Shimura curves and bilinear multiplication algorithms in finite fields

Matthieu Rambaud
Telecom ParisTech
Sep 2nd, 2017

Contents of the talk

(1) Goals
(2) Roadmap
(3) Hint: descent of $X_{0}(\mathfrak{N}) / \mathrm{Q}$
(4) Theorem B: Conj. Y for ($p=3$ and $2 t=6$)

Executive summary

Symmetric bilinear complexity in $\mathbf{F}_{p^{n}} / \mathbf{F}_{p}$

$$
\begin{aligned}
\mathbf{F}_{p^{n}} \times \mathbf{F}_{p^{n}} \longrightarrow \mathbf{F}_{p^{n}} \\
m:(x, y) \longrightarrow x \cdot y=\sum_{i=1}^{\mu_{p}^{\text {sym }}(n)} \phi_{i}(x) \bullet \phi_{i}(y) \cdot w_{i}\left(\phi_{i} \in \mathbf{F}_{p^{n}}^{*}, w_{i} \in \mathbf{F}_{p^{n}}\right)
\end{aligned}
$$

Executive summary

Symmetric bilinear complexity in $\mathrm{F}_{p^{n}} / \mathrm{F}_{p}$

$$
\begin{aligned}
& \mathbf{F}_{p^{n}} \times \mathbf{F}_{p^{n}} \longrightarrow \mathbf{F}_{p^{n}} \\
& m:(x, y) \longrightarrow x \cdot y=\sum_{i=1}^{\mu_{p}^{\mathrm{sym}}(n)} \phi_{i}(x) \bullet \phi_{i}(y) \cdot w_{i}\left(\phi_{i} \in \mathbf{F}_{p^{n}}^{*}, w_{i} \in \mathbf{F}_{p^{n}}\right)
\end{aligned}
$$

Goal: upper bound $M_{p}^{\text {sym }}=\lim \sup _{n \rightarrow \infty} \frac{1}{n} \mu_{p}^{\text {sym }}(n)$

p	Before	This work	under Conj. Y (solved since)
2	15.2	$\mathbf{1 0}$	6.92
3	7.73	$\mathbf{5 . 4 2}$	5.39

Strategy for bilinear multiplication

f and g in $\mathbf{F}_{p}[X]$ of degree n, compute $f \cdot g$
(1) Choose $P_{1}, \ldots, P_{2 n+1}$ in \mathbf{F}_{p}.
(2) Evaluate $f\left(P_{i}\right)_{i=1 . .2 n+1}$ and $g\left(P_{i}\right)_{i=1 . .2 n+1}$.
(3) Compute $\left\{f \cdot g\left(P_{i}\right)=f\left(P_{i}\right) \bullet g\left(P_{i}\right)\right\}_{i}: 2 n+1$ multiplications.
(4) Lagrange's interpolation: recover $f \cdot g$.

Chudnovky ${ }^{2}$'s improvement

	Before	After
set:	\mathbf{F}_{p}	curve $X_{/ \mathbf{F}_{p}}$
f and g in $\mathbf{F}_{p}[X]:$	polynomials	rational functions f and g in $\mathcal{L}(D)$
evaluation on:	points $P_{1}, \ldots P_{2 n+1}$ in \mathbf{F}_{p}	points $P_{1}, \ldots P_{2 n+\mathrm{g}+1}$ in $X\left(\mathbf{F}_{p}\right)$

Contents of the thesis

- Theorem A: fixes and improves all state of the art upper-bounds.
- Theorem B: improves the choice of the curve.
- On a fixed curve: construction and optimisation of the algorithm.

the Graal:
 Conjecture Y

Conjecture

Let p be a prime and $2 t \geqslant 2$. Does there exist a family $\left(X_{s}\right)_{s \geqslant 1}$ of curves, with genera $g_{s} \longrightarrow \infty$ such that:
(1) X_{s} is defined over \mathbf{F}_{p};
(2) $g_{s+1} / g_{s} \longrightarrow 1$ (density of $\left(X_{s}\right)_{s}$);
(3) $\left|X_{s}\left(\mathbf{F}_{p^{2 t}}\right)\right| / g_{s} \xrightarrow[s \rightarrow \infty]{ } p^{t}-1$ (Optimality over $\left.\mathbf{F}_{p^{2 t}}\right)$?

the Graal:
 Conjecture Y

Conjecture

Let p be a prime and $2 t \geqslant 2$. Does there exist a family $\left(X_{s}\right)_{s \geqslant 1}$ of curves, with genera $g_{s} \longrightarrow \infty$ such that:
(1) X_{s} is defined over \mathbf{F}_{p};
(2) $g_{s+1} / g_{s} \longrightarrow 1$ (density of $\left.\left(X_{s}\right)_{s}\right)$;
(3) $\left|X_{s}\left(\mathbf{F}_{p^{2 t}}\right)\right| / g_{s} \xrightarrow[s \rightarrow \infty]{\longrightarrow} p^{t}-1$ (Optimality over $\left.\mathbf{F}_{p^{2 t}}\right)$?

