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Abstract

We present an elementary method for evaluating the order of p-
divisibility of exponential sums over a prime field. This method uni-
fies and sometimes improves previously known results of Ax-Katz,
Moreno-Moreno, Adolphson-Sperber, and Cao-Sun.

1 Introduction

E. Artin conjectured, and in 1935 C. Chevalley proved, that if F (x1, . . . , xn)
is a homogeneous polynomial of total degree d < n over a finite field, then
F has a non-trivial zero. Thereafter several improvements to this result and
extensions to the number of solutions of systems of polynomial equations of
several variables over finite fields have been proved. These works fall into
three categories:

• Non-elementary: Here are the extension of Ax’s result by Katz in [6]
and the Newton polyhedra method of Adolphson-Sperber presented
in [1]. These proofs use p-adic theory of zeta functions and com-
pletely continuous endomorphisms in infinite dimensional p-adic Ba-
nach spaces.

• Semi-elementary: Here are Ax’s result in [3], the extension of Katz’s
result proved by D. Wan in [13], the improvement of Ax-Katz presented
in [8] by Moreno-Moreno, Moreno et al.’s tightness result proved in [11],
Adolphson-Sperber’s new proof of their result in [2]. These results use
p-adic analysis combined with Stickelberger’s theorem. Finally, Hou’s
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proof in [12], based on that of Ax, employs ingenious methods to prove
Katz’s extension of Ax’s result.

• Elementary: Here are Chevalley’s ([16]) and Warning’s proofs ([17]) of
the conjecture of Artin, the method of reduction to the ground field of
Moreno-Moreno presented in [8], the covering method in characteristic
2 presented by Moreno-Moreno in [9], and Wan’s proof of Moreno-
Moreno’s and Ax-Katz’s results for prime fields in [14]. Wilson ([18])
gave another elementary proof of Ax-Katz’s theorem for prime fields.

The purpose of this paper is to present elementary proofs of the non-
and semi-elementary results mentioned above (with a slight variation in the
case of Ax-Katz), and at the same time to extend or improve some of these
results.

After preliminaries in Section 2, we present in Section 3 our main result: a
new proof, entirely elementary in nature, of the prime field case of a theorem
on divisibility properties of exponential sums previously obtained by Moreno
et al. in [11]. The method of the proof can be seen as a generalization to
arbitrary (positive) characteristic of the covering method introduced in [7, 9]
for characteristic 2. The proof also includes a criterion for exact divisibility,
from which tightness follows as in [11].

In Section 4, we derive some consequences of our main result:

• improvement on Adolphson-Sperber’s theorem ([1, 2]) in the prime field
case (this improvement is hinted at in [11])

• Wan’s theorem on diagonal polynomials ([15]), in the prime field case

• Moreno-Moreno’s theorem ([8]), which in many cases improves on Ax-
Katz’s theorem (both being equivalent in the prime field case).

We stress that our proofs are entirely elementary. Note in particular that in
[3], Ax asked whether his theorem could be proved using elementary methods.
Wan [14] and Wilson [18] did so for prime fields, although these two proofs
(as well as Wan’s proof of Moreno-Moreno) do not use the relation between
exponential sums and the number of solutions of polynomial equations that
Ax used. Thus it could be said that our proof gives an affirmative answer to
Ax’s question, while staying closer to his original strategy.

In Section 5 we improve bounds on the number of zeros of a certain family
of polynomials first considered by Cao and Sun in [4].
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2 Preliminaries

A covering method for the prime field of characteristic 2, presented in [9],
established divisibility properties of an exponential sum for the number of
zeros of a polynomial over F2. This method was used in [10] to give an
elementary proof of the Moreno-Moreno result in [8] on the divisibility of the
number of zeros of a set of polynomials, for a finite field of characteristic 2.
We now generalize the covering method to characteristic p. From now on Fq
denotes the field with q elements.

Let E be a finite subset of Z≥0n. Choose a labeling of the elements of
E, so that E = {e1, . . . , eN}, with ej = (e1j, . . . , enj), where each eij is
a non-negative integer. By abuse of notation, we will identify E with the
matrix

E =


e11 · · · e1N
e21 · · · e2N

...
en1 · · · enN

 , (1)

where the columns represent the ej’s; let Ri represent the ith row. We assume
no column is repeated and no row is 0.

Let ν = (ν1, · · · , νN) be an N -tuple of non-negative integers. We define
the zero-rank of ν with respect to E, denoted by rE(ν), as the number of
rows Ri of E such that Ri · ν = 0.

Let now introduce the m-covering problem associated with E: if m is a
positive integer, we say that ν is an m-covering when EνT = ν1e1 + · · · +
νNeN has all its entries nonzero and divisible by m, that is, when there exist
positive integers λ1, . . . , λn such that, for each i,

ν1ei1 + · · ·+ νNeiN = Ri · ν = mλi. (2)

(We may also call such ν a positive solution to (2) and a ν that satisfies
(2) with λs allowed to be 0 a solution to (2). Thus a positive solution is a
solution that has zero-rank rE(ν) equal to 0.)

We define κm(E), the m-th covering number of E, as the least car-
dinality of such an m-covering, i.e., the least value of ν1 + · · · + νN for
which (2) holds. Thus a minimal positive solution ν to (2) has modulus
|ν| =

∑
j νj = κm(E).

