
Permissionless Blockchains:
Bitcoin and Proof of Work

19/3/2021

1 Model de�nitions

Within the model of the original Nakamoto's paper [Nak09], we consider two kinds of
processes: clients and nodes 1.

Assumption 1 (Synchrony). We assume a synchronous network, i.e., every message
sent by a process is delivered within a known a priori delay. The important assumption is
that this delay is negligible compared to the other scale of time, which we denote as �delay
between blocks�, that we will de�ne.

Permissionless membership. Processes can join or leave the protocol at any time.
A physical entity can emulate as many clients and/or nodes as it wants for free 2. The
useful observation for what follows, is that the total computing power of the emulated
processes, is lower than the computing power of the physical entity emulating them.

2 Object implemented: a ledger

The objective of the Bitcoin protocol is to provide a linearizable implementation of the
following distributed object, denoted as a ledger.

De�nition 2. A ledger is an ordered set of values

(1) Ledger = {v1 < v2 < · · · < vm}.

which is accessible by the clients by two operations: read the contents of the ledger and
append a value.

Recall that the de�nition of linearizability ([HW90]) implies that the operations ap-
plied to the implemention of a ledger can be put in a total order respecting this sequential
behavior. Moreover, this order should respect the real-time relation across operations:
if o1 returns before o2 was invoked, then o2 cannot be ordered before o1. The liveness
guarantee implied is that every read or append invocation performed by an honest client

1Clients are sometimes also called light nodes or wallets, while nodes are sometimes also called miners,
replicas or full nodes.

2In practice, an entity running a node wants to run also a client, in order to receive rewards for its
work. [Nak09] even recommends to create one new client per transaction received, in order to enhance
privacy

eventually returns. Let us however examplify more concrete consequences of these de�ni-
tions.

The liveness guarantee implies that for every append(tx) done by a client, for some
input tx (called a �transaction�) then after a variable �nite time, every client doing read
will eventually be returned a ledger containing append(tx). More precisely, we will see
that the Bitcoin protocol achieves liveness, as long as, on average, the total size of values
for which a append request is made per 10 minutes, is lower than 1Mb (=the size of one
block). In practice, the Bitcoin system manages to respect this limitation by imposing
clients to pay a transaction fee per append (currently 20$), which is adjusted depending
on the demand.

The other guarantee is implied by safety and is called consistency. It states that if
two clients read the ledger, then there must be one client who is returned a pre�x of
what is returned to the other client. In particular, we cannot have that one client reads
v1 < · · · < v6 while the other client reads v1 < · · · < v′6. As we will see, the Bitcoin
protocol achieves those safety conditions, up to some probability of failure. The concrete
parameters aim at making small this probability of failure.

3 Bitcoin protocol: Implementing a ledger with a tree of blocks

3.1 Proof of work: data structures that are di�cult to compute

Values are organized in trees of blocks. A �block� Bi consists in
(2)

Bi =

{
Vi = {vi,1 < vi,2 < . . . } a certain number of totally ordered values (of total size <1Mb)

mi = some metadata, including an adjustable bitstring: the �nonce�

The number of values in a block is chosen so that the block's size is around 1Mb.
Blocks are partially ordered forming a tree: see Figure 3.1. All possible trees have the
same common root: the genesis block B0, which speci�cally contains no value, and a
metadata m0 equal to : �Times 03/Jan/2009 Chancellor on brink of second bailout for
banks�. Partial order means that we have total order between the consecutive blocks in a
branch, e.g.:

B0 < B′1 < B′2 < B′3 .

But we do not have any order relation between blocks that are on di�erent branches, and
which we call con�icting blocks. For instance B2 and in B2”. Actually, it can happen
that the same value v appears both in B2 and B2”.

The height of a block B”m in the tree is the length of the branch from the genesis
block B0 to Bm. For instance if B0 < B1 < · · · < B”m is of length m, then B”m has
height m.

A validity condition on blocks which is achieved by a time-consuming �mining�
program There exists a function fvalid which is public and (for simplicity) �xed, that
de�nes the eligibility of a block in the tree as follows. A block B′i is a valid child of a block
Bi if and only if fvalid(Bi, B

′
i+1) = accept (otherwise fvalid returns reject). We then say

that a block Bj is valid if it is on a branch with origin the genesis block, and such that

2

B0

B′1 B1”B1

B′2

B′3

B′′2B2 B
′(bis)
2

Figure 1: Blocks of values, partially ordered in a tree

every block in the branch until Bj is a valid child of his father. fvalid is easy to compute,
is deterministic but its output is unpredictable in the following sense. Namely, the only
way to create a valid child Bi+1 of an existing block Bi, containing some �xed values Vi+1,

is to try many possibilities B̃i+1 of potential childs. Namely, repeat the following: build a

potential child block B̃′i+1 and test if fvalid(Bi, B̃′i+1) = accept. If not, then build another

potential child B̃”i+1 and repeat. Notice that it is indeed possible to build many di�erent
potential childs of Bi, all of them containing the same ordered values Vi+1, because one
can play on the metadata m̃i+1. This time-consuming procedure is denoted as �mining�.

