at the bottom of page 6.)

In order to prove that boundedness is implied by this new Definition 1, I then propose to insert the following lemma between the first and second paragraphs in page 6, just before the canonical polygon is constructed, which is precisely where it is needed.

Lemma. Let (L, \deg) be a Harder-Narasimhan lattice. Then the degree function \deg is bounded from above.

Proof. We proceed by induction on the length $n = \text{rk}(L)$ of L. The result is obvious if $n = 0$ or 1, so we assume L has length $n \geq 2$ and make the following *Induction hypothesis*: on every Harder-Narasimhan lattice of length at most $n - 1$, the degree function is bounded from above.

By contradiction suppose \deg is not bounded on L, and choose r maximal such that the set

$$E_r = \{ \deg(x) : x \in L, \text{rk}(x) = r \}$$

is unbounded (observe $r \leq n - 1$ since $E_n = \{ \deg(1_L) \}$ is finite).

Now fix an $a \in L$ of rank $\text{rk}(a) = 1$, and let $x \in L$ vary with $\text{rk}(x) = r$ and $\deg(x)$ arbitrarily large. The sublattice L/a has length $n - 1$, so by our *Induction hypothesis* we will have $x \not\in L/a$ as soon as $\deg(x)$ is large enough. This means $a \not\subseteq x$, and forces $a \land x = 0_L$ and

$$\text{rk}(a \lor x) = r + 1.$$

But then, by semimodularity,

$$\deg(a \lor x) \geq \deg(x) + \deg(a) - \deg(0_L)$$

can be arbitrarily large when $\deg(x)$ is. This means precisely that E_{r+1} is unbounded, contradicting the maximality of r. \qed