The following lemma proves that κm(E) is well-defined (i.e., that positive
solutions to (2) exist) and gives some of its elementary properties.
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Lemma 2.1 Let E ⊂ Z≥0n be as above. Then:

(i) One has κm(E) ≤ mn.

(ii) If E ⊂ E ′ (or as matrices, if E ′ is constructed from E by adding extra
columns), then κm(E) ≥ κm(E ′).

(iii) Let n′ ≥ n, and let E ′ ⊂ Z≥0n
′

be such that E is the one-to-one image
of E ′ under the projection that forgets the last n′ − n coordinates (or
as matrices, suppose E ′ is constructed from E by adding extra rows).
Then one has κm(E) ≤ κm(E ′).

(iv) Consider a direct sum decomposition Zn = Zn1 ⊕ · · · ⊕ Znr with n =
n1 + · · · + nr, and suppose that relative to this decomposition E can
be written as E = E1 ∪ · · · ∪ Er with each Ei ⊂ Zni (or as matrices,
suppose E is the block diagonal matrix constructed from the Ei). Then
κm(E) = κm(E1) + · · ·+ κm(Er).

(v) If ν is a (not necessarily positive) solution to (2) and if r = rE(ν),
then one may find an integer t ≤ r, and indices j1 < · · · < jt such that
νj1 = · · · = νjt = 0, and such that if one defines ν ′ by ν ′j = νj for all j
except ν ′j1 = · · · = ν ′jt = m, then ν ′ is a positive solution to (2).

(vi) If ν is a (not necessarily positive) solution to (2), it satisfies

|ν| ≥ κm(E)−m.rE(ν).

Proof: Recall we supposed no row of E is zero. We then construct a
positive solution ν as follows: if n > N , we may choose all νj = m, thus
κm(E) ≤ mN ; if on the other hand n ≤ N , then for each i choose an
index ji such that ei,ji 6= 0 (some ji may be repeated, this will only diminish
their number) and put νji = m for these, and νj = 0 elsewhere. Thus
κm(E) ≤ m(min{n,N}) ≤ mn, which proves (i).

To prove (ii), label the elements of E ′ so that E = {e1, . . . , eN} and
E ′ = {e1, . . . , eN ′} with N ≤ N ′. Let ν = (ν1, . . . , νN) be a minimal m-
covering of E, and ν ′ = (ν1, . . . , νN , 0, . . . , 0) with N ′−N zeros added. Then
ν ′ is an m-covering of E ′, so κm(E ′) ≤ |ν ′| = |ν| = κm(E).

For (iii), remark that if ν is a minimal m-covering of E ′, then it is also
an m-covering of E, so κm(E ′) = |ν| ≥ κm(E).
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To prove (iv), consider first ν a minimal m-covering of E, and write
ν = (ν1, . . . ,νr), its decomposition in the direct sum Zn = Zn1 ⊕ · · · ⊕ Znr .
Then each νi is an m-covering for Ei, so κm(E) = |ν| = |ν1| + · · · + |νr| ≥
κm(E1)+ · · ·+κm(Er). Conversely, for each i let νi be a minimal m-covering
for Ei, and let ν = (ν1, . . . ,νr). Then ν is an m-covering of E, so κm(E) ≤
|ν| = |ν1|+ · · ·+ |νr| = κm(E1) + · · ·+ κm(Er).

We prove (v) by induction on r. If r = 0 there is nothing to prove.
Suppose now r > 0 and (iii) proved up to r − 1. Then since r > 0, there
exists an i1 with Ri1 · ν = 0, and there exists a j1 with ei1j1 6= 0, so that
necessarily νj1 = 0. Defining ν̂ by ν̂j = νj for all j except ν̂j1 = m, we now
have rE(ν̂) ≤ r − 1 and apply the induction hypothesis to this ν̂.

We finally deduce (vi) from (v). Indeed, one then has |ν ′| = |ν| + mt ≤
|ν|+mr, while |ν ′| ≥ κm(E) by definition of the covering number. �

Assertion (vi) in the lemma motivates the following:

Definition 2.2 A (not necessarily positive) solution to the m-covering prob-
lem of E will be called optimal if it satisfies

|ν| = κm(E)−m.rE(ν). (3)

We may view optimality as a generalization for not necessarily positive so-
lutions of the notion of minimality for positive solutions. In particular, a
positive solution is minimal if and only if it is optimal in this sense.

Lemma 2.3 Let ν be an optimal (not necessarily positive) solution to the
m-covering problem of E. Then for all j, one has νj ≤ m.

Proof: Let r, t and ν ′ be as in Lemma 2.1 (v). Then ν ′ is a positive solution
to the covering problem, with κm(E) ≤ |ν ′| = |ν|+mt ≤ |ν|+mr = κm(E)
(the last equality being because ν is optimal). Thus these inequalities are
equalities, so t = r; and more important, ν ′ is a minimal covering. Since
ν ≤ ν ′, it suffices to prove ν ′j ≤ m for all j and for all minimal coverings ν ′.

Now suppose there is a j0 and a minimal positive solution ν ′ to the
covering problem with ν ′j0 ≥ m+1. Define another solution ν ′′ to the covering
problem by ν ′′j = ν ′j for all j, except ν ′′j0 = ν ′j0 −m (we don’t know yet that
ν ′′ is a positive solution, but we will prove it very soon).
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Remark that ν ′′j0 ≥ 1, so that (m+1)ν ′′j0 ≥ ν ′′j0 +m = ν ′j0 , or ν ′′j0 ≥
1

m+1
ν ′j0 ;

and for all the other j, ν ′′j = ν ′j, so again ν ′′j ≥ 1
m+1

ν ′j. All in all, we find

ν ′′ ≥ 1

m+ 1
ν ′;

thus for all i

Ri · ν ′′ ≥
1

m+ 1
Ri · ν ′ > 0.