The computational power of a node We denote |N | the computational power cur-
rently devoted by a node N to computing this mining function. To make ideas concrete,
one could make the normalization choice of de�ning |N | as the number of calls to fvalid
per 10 minutes that N does. But any other choice of normalization is also ok. The more
N is currently allocating power in computing the mining function, the higher |N |. On
the contrary, when N is currently sleeping, then |N | = 0. A process P which emulates
100 nodes Ni in parallel will thus have to divide his mining power between the nodes:∑
|Ni| = |P |.

Processes that follow the protocol are called honest. The other ones are called
�byzantine/malicious�. We will sometimes consider an entity A, called �the Adversary�
that coordinates the actions of malicious processes, and note |A| their total mining power.

Concrete parameters, and simpli�ed assumptions The function fvalid is currently
calibrated such that it takes on average 272 attempts before �nding a valid child. Given

3

all the computations currently done by the total nodes C on earth, a valid block is statis-
tically found somewhere on earth every 10 minutes. The following statement is underly-
ing [Nak09, �11], and is proved in �4.3. It states states �when�, in a probabilistic sense,
the mining program returns.

Theorem 1. Let t1 < t2 < · · · < tj be the sequence moments of time when, somewhere in
the world, the mining program outputs a valid block. Consider a process N that is running
one instance of the mining program with its full mining power |N | allocated to it. Then
the probability pN that N is the �rst node N ′ in the world that outputs a new block after
tj, so at tj+1, is equal to the fraction of mining power of N in the world. Namely, note
|C| the total mining power allocated in the world after tj, then:

pN =
|N |
|C|

.

The proof is intuitive since it is as if all mining nodes on earth were concurrently

tossing coins (fvalid(Bi, B̃′i+1)) with probability 2−72 to land on the right side (accept). So
the more a node tosses his coin quickly, the more likely he is to be the next winner. In
practice the validity function fvalid is recalibrated every two weeks to maintain a constant
average delay of 10 minutes between two blocks, provided the total mining power engaged
|C| does not vary too much. For the exam we can make the following simplistic assumption,
see �4.4 for a correct statement:

Assumption 3. For every j, we have that the �delay between two blocks� tj+1 − tj is
exactly equal to 10 minutes.

Observation 2. At this point we can make the following informal observation: consider
a mining process, which has a tree consisting of one branch of blocks B0, B1, ... Bz+1 , as
the one in the left on Figure 3.1. Suppose that the process wants to change a value v in
the block B2, leaving the other values unchanged. Then it needs to create a valid child of
B1: a new block B′2, containing the same values as in B2, except v that is modi�ed. This
represents some work, at least 10 minutes. Then, it needs to create valid descendents of B′2
which contain the same values as in B3, B4 etc. Creating each of these valid descendents
B′3, B

′
4,...,B

′
z+1 represents some additional work, at least 10 minutes each. Notice also

that this can only be done sequentially, since in order to mine every B′i+1, the process
needs to know a valid ancestor B′i so that it can give them as input to the fvalid.

Remark 3.1. The mining function is �memoryless� by several aspects. First, we see from
Theorem 1 that a process N that is mining since a very long time, and didn't succeed to
mine any block so far at tj, will not be priviledged in any manner after tj. It will not �nd
a valid block quicker in the future. In fact, a new process N ′ that started allocating the
same mining power much later than N , say at tj, will have the same probability than N
of being the lucky process at tj+1.

3

3Actually N ′, could have start mining just before tj+1, its odds of being the winning process at tj+1

would even be the same. Of course this is not a winning strategy, because in reality, the time tj+1 is
random: see �4.4. So that every further second of lazyness of N ′, increases the risk of N ′ not having
started to mine when the (unpredictable random) time tj+1 happens.

4

B1

B2

Bz+1

B3

B′2 ?

B′3 ?

Figure 2:

Likewise, N ′ could well change several time its desired ancestor Bi of which it is trying
to �nd a valid child, or values Vi+1 that it is trying to include into the valid child, several
times between tj and tj+1, he will still have an equal probability of succeeding at tj+1 as
N . In case of success, the output of the mining function to N ′ is a valid block matching
the ancestor + values he was currently mining on at tj+1.

