
Casper: extraction of a ledger from a tree of blocks

26/3/2021

1 �Proof of stake�: a variation on permissioned systems

Let us remind that, in PBFT, the replicas are numbered from 1 to n and are �xed since the
beginning of the protocol. No other replica is allowed to take part to the protocol. This
constraint is denoted as a �permissioned system�. Consider now the following variation
of PBFT. Consider that there exists a good, denoted as the �voting power�. One unit of
voting power is denoted as a �voting token� (vt). We assume that the total quantity of
voting power in the world is �xed and equal to N vt. Replicas can own vt and transfer
them to each other. We assume that there exists a public register that makes public which
quantity of vt belongs to which replica in the world. For simplicity wa assume that this
register is �xed from the beginning until the end of the protocol.

Consider that, now, in PBFT there is not anymore a predetermined number n of
replicas. Now, it is not required anymore to collect a �xed number of messages, e.g.
> 2n/3, to perform some action (e.g. send a �commit� message). Instead, the parameter
is to collect a number of messages, such that, the total money owned by the replicas who
sent them, is > 2/3N . With this new protocol, the safety and liveness properties of PBFT
are now guaranteed as long as > 2/3N of the money in the world is owned by honest
replicas.

Let us make some examples of voting power in real-life. First, in Ethereum, the
public register is implemented by writing in blocks the quantity of money, denoted as
�Ether� owned by each client (a client is denoted as a �wallet�). In the Casper protocol
for Ethereum, that we are going to see, the replicas, which are called �validators�, are
publicly given voting power as follows. They initially pledge, before they join the Casper
protocol, to some amount of the Ether that they own in their wallet. Proportionnally to
this money pledged, they are given voting power in the protocol as above. If they behave
honestly, then they are rewarded by some money at the end of the protocol. If they behave
badly, then the amount of money to which they pledged is deleted from their account,
which is denoted as �slashed�. In the Tezos protocol, there is a public process denoted
as a �lottery�, which automatically gives vt to some owners of a certain cryptocurrency
denoted as �Tezos�. The chances to win vt at this lottery are proportionnal to the amount
of Tezos owned. vt are then transferable. For instance, from a replica with many vt who
does not want to participate, into a smaller replica who is willing to participate. This is
denoted as �delegation of voting power�.



2 Casper: PBFT adapted to trees of blocks

Casper [BG19] is a layer over any mechanism that produces a tree of blocks (such as
Bitcoin). Its goal is to provide a read function, alternative to the one of Bitcoin, that
returns a ledger. The safety purpose of Casper is the same as in Bitcoin. Namely, prevent
that two con�icting branches may be read in the same execution. To achieve this, Casper
increasingly "�nalizes" a branch: the branch up to the highest "�nalized" block will be
by de�nition read as the ledger. In a nutshell, the advantage of Casper is that it removes
the need of a mining function, such as in Bitcoin where honest nodes must constantly
mine more than dishonest nodes to maintain safety. On the other hand, Casper requires a
permissioned setting, for instance, in the previous sense of �proof of stake�. Also, liveness
of Casper requires some speci�c honest behavior of the mechanism that creates blocks,
coupled with timing assumptions.

2.1 Model

2.1.1 Validators in an asynchronous network

We consider processes denoted as �validators�. There exists a public register that assigns,
to each validator, a certain amount of voting tokens (vt). The total number of vt is denoted
N . The validators are in an asynchronous network. That is, they can send authenticated
messages to each other, but there is no guarantee on the time taken to deliver a message.

2.1.2 Data structure: tree of blocks, links, vote messages

Reminder of Bitcoin: blocks organized in a tree We consider the same data
structure as in Bitcoin. Recall that the basic data structure is denoted as a �block�, which
itself contains strictly ordered values. Each block has a father, and all blocks have the
same common ancestor, denoted as the �genesis block�. In �gure 1, the genesis block is
denoted is r (for �root�). The black arrows in �gure 1 are unfortunately in the wrong sense,
since they point from the child to the father. The length of the path from the genesis block
to a block b is denoted is the height of b, and denoted as h(b). In particular, all blocks
belong to the same tree structure. Recall that two blocks are denoted as con�icting if
they are not on the same branch. Said otherwise, neither is a descendent nor an ancestor
of the other.

Links A link is the data of an ordered pair of blocks: (s, t) such that s is an ancestor of
t. s is denoted the �source� and t the �target�. On �gure 1, the pink arrows are examples
of links, which point from the source to the target.

vote messages Validators can issue special messages of type denoted vote, that contain
a link as argument (and not a block!).

A supermajority link Is a link for which there exists vote messages issued by validators
owning more than 2/3N vt. Said otherwise, which is voted by more than 2/3 of validators
weighted by their voting power.

A block b is denoted as justi�ed If it satis�es the following recursive de�nition:
1) either it is the genesis block, or 2) if there exists a supermajority link from source a
justified block and target b. For instance on �gure 1, the supermajority links are denoted

2



in pink. In particular, there is a consecutive sequence of supermajority links from the
genesis block: r, b1, b2 and b3. Thus by de�nition, all blocks r, b1, b2 and b3 are justified.