So ν ′′ is a positive solution to the covering problem, with |ν ′′| = |ν ′| −m =
κm(E)−m < κm(E), a contradiction. �

Let now p be a prime and, for integral k ≥ 0, let σ(k) denote the sum of
the digits in the base-p expansion of k. That is, if k = a0 +a1p+a2p

2 + · · ·+
arp

r with 0 ≤ ai < p, then σ(k) = a0 + a1 + · · · + ar. Also, let vp(k) be the
exponent on the highest power of p dividing k. It is known that

vp(k!) =
k − σ(k)

p− 1
, (4)

a fact we’ll use later.

For ease of writing we make these conventions: A relation ρ stated be-
tween integral vectors, as aρb, means that the relation holds in each co-
ordinate. If stated between a vector and an integer, it means that each
coordinate of the vector is in that relation to the integer. For example,
a = (a1, . . . , bn) ≥ b = (b1, . . . , bn) means ai ≥ bi for i = 1, . . . , n. And a ≡ 0
(mod m) means ai ≡ 0 (mod m) for all i. An exception: if we write a 6= b,
we understand the usual meaning; we don’t mean that a and b differ in every
coordinate, only in at least one coordinate.

For x = (x1, . . . , xn), e = (e1, . . . , en), and ν = (ν1, . . . , νN), we will also
freely write xe = xe11 · · ·xenn , ν! = ν1! · · · νN !, and so on.

Let S = {0, 1} if p = 2, and, for p ≥ 3, let g be a generator of the (cyclic)
group of units of Z/pmZ, and let S = {0}∪

{
gip

m−1 | 0 ≤ i ≤ p−2
}

. Then the
elements of S are a complete residue system modulo p. If k is a non-negative
integer, then
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∑
s∈S

sk ≡


p mod pm if k = 0

p− 1 mod pm if k is a nonzero multiple of p− 1
gk(p−1)pm−1−1
gkpm−1−1

≡ 0 mod pm if k is not divisible by p− 1.

(5)
In the next section we take m, which we are free to choose, to be n, the
number of variables we shall consider.

3 Divisibility of Exponential Sums

In [11] appear tight bounds on the divisibility of some exponential sums and
of the number of zeros of a set of polynomials. In this section we present, for
prime fields, an elementary proof of the main theorem of [11].

Recall a few classical facts from algebraic number theory (or from the
very beginning of the theory of cyclotomic fields): let ζ be a primitive p-th
root of unity over Q and set θ = 1−ζ. Then in Q(ζ) the (principal fractional)
ideal 〈θ〉 is prime, and the ideal 〈p〉 splits as 〈p〉 = 〈θ〉p−1. So if we denote
by vp the extension to Q(ζ) of the classical p-adic valuation, and also by vθ
the θ-adic valuation, one has vθ(x) = (p − 1)vp(x) for all x ∈ Q(ζ). Let
then A = {x ∈ Q(ζ) | vp(x) ≥ 0} = {x ∈ Q(ζ) | vθ(x) ≥ 0} be the ring of
p-integers (or equivalently θ-integers) in Q(ζ).

Alternatively, remark that every x ∈ Q(ζ) = Q(θ) can be written uniquely
as x =

∑p−2
k=0 λkθ

k for some λk ∈ Q. Write λk = ak/bk as an irreducible
fraction, with ak ∈ Z and bk ∈ Z>0. The non-zero λkθ

k in this sum have
valuation vθ(λkθ

k) = k+(p−1)vp(λk), which are pairwise distinct since they
are distinct modulo p− 1. Thus vθ(x) = min0≤k≤p−2{k+ (p− 1)vp(λk)}, and
a necessary and sufficient condition for x ∈ A is that vp(λk) ≥ 0 for each k,
or equivalently, that no bk is multiple of p. This, together with the fact that
θ satisfies the equation θp−1 =

∑p−2
k=0(−1)p−k

(
p

k+1

)
θk, gives a very explicit

description of A. In turn, depending on the reader’s tastes and preferences,
this explicit description could be taken as the definition of A (instead of the
previous “abstract” one) for the rest of the paper.

This stated, one then has pA = θp−1A, and there is also a natural identi-
fication A/θA = Fp.
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For any polynomial F ∈ Fp[x], where x = (x1, . . . , xn), we set

S(F ) =
∑
x∈Fnp

ζF (x) ∈ A. (6)

By abuse of notation we will also write F for the polynomial with integral
coefficients obtained by lifting Fp to S. Since ζm depends only on m modulo
p, the preceding can also be written as

S(F ) =
∑
x∈Sn

ζF (x). (7)

Let now E = {e1, . . . , eN} ⊂ Z≥0n be as in the preceding section, with
associated matrix

E =


e11 · · · e1N
e21 · · · e2N

...
en1 · · · enN

 . (8)

Define

Fp[x]E =

{
N∑
j=1

ajx
e1j
1 · · ·xenjn | a1, . . . , aN ∈ Fp

}
.

This is a vector subspace of Fp[x] of dimension N . The row Ri of E records
the exponents of the variable xi in a generic element F (x) ∈ Fp[x]E, so the
assumption that no row is zero means that every variable does indeed occur.
On the other hand, the column ej of E records the exponents of the j-th
monomial in F (x) (at least when aj 6= 0).