So the expressions: �start or �nish to mine a block� or the �work necessary to mine a
block� are faux amis, as well as the word �proof of work� itself actually. A good analogy
is that processes are gambling many times in a casino �at the same game table or not�,
each time with a very small chance to win. It is not because a process gambled a lot of
times and never won, that he will have more chances to be the next winner in the casino.

3.2 Bitcoin protocol

We describe in Figure 3 the Bitcoin protocol, with the memory-ine�cient simpli�cation
that every process maintains forever a local copy of the tree of all the blocks that it could
download from the network so far.

The goal of the protocol, informally, is to guarantee that (1) every value v requested
as append by clients, will appear exactly once in the longest branch of the local tree of
every honest client and node, and that (2) when removing the b last blocks of the longest
branch of any tree of an honest node�a parameter to be adjusted� then the remaining
pre�x will always appear identically in the longest branch of all the trees recovered in the
future by any client of node. Thus, this longest branch pre�x could be seen as a correct

5

Bitcoin protocol

Security parameter We �x b a positive integer.

Join/read To join the protocol and/or to read the Ledger, a process queries all the
nodes to forward it the longest branch in their respective trees. Then it merges
these branches into a tree that it stores locally. The process then reads the state
of the Ledger as: the ordered sequence of values contained in the longest branch
of its local tree, minus the b last blocks.

Append 1) A client requests the appending of a new value v, by multicasting it to
the nodes. Each node:

2) Collects pending new values vpending,j, i.e. those that are not yet on the
longest branch of its local tree.

3) Gathers them into a prospective new block Bi+1 extending the last block
Bi of its longest branch.

4) Launches the �mining� program, hoping to �nd a valid new successor Bi+1

5) When a node succeeds in mining a new block, it broadcasts it to all nodes

6) If receiving a valid new block B′i+1, then a node adds it to its local tree,
possibly querying the predecessors of B′i+1 if it hasn't them yet.

7) A value is appended when all honest nodes have it in their longest local
branch minus the b last blocks.

Figure 3: Bitcoin protocol, instantiated with the longest branch rule and an appending
delay of b blocks

6

read operation.

About the rule to mine to extend the longest branch Notice that this rule is not
present in the [Nak09] original paper. See the exercice in �5.2 for an explanation of why
it is important for safety. Notice also that this rule is not the best possible one when the
delay between consecutive blocks comes closer to network delays, see the end of �4.4.

A consequence of this rule is that, if an honest node N which is currently mining to
extend Bi, receives a block B′i+1 from another node, then:

� If B′i+1 is a successor of Bi, and thus becomes the leaf of the longest branch of the
N 's tree. Thus N will from now on mine to extend B′i+1;

� Else if B′i+1 is another leaf in N 's local tree, such that Bi is still the leaf of the
strictly longest branch. Then N continues to mine to extend Bi;

� Or we have an undertermined situation when there are several longest branches of
equal length. In this case, we will always consider the pessimistic scenario where
honest nodes mine on the branch chosen by the adversary.

Introducing the tradeo� between e�ciency and safety Notice also that the pro-
tocol of [Nak09] does not specify that a new process joining the system or reading the
Ledger should request trees from all nodes in the protocol. Likewise it does not de�ne
when a value should be considered as appended. Our speci�cation of b blocks delay �a
parameter to be adjusted� will be motivated by the next theorem.4

Notice that, even with the synchrony assumption, an adversary node could possibly
send a very long branch to a single honest node N1. As long as N1 does not read the
Ledger, he will then possibly see a di�erent longest branch in its local tree, than the one
of other honest nodes. The choice of b is designed in particular to avoid this kind of
situation.

3.3 Safety properties and choice of the security parameter/delay b

Consider the situation of Figure 3.1, where the set of honest nodes H all have the branch
on the left: B0, B1, . . . , Bz+1. Let us call A the set of adversary nodes, so that the total
set of computers in the world C = H ∪ A. Recall that the honest nodes are assumed
to always mine on the longest branch. From the point where A enters the protocol and
allocate its full mining power, we have thus that the percentage of mining power of honest
nodes is

pH =
|H|

|H|+ |A|
and the one of the adversary nodes is 1 − pH. Then the following theorem bounds the
probability to observe the scenario sketched in Observation 2. The �rst claim is proven at
the end of [Nak09, p6], and in �4.5. The second one follows from the argument in [Nak09,
p7], the interested reader can �rst read �4.4 to understand it.

4In practice, to join and read the Ledger one queries su�ciently many nodes until the probability that
there is an honest up-to-date node among them is very high. Likewise, one could consider a value v to
be appended when the probability that every process reading the Ledger, by querying some number of
other nodes, sees v, is very high.