A block b is denoted as �nalized If 1) either it is the genesis block 2) or we have
simultaneously that b is justified, and is itself the source of a supermajority link with target
at height h(b) + 1. Said otherwise, of a supermajority link of length 1. In particular, on
�gure 1, none of the justified blocks is the source of a supermajority link of length 1. So
no block is finalized, excepted the genesis block.

Figure 1: r, b1, b2 and b3 are justi�ed. No block is �nalized

2.2 Casper protocol (Figure 2)

Notice that we di�er from the presentation of [BG19], in that we also incorporate in the
protocol the fork choice rule. Indeed, it turns out that this rule is necessary to prove
Theorem 2 below.

Also, anticipating on the proof of Corollary 3, notice in particular that the �Liveness
rule� for the block production mechanism guarantees that, if the block production mech-



Casper protocol

We consider a �xed duration ∆, which is a parameter of the protocol.
Read To read the ledger, a process queries all the validators to send to it their

respective trees of blocks. Then it merges them, then extracts from it the
sub-branch: from the genesis block, until the finalized block of greatest height.
Unicity of this branch is guaranteed by Theorem 1. Then, by de�nition, the read
operation returns the ordered sequence of values in the blocks of this sub-branch.

�Safety rules� for validators validators must not send a vote message for two links
(s1, t1) and (s2, t2) such that either

I) t1 and t2 are con�icting, and at the same height: h(t1) = h(t2);

II) or, h(s1) < h(s2) < h(t2) < h(t1). Said otherwise, it must not vote for
heights which are strictly within the span of another vote of him.

�Liveness rule� for validators, a.k.a. the �fork choice rule� Validators must do
exactly the following, and nothing else:

a) Consider the branch of their local tree, that contains the justified block a
of greatest height. [Unicity of this branch & block is guaranteed if > 2/3
of validators, weighted by their vt, are honest, since they then respect the
safety rule I) ].

b) Create vote messages for every possible link with source equal to this block
a, until they cannot create anymore votes. [Either: because there is no
more link to vote for, or: because this would violate the Safety rules, given
the votes that he already created.]

c) Send all these votes to all validators.

�Liveness rule� for the block production mechanism Request all the local trees
of validators and merge them. Consider the justi�ed block a of greatest height,
as considered just above. Then, consider the greatest height m such that there
exists a block bm which is the target of at least one vote. Create exactly one
new branch of blocks: from a, until a block am+1 at height m + 1. Then do
nothing during a certain delay ∆.

Figure 2: Casper protocol

4



anism follows it forever, then, there will not exist any other descendent a′m+1 of same
height h(a′m+1) = h(am+1) = m + 1, that would con�ict with am+1.

2.3 Safety of Casper

Theorem 1. Assume that strictly more than 2/3 of validators, weighted by their voting
power (vt), are honest, in particular that they respect the safety rules. Then, no two
con�icting blocks can ever be �nalized. In particular, no two con�icting ledgers can be
read.

The idea of the proof, which is done in [BG19] bottom of page 4, is that, since a
finalized block a3 must have a father which is justi�ed, then, if a con�icting �nalized block
b3 exists, then, we must be in the situation of Figure 3. In particular, there would exist a
supermajority link (a2, a3) with heights strictly within the span of another supermajority
link (b2, b3). But this is impossible, since for this to happen this would mean that at least
one honest validators violated the Safety rule II.

Figure 3: Proof of Thm 1: assuming by contradiction existence of two con�icting �nalized
blocks a3 and b3.

2.4 Liveness of Casper, under partial synchrony + honest blocks mechanism

Liveness is not guaranteed by just assuming that > 2/3 of the validators, weighted by vt,
are honest. Still, under just this assumption, then we have at least the following possibility
result. Notice that this result is an implicit ingredient in the proof of [BG19, Theorem 2].



Theorem 2. Consider the justified block a of greatest height. Then, consider the greatest
height m such that there exists a block bm which is the target of at least one vote. Consider
a descendent a′m+1 of a of height m + 1. Then, all honest validators can vote for the link
(a, am+1) without violating the Safety rules.

Proof. First, voting (a, am+1) does not violate I), since no (honest) validator voted for a
link with target at height m+1. Second, no honest validator voted for a link with heights
strictly within the span [h(a), h(am+1) = m + 1]. Indeed, by the liveness rule, since a is
the highest justi�ed block, then, validators cannot vote for a link with source of strictly
higher height than a.

Corollary 3. Suppose in addition that, from some point in time, the block production
mechanism becomes honest, and, that validators have the time to di�use to all the network
all the votes that they are required to send, within delay ∆. Then Casper is live.

Proof. A block production mechanism following the Liveness rule will always create ex-
actly the block am+1 required by the previous theorem, then wait ∆. During this delay
∆, validators will be able to make am+1 justified. Indeed, the previous Theorem 2 guar-
antees that they can vote for the link (a, am+1). And, by honesty of the block production
mechanism, no con�icting block a′m+1 exists. Thus, all the votes of honest validators will
necessarily be concentrated on the link (a, am+1).

Then, after ∆ is elapsed, the block production mechanism will create a direct child of
am+1, which will also become justified, thus making am+1 a finalized descendent of a.

References

[BG19] Vitalik Buterin and Virgil Gri�th. Casper the Friendly Finality Gadget. 2019.
arXiv: 1710.09437 [cs.CR].

6