Conversely, for arbitrary F ∈ Fp[x], we may define its exponent set
e(F ) ⊂ Z≥0n as the set of exponent n-tuples of the monomials that appear
in F with non-zero coefficient, so that F (x) =

∑
e∈e(F ) aex

e with ae ∈ F×p .

One then has F ∈ Fp[x]E if and only if e(F ) ⊂ E.

Theorem 3.1 (i) With the above notations, every F ∈ Fp[x]E satisfies

vp (S(F )) ≥ κp−1(E)

p− 1
.

In particular, if S(F ) is a rational integer, it is divisible by pd
κp−1(E)

(p−1)
e.
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(ii) Conversely, there exists an F ∈ Fp[x]E such that the preceding in-
equality is an equality, that is

vp (S(F )) =
κp−1(E)

p− 1
.

Before we proceed to the proof, we make a few remarks.

Remark 3.2 Part (i) of the theorem can be easily generalized when rows of
E are allowed to be zero, since in the sum defining S(F ), summing over a
variable that does not occur only factors out a constant p while leaving the
rest of the sum unchanged.

Remark 3.3 Given an F ∈ Fp[x] in which all variables occur, one can use
part (i) of the theorem with E = e(F ) to get

vp (S(F )) ≥ κp−1(e(F ))

p− 1

(it may then be convenient to write κp−1(F ) for κp−1(e(F )) ). Because of
Lemma 2.1 (ii), choosing a larger E will not give a stronger inequality.

In general, it could be computationally expensive to compute κp−1(E); but
in Section 4 we will see cases where this computation, hence estimation of
divisibility, is easy.

Remark 3.4 The polynomial F we obtain in part (ii) of the theorem need
not satisfy e(F ) = E, that is, it may be that e(F ) is a strict subset of E,
or equivalently, that F (when decomposed in the monomial basis of Fp[x]E)
has some coefficients equal to 0. However, combining Lemma 2.1 (ii) and
the preceding remark, we find that its exponent set must at least satisfy
κp−1(e(F )) = κp−1(E).

We now begin the proof of the theorem, which will use several lemmas.
Write

S(F ) =
∑
x∈Sn

(1− θ)F (x) =
∑
x∈Sn

N∏
j=1

(1− θ)ajx
e1j
1 ···x

enj
n . (9)

Let Mj = ajx
e1j
1 · · ·x

enj
n . Then let M be any upper bound on all the Mj’s as

x varies, e.g., M = (pn − 1)d+1, where d is the total degree of F (we could
also take M = +∞, since all the following sums are finite anyway):
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S(F ) =
∑
x∈Sn

N∏
j=1

(1− θ)Mj

=
∑
x∈Sn

M∑
ν1=0

(
M1

ν1

)
(−θ)ν1 × · · · ×

M∑
νN=0

(
MN

νN

)
(−θ)νN

=
M∑
ν1=0

· · ·
M∑

νN=0

∑
x∈Sn

(−θ)
∑
νj

(
M1

ν1

)
· · ·
(
MN

νN

)
,

or

S(F ) =
M∑
ν=0

Tν(F ) (10)

with

Tν(F ) = (−θ)|ν|
∑
x∈Sn

(
M1

ν1

)
· · ·
(
MN

νN

)
. (11)

We first give a rough estimate of the valuation of such a Tν(F ):

Lemma 3.5 Let r = rE(ν) be the number of rows of E orthogonal to ν.
Then

vθ(Tν(F )) ≥ |ν|+ (p− 1)r.

Proof: The Lemma follows from the fact that the r variables associated
with the rows orthogonal to ν do not appear in the sum defining Tν(F ). Why
so? Because an “orthogonal” row occurs only when every non-0 νj is met by
an eij that is 0. Thus summing over each of these variables will factor out a
constant p, leaving the sum over the other variables untouched. �

Let us define δ = (δ1, · · · , δN) as follows:

δj =

{
1 if νj > 0
0 if νj = 0.

Lemma 3.6 For all ` = (l1, . . . , lN) satisfying δ ≤ ` ≤ ν, one has

rE(`) = rE(ν).
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Proof: One has ν ≤M , so by construction 1
M
ν ≤ δ, and so

1

M
ν ≤ ` ≤ ν.

Since each row Ri of E has non-negative entries, it follows that

1

M
Ri · ν ≤ Ri · ` ≤ Ri · ν,

and the only possibility for one of the terms in this inequality to be zero is
that they all are zero. �

We may write νj!
(
Mj

νj

)
= Mj(Mj − 1)(Mj − 2) · · · (Mj − (νj − 1)), the latter

being a polynomial in Mj of degree νj, with constant term 0 unless νj = 0.
More precisely, s(νj, lj) ∈ Z denoting the corresponding Stirling number of
the first kind, one has

νj!

(
Mj

νj

)
=

∑
δj≤lj≤νj

s(νj, lj)M
lj
j . (12)

Thus

ν1! · · · νN !

(
M1

ν1

)
· · ·
(
MN

νN

)
=

N∏
j=1

∑
δj≤lj≤νj

s(νj, lj)M
lj
j (13)

=
∑
δ≤`≤ν

s(ν1, l1) (a1x
e11
1 · · ·xen1n )l1 · · · s(νN , lN) (aNx

e1N
1 · · ·xenNn )lN (14)

=
∑
δ≤`≤ν

sν,`a
`xR1·`

1 · · ·xRn·`n (15)

where a` = al11 · · · a
lN
N and sν,` =

∏
j s(νj, lj). Therefore,

Tν(F ) =
(−θ)|ν|

ν!