7

Theorem 3. In the previous situation, we have that:
Easy case, seen in class Suppose that A joins the protocol �i.e. starts allocating min-

ing power� when the honest nodes have already the branch on the left until Bz+1.
Then the probability ε(z, p) that A ever manages to build a concurrent branch B′i
starting from B1 with the same length as the honest branch, is:

� 1 of 1− pH ≥ pH, and

�

(
1−pH
pH

)z
otherwise.

Hard case, not seen in the lectures Consider here that A had already been allocating
mining power, since B1 was created, so before the honest chain was extended to
Bz+1. Consider situation where honest nodes would observe the same local tree as
before in Figure 3.1. From the honest nodes' point of view, there only one branch
(Bi)i in the tree. It is the one on the left, it reached the block denoted Bz+1. But
the adversary may possibly have secretly mined a concurrent branch. Assume that
the mining power of A is in minority:

1− pH < pH

Then for every η > 0, there exists a z := z(η, pH) such that the probability that A
ever manages to build a concurrent branch B′i, starting from B1 and reaching the
same length as the honest branch (which is concurrently being extended by honest
players), is smaller than η.

However when A has the majority of mining power, then it follows from the easy case
that he can catch up the honest branch with probability one.

Notice that we cannot say anything about scenarios where the adversary would have
started allocating mining power before the honest nodes joined the protocol. In particular
he could have secretly mined its adversary branch (B′i)i in advance, send B1 to the honest
nodes so that they can start mining on it. Then, once honest nodes have read the Ledger
from their honest branch (Bi)i, A sends to them its longer adversary branch (B′i)i. Thus
honest nodes will read a new state of the Ledger which does not extend what they read
previously, which is a safety violation.

Corollary 4. Assume that the fraction pH of mining power of honest nodes in the world
is �xed and strictly greater than 51% since the beginning of the protocol. Then for every
η > 0 �the target probability of failure�, there exists a security parameter b(η, pH) such that,
the Bitcoin protocol in Figure 3 with parameter b greater or equal than b(η, pH) realizes a
linear implementation of a Ledger, except with probability of violating safety η > 0. 5

For instance, the computations in [Nak09, p6] shows that if pH = 70%, then we can
achieve a probability of failure η smaller than 10−6 by choosing a security parameter of
b := b(10−6, 0.7) ∼ 50.

5By this we mean that a read operation can be in a con�ict with a future read operation with probability
η. In particular, an append operation which was assumed to terminate, could actually have not terminated
up to probability η.

8

Another example is that the common usage is to wait for a delay of b = 6 blocks. The
computations in [Nak09, p6] show that this guarantees a probability of failure smaller
than 15%, in case honest nodes control more than 70% of the mining power.

Finally, when the network delay is not considered anymore as very small compared to
10 minutes, then the optimal adversary mining rate tolerated by Bitcoin decreases². A
tight bound is given in [GKR20].

4 Auxiliary material (not required for the exam)

4.1 A hash function

will be de�ned, for simplicity, as a �random oracle�. Note {0, 1}∗ the set of all binary
strings and �x an output length of 256 bits6. Then Bellare and Rogaway CCS'93 de�ne
a random oracle as a map from {0, 1}∗ to {0, 1}256 chosen by selecting each bit of H(s)
uniformly and independently for every s ∈ {0, 1}∗. For convenience of the reader we
will give a more concrete formulation, following the equivalent de�nition of [KL14], last
paragraph of page 434. Following [GKL15, p8], we also model that querying this function
on a new string s costs time, but no time if the string s was already queried 7.

De�nition 4. A hash function is a function:

(3) H : {0, 1}∗ −→ {0, 1}256

that takes as input a string s of arbitrary length, and outputs a string H(s) of 256 bits.

The function H is such that: let C be the set of all computers in the world since H was
invented, and X the table of values (s,H(s)) computed by C so far. Then for any string
s ∈ {0, 1}∗, we have that:

Determinism either H(s) was already computed by C before, then H returns the same
value H(s).

Unpredictability or H(s) was not computed by C before. Then H returns a random value
H(s) sampled uniformly in {0, 1}256.

Work each call to H takes time τ for one computer8, unless the value was already com-
puted: s ∈ X , in which case we assume it is returned in no time.

Example 4.1. Let N40 the set of strings s in {0, 1}1000 such that H(s) begins with 40
zeros. Let us compute the average time for one computer to �nd a string s in N40. Let
us assume that initially X = ∅ for simplicity. Thus, by de�nition, all the 21000 values

H(0), H(1), . . . , H(21000 − 1)

6Which is the one of the Bitcoin's protocol, which uses the function SHA256
7The interested reader will notice that what we actually need is just a hash function with �preimage

resistance�, in the sense of [KL14, p. 4.6.2]. By contrast, a random oracle is a strong abstraction which
is unimplementable, see e.g. Maurer-Renner-Holenstein TCC'04.