∑
x∈Sn

∑
δ≤`≤ν

sν,`a
`xR1·`

1 · · ·xRn·`n (16)

with ν! defined as ν1! · · · νN !. Now setting

Lν,` =
(−θ)|ν|

ν!

∑
x∈Sn

xR1·`
1 · · ·xRn·`n (17)
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we arrive at
Tν(F ) =

∑
δ≤`≤ν

Lν,`sν,`a
`. (18)

Note that, in this equation, neither sν,` nor Lν,` depend on a (the coef-
ficients of F ); sν,` is a rational integer, while for the moment Lν,` is only
known to be an element of Q(θ).

We now partition the νs (0 ≤ ν ≤M) into two cells:

• Vopt = {ν | ν is an optimal (not necessarily positive) solution to the
p−1-covering system of E} (optimality being in the sense of Definition
2.2);

• Vother is the set of all other νs. That is, ν may be a non-optimal solution
to the system, or ν may not be a solution at all.

We may thus write

S(F ) =
∑
ν∈Vopt

Tν(F ) +
∑

ν∈Vother

Tν(F ). (19)

Lemma 3.7 If ν ∈ Vother, then

Tν(F ) ∈ θκp−1(E)+1A.

Proof: We distinguish two cases among all the ` satisfying δ ≤ ` ≤ ν:
there is (or is not) a not necessarily positive solution ` to the (p−1)-covering
system.

Case 1. There exists an `, solution to the p − 1-covering system. By
Lemma 2.1 (vi), one has |`| ≥ κp−1(E) − (p − 1)rE(`), with rE(`) = rE(ν)
by Lemma 3.6. So

|`| ≥ κp−1(E)− (p− 1)rE(ν). (20)

Now there are two options:

• If ` = ν, then ν is a solution to the covering system, but then ν is not
optimal since by assumption ν ∈ Vother; so

|ν| > κp−1(E)− (p− 1)rE(ν).

• If ` 6= ν, then |ν| > |`|. This together with (20) gives again

|ν| > κp−1(E)− (p− 1)rE(ν).

12



So whatever the option chosen, we have |ν| > κp−1(E) − (p − 1)rE(ν), and
the conclusion follows from Lemma 3.5. This finishes the proof in case 1.

Case 2. No ` is a solution to the (p − 1)-covering system. This means
that for each ` there is a row Ri` of E with Ri` · ` 6≡ 0 (mod p − 1). Here

(5) tells us that pn|
∑

xi`∈S
x
Ri` ·`
i`

, hence pn|
∑

x∈Sn x
R1·`
1 · · ·xRn·`n . Thus

vθ(Lν,`) ≥ |ν| − (p− 1)vp(ν!) + (p− 1)n

≥
∑

σ(νj) + κp−1(E)

where we used (4) and Lemma 2.1 (i).
To finish the proof, remark that ν 6= 0 (otherwise ` = 0 would be forced,

putting us in case 1), so
∑
σ(νj) > 0, and

vθ(Tν(F )) ≥ min
`
vθ(Lν,`) > κp−1(E).

�

From this Lemma and (19), we deduce

S(F ) ≡
∑
ν∈Vopt

Tν(F ) (mod θκp−1(E)+1A). (21)

Now:

Lemma 3.8 If ν ∈ Vopt, then for all ` (with δ ≤ ` ≤ ν) one has

Lν,` ∈ θκp−1(E)A.

Proof: Let ν ∈ Vopt, and let r = rE(ν) be the number of rows of E
orthogonal to ν; for ease of writing, reorder the variables so that one can write
R1 ·ν = · · · = Rr ·ν = 0. Then, since δ ≤ ` ≤ ν, one has 0 ≤ Ri · ` ≤ Ri ·ν,
and thus R1 · ` = · · · = Rr · ` = 0. This means that the variables x1, . . . , xr
do not appear in the sum defining Lν,`, so that

Lν,` = pr
(−θ)|ν|

ν!

∑
x′∈Sn−r

x
Rr+1·`
r+1 · · ·xRn·`n , (22)

in which x′ stands for (xr+1, . . . , xn). Now by Lemma 2.3, one has ν ≤ p−1,
so that vp(ν!) = 0, and

vθ(Lν,`) ≥ (p− 1)r + |ν| ≥ κp−1(E),

13



the last inequality stemming from Lemma 2.1 (vi). This proves Lemma 3.8.
�
Part (i) of the theorem now follows from this lemma, along with (18) and
(21).

We now prove part (ii) of the theorem. Using (18) again, write∑
ν∈Vopt

Tν(F ) =
∑
ν∈Vopt

∑
δ≤`≤ν

Lν,`sν,`a
` = θκp−1(E)P (a) (23)

with
P (a) =

∑
ν∈Vopt

∑
δ≤`≤ν

(θ−κp−1(E)Lν,`)sν,`a
`.

Thanks to the last lemma, we have P (a) ∈ A[a], so we can reduce its coeffi-
cients modulo θ to get a polynomial

P ](a) ∈ Fp[a].

Putting equations (21) and (23) together, we immediately get the following
criterion for exact divisibility:

Proposition 3.9 With these notations, if the value of P ] at a is non-zero
(where a are the coefficients of F ), then S(F ) is divisible by θκp−1(E) but not
by θκp−1(E)+1.