8τ is very small compared to 10 minutes. For typical Bitcoin computers, which are �antminers s9�,
then τ equals 10−14 seconds.

9

are all initially random variables

X0, X1, . . . , X21000−1

which are independent and vary uniformly in [0, . . . , 2256 − 1].
Each time the computer calls H on a value s not computed before, the function H

returns H(s) a random sample of Xs. The random variable Xs is then equal forever to
this �xed value H(s). Let us note H40 the set of values in [0, . . . , 2256− 1] beginning with
40 zeros. The variables Xs being independent, the probability that H(s) is in H40 is thus

ps := P
(
Xs ∈ H40|previous samples of Xs′ 6=s

)
= P

(
Xs ∈ H40

)
=

|H40|
|[0, . . . , 2256 − 1]|

But we have that:

|H40| =
2256

240
,

left as an exercice. Thus ps = 2−40.
The situation is thus that the computer performs successive samples of independent

binary variables �also known as coin tosses�, which output success with probability
ps = 2−40 and failure otherwise. The average number of trials before success is thus
1/ps = 240. Multiplying by τ , we get an average time of 240τ for �nding a s in N40.

4.2 A chained data structure for blocks

Bi+1Bi

Noncei+1

previous hash
Noncei

authenticated values
HHvi,1, vi,2, . . . vi+1,1, vi+1,2, . . .

authenticated values

H(Bi)
previous hash
H(Bi−1)

Figure 4: Chaining relation between two consecutive blocks in a tree

As explained in �3, see Figure 3.1 authenticated values are ordered within �blocks� Bi,
B′j..., which are themselves organized in trees. A valid tree must be such that:

� it starts with a speci�c root block B0, the same for all trees, which is �xed at the
beginning of the protocol;

� authenticated values within blocks of the same branch are all di�erent;

10

� Let H be a �xed public hash function on 256 bits. Then the successor Bi+1 of a
block Bi is structured as the concatenation

(4) Bi+1 = H(Bi)||Noncei+1||(vi,j)j

where Noncei ∈ {0, 1}∗ is a string of bits such that

(5) H(Bi+1) ∈ {0, 1}256 begins with 72 zeros

The last condition is di�cult to satisfy, as we will quantify9 10.

4.3 Proof of Theorem 1

Exercise 4.2. (Cultural) (a) From the value τ = 10−14, and the fact that one mining
computer in the world solves on average (5) every 10 minutes, estimate the order of
magnitude of the total current mining power in the world.

(b) Deduce the order of magnitude of all hashes H(s) computed in the world since
2008.

Exercise 4.3. (a) Consider the total merged trees B∈′∈′ of valid blocks ever created since
2008. Estimate an order of magnitude of the probability that two distinct blocks in B
have the same hash (search the �birthday paradox�).

(b) Estimate the order of magnitude of the probability that in 2100, two valid blocks in
distinct places of B∈∞′′ the have the same hash. We can e.g. proceed as follows. Suppose
it is the case up to time t. Then every potential valid new leaf of Bt: Noncei+1 is equal
to a string of the form Bi+1 = H(Bi)||Noncei+1||(vi,j)j de�ned in (4). By the recurrence
assumption, it is thus distinct from all the other existing blocks B in Bt. Conditioned to
this state, estimate the probability that the hash of a �xed valid new leaf Bi+1 equals the
one of existing blocks in B in B. Estimate the probability that this holds until 2100 by
the approximation done in the birthday paradox.

Exercise 4.3 motivates the following assumption:

Assumption 5. Consider the total merged trees B of valid blocks ever created. Then no
two valid blocks in distinct places of B the have the same hash.

Let us also make the following assumption, which seems not far from reality:

Assumption 6. Computers in the world have so far exclusively dedicated all their mining
power to compute hashes of strings of the form (4), where Bi are valid blocks already
created.

9In practice the 72 zeros threshold is adjusted every two weeks: at the creation of Bitcoin it was only
32 zeros. The �mining di�culty� (search on Google) is the ratio between these two numbers.

10Actually the Nonce is only 32 bits long, so all possibilities of strings of format (4) are quickly exhausted
if one leaves unchanged all other data of the prospective block. A big mining farm would exhaust all of
these 232 hashes in less than a millisecond. And the probability to �nd a succesful Nonce matching (5)
in this set of strings is only 232/272 = 1011. So in practice miners play on other variables in the block, as
the time stamp or values, to test new strings. This is why we simpli�ed and allowed that Noncei+1 can
be of arbitrary length.

11

To summarize, we can now assume that all mining computers are successively calling
H(s) on distinct strings s ∈ {0, 1}∗ on which H has not been called already, until they
�nd one which satis�es (5): we de�ne this as the �mining� program. We de�ne this as the
For each such string, the value Xs := H(s) is independent from the previous calls of H,
and varies uniformly in {0, 1}256, until it is actually computed.