The tightness part in the theorem now follows from this criterion. Indeed,
let µ be any minimal positive solution to the (p− 1)-covering problem of E.
Thus µ ∈ Vopt and |µ| = κp−1(E). If ν ∈ Vopt, then by definition one has
|ν| = κp−1(E) − (p − 1)rE(ν) ≤ κp−1(E) = |µ|, so if ν 6= µ, then for all
` ≤ ν one also has ` 6= µ. Thus the coefficient dµ of aµ in P is

dµ = (θ−κp−1(E)Lµ,µ)sµ,µ

= (−1)|µ|sµ,µ
θ|µ|−κp−1(E)

µ!

∑
x∈Sn

xR1·µ
1 · · ·xRn·µn

where we used (17). We compute the valuation of dµ as follows:

• sµ,µ =
∏

j s(µj, µj) = 1 has valuation 0;

14



• θ|µ|−κp−1(E) has valuation |µ|−κp−1(E) = 0 since µ is a minimal positive
solution;

• µ! has valuation 0, since µ ≤ p− 1 (Lemma 2.3);

•
∑

x∈Sn x
R1·µ
1 · · · xRn·µn has valuation 0, thanks to (5), since each Ri · µ

is a non-zero multiple of p− 1.

So all in all, one has vθ(dµ) = 0.
Thanks to Lemma 2.3, each ν ∈ Vopt satisfies ν ≤ p− 1, so P , and thus

also P ], has degree less than p in each aj. Lastly, vθ(dµ) = 0 implies P ] is
not the zero polynomial.

We now use the following well-known lemma, whose proof we omit:

Lemma 3.10 Let P ] be a polynomial over Fp of degree ≤ p − 1 in each of
its N variables a1, . . . , aN . If P ] is not the zero polynomial, then there exists
(α1, . . . , αN) ∈ FN

p such that P ](α1, . . . , αN) 6= 0 in Fp.

Letting F (x) =
∑

j αjx
ej , we can now apply the criterion in proposition

3.9. This finishes the proof of the theorem.
�

In [5] Castro et al. generalized a result of Carlitz by determining the
exact divisibility of the exponential sum associated to certain polynomials.
To obtain their result they used an argument that relies on a non-elementary
result of Stickelberger. Using Proposition 3.9 we could obtain the same result
over the prime field without using Stickelberger’s result.

Before we proceed to applications, we restate in terms of polynomials
some parts of Lemma 2.1 that will be used in the following sections in com-
bination with Theorem 3.1.

Lemma 3.11 (i) Let F (x) be a polynomial in a certain set of variables

x, and let y be a new variable. If F̂ (y,x) = yF (x), then κp−1(F̂ ) ≥
κp−1(F ).

(ii) Let x1, . . . ,xr be disjoint sets of variables, and suppose F can be written
as F (x) = F1(x1) + · · · + Fr(xr). Then κp−1(F ) = κp−1(F1) + · · · +
κp−1(Fr).

Proof: Just looking at exponent sets, (i) arises directly from Lemma
2.1 (iii), and (ii) from Lemma 2.1 (iv). �
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4 New Elementary Proofs of Classic Results

Armed with Theorem 3.1, we now revisit some classical results, which we can
easily obtain by computing or estimating the (p − 1)-covering κp−1(E). We
will first see that the bound improves the result of Adolphson and Sperber
[1].

We need some notation to state their theorem. Suppose F (x1, . . . , xn) =∑N
j=1 ajx

e1j
1 · · ·x

enj
n , (aj 6= 0). Let ∆(F ) be the Newton polyhedron of F ,

that is, the convex hull in Rn of the set {ej} ∪ {(0, . . . , 0)}. Let ω(F ) be the
smallest positive rational number such that ω(F )∆(F ) contains a point of
Zn>0. A. Adolphson and S. Sperber [1] proved that if F is not a polynomial in
some proper subset of the variables x1, . . . , xn, then vp(S(F )) ≥ ω(F ). The
following theorem says that the bound presented in Theorem 3.1 could be
better than ω(F ).

Theorem 4.1 Let E = {e1, . . . , eN} and ω(F ) be defined as above. Then

κp−1(E)

p− 1
≥ ω(F ).

Proof: By definition, κp−1(E) is the least sum ν1 + · · ·+νN over all vectors
ν satisfying ν1e1 + · · · + νNeN = (λ1(p − 1), . . . , λn(p − 1)) with positive
λ1, . . . , λn. Dividing the last equation by p− 1, we obtain

ν1
p− 1

e1 + · · ·+ νN
p− 1

eN = (λ1, . . . , λn) ∈ Zn>0.

Let k :=
∑N

j=1
νj
p−1 . Then 1

k

∑N
j=1

νj
p−1 = 1 and k

∑N
j=1

νj
k(p−1)ej = (λ1, . . . , λn),

a positive n-tuple in k∆(F ). Thus κp−1(E)

p−1 =
∑N

j=1
νj
p−1 = k ≥ ω(F ).

�

The next example shows that there are cases where the bound in Theorem
4.1 is stronger than that of Adolphson and Sperber.