In addition, even if miners have similar deterministic procedures to test strings satis-
fying (5), one can still make the assumption that no two di�erent honest miners ever call
H on the same string. Indeed in practice, the potential block Bi+1 of each honest miner
includes a speci�c value that depends on him.

The situation boils down to the following: every mining computer in the world tosses
successive independent coins Ys, each equal to

� Ys = success i� Xs matches (5)

� Ys = failure otherwise

Where the probability of success of each Ys is equal to ps = p = 2−72, by the rule (5)
and a straightforward adaptation of Exercise 4.1.

Let us model the time as a succession of tiny elementary intervals of duration τ/|C|,
where in each of them, one of the mining computers C in the world tosses a new coin Ys.
Let us model that for each of these tiny intervals, a given node N with mining power |N |
has probability:

pN =
|N |
|C|

.

to be the one that tossed the coin. Consider, as in the theorem, the event of the �rst
success after tj. This happens in a certain �xed such tiny interval. Conditioned on this
event, the probability that N is the computer that tossed the coin during this interval is
thus pN .

4.4 Random delays between blocks and discussion on synchrony

Let us consider the time delay between two blocks mined in the world:

Tj = tj+1 − tj

The average number n of total coin tosses of Ys in the world until a success is n =
272. Considering that |C| computers in the world are running in parallel, and that each
computer takes τ time to toss a coin, then the expectation of every Tj is:

E(Tj) = 272
τ

|C|
.

Every toss being independent from the previous, the variables Tj are also independent.
Let us assume that |C| does not vary, we thus have that the variables Tj are also equidis-
tributed. This approximation is justi�ed �to a certain extent� by the fact the number
n = 272 is recalibrated every two weeks, such that we have:

E(Tj) = 10 minutes

12

which we will assume from now on.
Consider now a percentage 0 ≤ λ ≤ 1 and a time window Wλ:

Wλ = [tj, . . . , tj + λE(Tj)]

The number of tosses during this time window Wλ is λn, and satis�es (λn)p ≤ 1. We
are thus in the good regime of large numbers, to model by a Poisson law the number of
successes of tosses of (Ys) occuring in Wλ. Namely we have :

Number of successes in the world during Wλ ∼ P(λ) .

Concretely, we have that the probability that k blocks are mined in Wλ is:

λke−λ

k!
.

Likewise, during the same time window Wλ, a node with fraction pN of the total
mining power will perform (pNλ)n tosses during the time window Wλ, so that:

(6) Number of successes by N during Wλ ∼ P(pNλ) .

Exercise 4.4. Estimate the probability that more than 6 blocks are computed in less than
10 seconds by a node controling 50% of the total mining power.

Let us emphasize that short delays between blocks can lead to safety violations in the
Bitcoin protocol, see �5.3 for a caricatural case. Let us mention for the culture that, in
the other proof of work blockchain Ethereum, the delay between blocks is 15 seconds on
average. To improve safety, the rule to mine on the longest chain is chain replaced by a
rule consisting in mining on the densiest subtree.

4.5 Proof of Theorem 3

4.5.1 Easy case, seen in class: catching up from a �xed number of blocks
behind

Let us consider the situation in Figure 3.1. We assume that initially, only honest nodes
H are running the Bitcoin protocol, and that all of them have the same tree, made of the
branch on the left (in bold): B0, B1... to Bz+1. Let us call it the honest branch. Then an
Adversary node A joins the protocol, with a percentage of the total mining power that
we note pA.

As the protocol goes on, the honest nodes continue to follow the protocol and mine for
blocks extending the longest branch, which is currently the honest branch. The goal of A
is to change the values that H read in the Ledger, for example change a value contained
in the second block B2. For this, A needs �rst to mine an alternative block B′2 extending
B1. Then he needs to extend it into an adversary branch (B′i)i, until it reaches the length
of the honest branch (Bi)i. When this happens, A will need only sending this adversary
branch (B′i) to the honest nodes, so that they will include this adversary branch in their
tree. They will have to decide which of this two longest branches they should try to

13

extend. In the worst case scenario (see �3.2), honest nodes will from now on all mine on
extending the adversary branch.

Starting from any situation between the two concurrent chains (Bi)i and (B′j)j, then
by Theorem 1, the probability that the next block is mined by an honest node is

p = pH =
|H|

|H|+ |A|

and by the adversary is 1− pH.
The goal ofA is to catch up its late of z blocks behind the honest branch. The following

exercise shows that the probability ε(z, p) that this ever happens is: one is 1− pH ≥ pH,
and (1− pH

pH

)z
otherwise.