Example 4.2 Let d 6= 1 be relatively prime to p−1, and let F (x, y) = a1x
d2+

a2y
d2 +a3x

dyd be a polynomial over Fp. It can be verified that ω(F ) = 2
d2

. To
compute κp−1(E) we consider all ν1, ν2, ν3 satisfying
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d2ν1 + dν3 = λ1(p− 1)

d2ν2 + dν3 = λ2(p− 1),

with positive λ1, λ2. Since gcd(d, p− 1) = 1, d|λ1 and d|λ2. Therefore,

ν1 + ν2 + ν3
p− 1

≥ 2

d
.

Thus κp−1(E)

p−1 ≥ 2
d
> 2

d2
= ω(F ).

The relation between an exponential sum S(F ) =
∑

x∈Fnp
ζF (x) and the

number of zeros of a system of polynomials P1(x), . . . , Pt(x) is given by the
following well known Lemma.

Lemma 4.3 Let ζ be as in (6), P1(x), . . . , Pt(x) ∈ Fp[x1, . . . , xn], and N be
the number of common zeros of P1, . . . , Pt. Then

N = p−t
∑

x∈Fnp ,y∈F tp

ζy1P1(x)+...+ytPt(x).

Now Theorem 3.1 gives an elementary proof of the following theorem,
which was proved for a general finite field Fpf in [11].

Theorem 4.4 Let P1(x), . . . , Pt(x) ∈ Fp[x1, . . . , xn], and N be the number of
common zeros of P1, . . . , Pt. Introduce t extra variables y1, . . . , yt and define
a new polynomial F in n+ t variables by F (x,y) = y1P1(x) + . . .+ ytPt(x).

Then, p
κp−1(F )

p−1
−t divides N , and this divisibility is tight.

Remark 4.5 Note that, in this case, to compute κp−1(F ), we need to include
equations associated to each of the variables y1, . . . , yt (as shown in (24)).
When we sum these t equations we get an expression for the modulus |ν| of

the (p − 1)-covering that is a multiple of p − 1. Hence, κp−1(F )

p−1 is always an
integer.

In [15], Wan obtained an improvement of Ax’s theorem for diagonal equa-
tions. Our method gives an elementary proof for prime fields of Wan’s result.
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Theorem 4.6 (Wan) Let F (x1, . . . , xn) = a1x
d1
1 + · · · + anx

dn
n + β be a

polynomial over Fp and let N be the number of zeros of F over Fp, Then pµ

divides N , where

µ =

⌈
1

gcd(p− 1, d1)
+ · · ·+ 1

gcd(p− 1, dn)

⌉
− 1.

In fact Wan stated this theorem with the condition that all di divide p− 1,
in which case this becomes

µ =

⌈
1

d1
+ · · ·+ 1

dn

⌉
− 1.

His version might seem to be a special case; however, the two formulations
are easily seen to be equivalent, so ours does not add any generality. We
stick to this “artificially general” formulation since this does not make the
proof more difficult.
Proof: This is a special case of Theorem 5.2 with the polynomial G = β
and hence m = 0. �

Another classic result for which we can give a new elementary proof is
Moreno-Moreno’s Theorem ([8]). This new proof is easily obtained from an
estimate of the (p− 1)-covering κp−1(E):

Recall that for an integer k ≥ 0, σ(k) denotes the sum of the digits in
the base-p expansion of k. We define the p-weight degree of a monomial
xe = xe11 . . . xenn as wp(x

e) = σ(e1) + . . .+σ(en) and the p-weight degree of
a polynomial F , wp(F ), as the largest p-weight degree of the monomials in
F .

Theorem 4.7 Let P1(x), . . . , Pt(x) be polynomials in x1, . . . , xn over Fpf .
For k = 1, . . . , t, let `k be the p-weight degree of Pk, and define µ as the
smallest integer satisfying

µ ≥ f(n−
∑

k `k)

maxk`k
.

Then pµ divides N , the number of common zeros of P1, . . . , Pt in Fpf n.

Proof: Let f = 1 and consider F (x) = y1P1+. . .+ytPt ∈ Fpf [x1, . . . , xn, y1, . . . , yt].
We will use Theorem 4.4 to prove that

κp−1(F )

p− 1
≥ t+

n−
∑

k `k
maxk`k

.
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Note that, since we are working over the prime field Fp, we reduce each
power of xi mod xpi −xi, yielding a polynomial taking the same values but of
degree less than p in each variable. Then the p-weight degree and the degree
coincide.

For each k let Nk denote the number of monomials in Pk(x). Let the
jth monomial in Pk(x) have (total) degree `kj. We let Ek denote the matrix
e(Pk(x)) as in Section 3.

To compute κp−1(F ) we employ ν ∈ Z≥0
∑
Nk . We take ν = (ν1, . . . ,νt)

with νk = (ν1k, . . . , νNkk).
Without loss of generality we assume `1 to be the largest degree of the

given polynomials and the first monomial of polynomial Pk to be of degree `k.
To compute κp−1(F ) we consider ν satisfying the following matrix equation
with λ ≥ 1:



E1 E2 · · · Et

1 1 · · · 1
0 0 · · · 0

...
0 0 · · · 0

0 0 · · · 0
1 1 · · · 1

...
0 0 · · · 0

· · ·

0 0 · · · 0
0 0 · · · 0

...
1 1 · · · 1


νT = (p− 1)λT .

(24)

If we multiply (24) on the left by (1n0t), the vector with n 1s followed by t
0s, we sum all the rows of the Eks, obtaining∑

j,k

`kjνjk ≥ n(p− 1).