Exercise 4.5. (Gambler's ruin, reverted) Consider two players H and A playing several
coin �ips with a biased coin: H has probability p to win at each round, whereas A has
probability 1− p to win. Suppose that H starts with an advantage of z points. Then the
probability that A ever catches its initial late of z points behind H, is:

� 1 if 1− p > p.

�

(
1−p
p

)z
if 1− p < p.

Hint: consider Pz the probability to catch up a late of z points. Consider that P0 = 1,
and that from the next coin toss we have Pz = pPz+1 + (1− p)Pz−1.

5 Attacks and exercises

5.1 Sybil attacks are useless

clients's in�uence on the protocol is limited by the money they can spend.
The goal of this paragraph is to explain why denial of service attacks from clients is
limited. This will not be considered for the exam. In practice, a client must have enough
money on its account, typically 70 Dollars, to send one valid request. We do not discuss
how this is possible without revealing the identity of the physical person controling the
client, see Appendix A for more information. This charge of 70 Dollars is blocked on the
client's account until the request is executed. Then they are transfered to the node that
mined the block containing the request. client can possibly pay more to be prioritized. In
conclusion, even if a physical person emulates many clients, then its ability to send many
valid Append requests to the nodes is limited by the money it can spend.

nodes' in�uence on the protocol is limited by their computational power

Exercise 5.1. Consider the situation of �4.5. The Adversary node A runs a set of comput-
ers to compute the mining program. It starts with a gap of 6 blocks late behind the branch
mined by honest nodes. Explain whether or not its strategy would be more e�cient, if
instead it emulated 100 nodes, using the same set of computers A.

14

5.2 Why mining on the longest branch

Exercise 5.2. In the protocol, remove the condition �if the new Block B′i+1 becomes the
leaf of its local longest branch�. Thus now, we assume that a node automatically starts
mining on the top of the last new blocks he received �be it in its longest branch or not.
Explain brie�y a strategy, for an adversary A having only a minority of the mining power,
say 40%, to ensure that it will ultimately fully control the content of the longest branch.
Hint: divide the adversary in three nodes performing di�erent tasks.

5.3 Why synchrony is important

Safety fails without synchrony Suppose that the message propagation time is com-
parable to the time between two blocks. For example in Ethereum, a new block is created
every 10-15 seconds. Then honest nodes might not all agree on the same longest chain on
which to build. Thus their mining power will be dispersed over several branches, while a
powerful adversary will concentrate on extending one single branch, and ultimately im-
pose it. This is why Ethereum's �Ghost� protocol replaces the mine-over-the-longest-chain
rule, by another rule: mine over the densiest subtree.

The Gramoli-Natoli's �balance attack� considers an adversary A controling the net-
work, that isolates a client C during a certain period of time. During this period, A
extends the tree saw by C by a chain of blocks that A forges. These blocks typically
include values stating that A sends money to C. Once C is convinced that this adversary
chain represents the state of the Ledger, he takes actions in real life: like sending goods
to A in exchange for the money. Once connectivity is reestablished between C and the
rest of the world, C catches up with the longest chain, mined by honest nodes. He then
discovers, too late, that A didn't send money to him in this chain.

We formalize this in the following exercise:

Exercise 5.3. Consider that the world is composed of three nodes N1, N2, N3, with respec-
tive mining powers in proportion of 60%, 30% and 10%. Consider an honest client V (the
�victim�) and consider that N2 is a dishonest node who:

� Runs a client C2 that can make as many valid requests he wants.

� And has the power to isolate V and N3 from the network during, say, one day. That
is, during one day, N2 can block all the incoming messages to V and N3, except the
ones he decides.

Suppose that the initial state is such that everyone starts with the same initial Block B0.
Describe a strategy for N2 which will guarantee him, with high probability, that:

� V will �rst Accept a branch Bi containing a value v2 of client C2 in the �rst block
B1.

� Then V will later change its choice, and Accept a concurrent branch B′i not con-
taining the value v2 in the �rst block B′1.

15

Sel�sh mining: synchrony minus epsilon => 33% adversary imposes 50% of
blocks.

Exercise 5.4. We exemplify [GKL15, remark 3]. We consider an Adversary node A that

has |A||C| = 1/3 of the total mining power in the world. The reste of the nodes: H play
the Bitcoin protocol honestly. A has furthermore the rushing power : everytime it sees a
honest node sending a messagem, it has the power to send a messagem′ very quickly such
that m′ is delivered to all the nodes before m. It plays the following strategy: initially,
the adversary mines on the same chain as every honest node. However, whenever it �nds
a new block, it keeps it private and keeps on extending a private chain from this new
block. Whenever an honest party �nds a new valid block and sends it to the network,
the (rushing) adversary immediatly broadcasts one block from the private chain such that
this block is received �rst. If the private chain is depleted the adversary returns to the
public chain. Explain why the Adversary will produce on average 50% of the new blocks
that will end up on the Ledger (=the longest branch minus b blocks) (and not only 33%
of them).

5.4 Bitcoin protocol does not solve consensus

let us recall that an Adversary/malicious/byzantine process, client or node, is by de�nition
one that deviates from the protocol. For example:

� Sends di�erent values or blocks to di�erent nodes

� Deliberately ignores a pending value v in the blocks he mines, although v is pending
for a long time

� Does not mine on the longest chain

� Does not broadcast a block as soon as he mined it

Exercise 5.5. Try to understand [GKL15, �5.1], by explaining why there is a nonnegligible
set of runs where the validity condition, as de�ned in this paper, is violated.

A A client is a digital signature

To avoid impersonation, a client signs every value that he request to append to the ledger,
with his digital signature. In fact, he is exactly de�ned by his digital signature algorithm
(SignC ,VerifC), see the de�nition below. VerifC is public information, which can be
considered as the identity card of C. Whereas SignC is a secret C keeps for himself. In
practice SignC and VerifC are called the �public key� and the �private key� of C. Any
person can generate as many di�erent signature algorithms (SignC ,VerifC) it wants, and
thus run many di�erent clients sequentially or in parallel. The practical limitation being
that, when a client wants to append a value to the Ledger �like making a transaction to
another client� then it must pay 70 Dollars fees, so must have this sum on its account
VerifC .

16

The digital signature algorithm of a client C consists in two algorithms (SignC ,VerifC).
Only C should know the �rst one, which, on input any string v : �the document to sign�,
outputs a valid signature of C on the document v. The requirement is that knowing the
signature of C on a certain v, gives no additional information on what a valid signature
of C on a di�erent document v′ 6= v should look like

But everybody has access to the the second function, which enables to verify if a
signature on a document is valid or not. To �x ideas we de�ne below a signature algorithm
as having a signature length of 160 bits. This is the one recommended for ECDSA, which is
used in Bitcoin and, e.g., Whatsapp: for information see [Gal12, p. 22.2.2] then [JMV01].
11

De�nition 7. The digital signature of a client C is a pair of algorithms. First, a signature
algorithm SignC, which takes as input any string v ∈ {0, 1}∗ of any length, and outputs a
string of 160 bits SignC(v): the signature of C on the document v;

then, a veri�cation algorithm

VerifC :{0, 1}∗ × {0, 1}160 −→ {true, false}(7)

v, s −→ (SignC(v) == s) .(8)

They must guarantee that, for any person that does not know SignC, then for any
document v′ di�erent from all those already signed by C, then the task of �nding a valid
signature s′ on v′ �i.e. such that VerifC(s

′, v′) returns true�, is infeasible even with all
the computing power on earth12.

References

[Gal12] Steven D. Galbraith. Mathematics of Public Key Cryptography. Cambridge
University Press, 2012. url: https://www.math.auckland.ac.nz/~sgal018/
crypto-book/ch22.pdf.

[GKL15] J. A. Garay, A. Kiayias, and N. Leonardos. �The Bitcoin Backbone Proto-
col: Analysis and Applications�. In: Proceedings of the Annual International
Conference on the Theory and Applications of Cryptographic Techniques - Ad-
vances in Cryptology (EUROCRYPT). 2015.

[GKR20] Peter Gaºi, Aggelos Kiayias, and Alexander Russell. �Tight Consistency Bounds
for Bitcoin�. In: Proceedings of the 2020 ACM SIGSAC Conference on Com-
puter and Communications Security. 2020.

[HW90] Maurice Herlihy and Jeannette M. Wing. �Linearizability: a correctness condi-
tion for concurrent objects�. In: ACM Transactions on Programming Languages
and Systems 12.3 (June 1990), pp. 463�492.

11To generate a digital signature for Bitcoin, which is synonymous of a client, one just needs to produce
a 256 bit string at random (64 hexa characters): the public key. Then call openssl ec on this public
key with the curve -name secp256k1 to generate the corresponding private key.

12See e.g. Pollard's rho attack mentionned [JMV01, p 29], which uses no memory and takes 280 steps:
this is equal to the number of particles in the universe.

17

[JMV01] Don Johnson, Alfred Menezes, and Scott Vanstone. �The Elliptic Curve Digital
Signature Algorithm (ECDSA)�. In: Int. J. Inf. Secur. 1.1 (Aug. 2001), pp. 36�
63.

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography,
Second Edition. 2nd. Chapman & Hall/CRC, 2014.

[Nak09] Satoshi Nakamoto. �Bitcoin: A Peer-to-Peer Electronic Cash System�. In: Cryp-
tography Mailing list at https://metzdowd.com (Mar. 2009).

18