But, as we assumed, `k ≥ `kj for all j, so

`1|ν1|+ · · ·+ `t|νt| ≥ n(p− 1). (25)

Now we use the equations coming from the lower t rows of (24). For
k = 1, . . . , t we multiply row n+ k by `1 − `k to get

(`1 − `k)|νk| ≥ (`1 − `k)(p− 1).
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Summing these over k yields

`1
∑
k

|νk| −
∑
k

`k|νk| ≥ (p− 1)

(
t`1 −

∑
k

`k

)
.

When we add (25) to this, we get

`1|ν| ≥ (p− 1)

(
n+

t∑
k=1

(`1 − `k)

)
for any solution ν to equation (24). This implies that

κp−1(E)

p− 1
≥ t+

n−
∑

k `k
`1

,

and, using Theorem 4.4, we prove Moreno-Moreno’s result for the prime field.
The case for a general f follows via the same technique of “reduction to

the ground field” presented in the second part of the proof of Theorem 1 of
[10]. �

We recall how this Moreno-Moreno theorem relates to Ax-Katz’s. From
Moreno-Moreno the number of solutions in Fpf is divisible by

p

⌈
f
n−

∑
k `k

maxk`k

⌉
,

where the `i are the p-weight degrees, while Ax-Katz gives divisibility by

p
f
⌈
n−

∑
k dk)

maxkdk

⌉
,

where the di are the ordinary degrees. These bounds coincide when f = 1
and are not comparable in general, however in many cases Moreno-Moreno
gives an improvement (typically, when the degrees are big compared to the
characteristic).

5 A New Result

Recently, in [4], Wei Cao and Qi Sun improved the Chevalley-Warning-Ax-
Katz estimates for certain polynomials, over any finite field. In this section,
we improve their bound in the prime-field case.
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Let

F =
r∑
i=1

aix
di1
i1 x

di2
i2 · · ·x

dini
ini

+G(y1, . . . , ym)

be a polynomial in n = m +
∑

i ni distinct variables over Fp, set di =

gcd(di1, · · · , dini , p−1), and consider the polynomial F̃ =
∑r

i=1 ai(xi1xi2 · · ·xini)di+
G(y1, · · · , ym). Their result, specialized to Fp, is:

Theorem 5.1 (Cao-Sun) Let N(F ) be the number of solutions of F . With
the above notation,

vp(N(F )) ≥ dn− deg(F̃ )

deg(F̃ )
e.

Note that since

n− deg(F̃ )

deg(F̃ )
=
n1 + · · ·+ nr +m

deg(F̃ )
−1 ≤ n1

deg(F̃ )
+ · · ·+ nr

deg(F̃ )
+

m

deg(G)
−1

≤ n1

n1d1
+ · · ·+ nr

nrdr
+

m

deg(G)
− 1 =

r∑
i=1

1

di
+

m

deg(G)
− 1,

the following theorem improves Cao-Sun’s bound in the prime-field case.

Theorem 5.2 With the above notation,

vp(N(F )) ≥ d
r∑
i=1

1

di
+

m

deg(G)
e − 1.

This result could be obtained from Adolphoson-Sperber’s result in [1] using
arguments from linear programming. However, our method is more straight-
forward.

To prove this theorem, we need the following lemma on the exponential
sum of a monomial.

Lemma 5.3 Let d = gcd(d1, . . . , dn, p− 1). Then

vθ(S(xd11 · · ·xdnn )) ≥ κp−1
(
xd11 · · ·xdnn

)
≥ p− 1

d
.
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Proof: From Theorem 3.1, vθ(S(xd11 · · ·xdnn )) ≥ κp−1
(
xd11 · · ·xdnn

)
, which is

the smallest ν1 satisfying

ν1d1 = λ1(p− 1)
...

ν1dn = λn(p− 1) (26)

for positive λs.
Since d = gcd(d1, . . . , dn, p− 1), we can find a Bézout-type relation

d = α1d1 + ...+ αndn + β(p− 1). (27)

Combining (27) and (26) we get

ν1d = (α1λ1 + ...+ αnλn + ν1β)(p− 1).

So ν1d is a non-zero multiple of (p − 1), thus ν1d ≥ p − 1, from which the
lemma follows. �

In the proof of the theorem we also use the following well known result.

Lemma 5.4 Let G be a polynomial in m variables. Then

νθ ((S(G)) ≥ κp−1(G) ≥ (p− 1)m

deg(G)
.

Proof: (of Theorem 5.2) Let F̂ = yF . Then, by Theorem 3.1 and Lemmas
3.11, 4.3, and 5.4 we see that

νp (N(F )) = νp

(
S(F̂ )

)
− 1 ≥ d

r∑
i=1

κp−1

(
xdi1i1 · · ·x

dini
ini

)
p− 1

+
κp−1(G)

p− 1
e − 1

≥ d
r∑
i=1

1

di
+

m

deg(G)
e − 1.

�
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Example 5.5 Let F = x211 +x202 x
14
3 +x114 x

4
5 + y101 + y102 + y1y2 over F31. Cao-

Sun’s result does not give information about N(F ) since F̃ = x31 + (x2x3)
2 +

x4x5 + y101 + y102 + y1y2. Applying the above theorem, however, we obtain

vp (N(F )) ≥ d1
3

+
1

2
+ 1 +

2

10
e − 1 = d61

30
e − 1 = 2.

Corollary 5.6 With the above notation, if at least one of the di’s is equal
to 1, then p|N(F ) whenever r > 1 or G 6= 0.
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