- Classical modular curves $X_{0}(N)$? $\widehat{\lfloor } 2 t=2$ only;
- Garcia-Stichtenoth's towers F_{s} ? $₫ g_{s+1} / g_{s} \sim p^{2 t}$.
- Shimura curves $X_{0}(\mathcal{N})$? $\left\lfloor 2 t \geqslant 4 \Rightarrow\right.$ defined over $\mathbf{F}_{p^{t}}$;

Hint: galoisian descent Theorem of $X_{0}(\mathfrak{N})_{F}$ over Q

General criterion for descent over Q
X an object over F / \mathbf{Q} s.t.
(1) X has field of moduli \mathbf{Q};
(2) X has no automorphisms.

Hypotheses here:
(i)-(iii) $\Gamma_{0}(\mathfrak{N})$ is a Galois invariant quaternionic group;

Hint: galoisian descent Theorem of $X_{0}(\mathfrak{N})_{F}$ over Q

General criterion for descent over Q
X an object over F / \mathbf{Q} s.t.
(1) X has field of moduli \mathbf{Q};
(2) X has no automorphisms.

Hypotheses here:
(i)-(iii) $\Gamma_{0}(\mathfrak{N})$ is a Galois invariant quaternionic group;
(iv) $\Gamma_{0}(1)$ is a triangle group;

Theorem B: Conjecture Y for $p=3$ and $2 t=6$

(1) Hard work: compute two towers of Shimura curves over $\mathbf{F}_{3^{6}}$!

$$
\begin{gathered}
\ldots \xrightarrow{f_{4}} X_{0}\left(7^{3}\right) \xrightarrow{f_{3}} X_{0}\left(7^{2}\right) \xrightarrow{f_{2}} X_{0}\left(7^{1}\right) \xrightarrow{f_{1}} X_{0}(1) \\
\ldots \xrightarrow{g_{4}} X_{0}\left(8^{3}\right) \xrightarrow{g_{3}} X_{0}\left(8^{2}\right) \xrightarrow{g_{2}} X_{0}\left(8^{1}\right) \xrightarrow{g_{1}} X_{0}(1)
\end{gathered}
$$

(2) Descend everything over \mathbf{F}_{3}.

Theorem B: Conjecture Y for $p=3$ and $2 t=6$

(1) Hard work: compute two towers of Shimura curves over $\mathbf{F}_{3^{6}}$!

$$
\begin{gathered}
\ldots \xrightarrow{f_{4}} X_{0}\left(7^{3}\right) \xrightarrow{f_{3}} X_{0}\left(7^{2}\right) \xrightarrow{f_{2}} X_{0}\left(7^{1}\right) \xrightarrow{f_{1}} X_{0}(1) \\
\ldots \xrightarrow{g_{4}} X_{0}\left(8^{3}\right) \xrightarrow{g_{3}} X_{0}\left(8^{2}\right) \xrightarrow{g_{2}} X_{0}\left(8^{1}\right) \xrightarrow{g_{1}} X_{0}(1)
\end{gathered}
$$

(2) Descend everything over \mathbf{F}_{3}.
(3) Then for the density...

Elkies' Trick

The genus one Belyi map $X_{0}\left(7^{2}\right) \xrightarrow{f_{2}} X_{0}(7)$

Goal: j-invariant of $X_{0}\left(7^{2}\right)_{\mathrm{C}}$? Input: $\Gamma_{0}\left(7^{2}\right) \subset \mathrm{PSL}_{2}(\mathbf{R})$

Algorithm [Klug-Musty-Schiavone-Voight]

- Fundamental domain for $\Gamma_{0}\left(7^{2}\right)$.
- The differential form g on $X_{0}\left(7^{2}\right)_{\mathbf{C}}$:

$$
\begin{aligned}
& g(w)=1-\frac{2}{3} \cdot w+\frac{2^{3}}{3^{3}} \cdot w^{3}+\frac{2^{7}}{3^{7} \cdot 7} w^{7}+\frac{2^{7}}{3^{7} \cdot 7} w^{8}+\frac{2^{9}}{3^{10} \cdot 7^{1}} w^{10} \\
& -\frac{2^{13} \cdot 5}{3^{13} \cdot 7^{2} \cdot 13} w^{14}-\frac{2^{15} \cdot 5}{3^{15} \cdot 7^{2} \cdot 13} \cdot w^{15}+\frac{2^{15}}{3^{16} \cdot 7^{2} \cdot 13} w^{17}-\ldots
\end{aligned}
$$

- Periods of $g \rightarrow$ Periods lattice of $X_{0}\left(7^{2}\right)_{\mathbf{C}} \rightarrow j=-3375$.

The genus one Belyi map $X_{0}\left(7^{2}\right) \xrightarrow{f_{2}} X_{0}(7)$

Goal: canonical model of $X_{0}\left(7^{2}\right)$? Inputs:

- j-invariant: -3375;
- Descends to an elliptic curve over Q (specific Theorem);
- Conductor equals $7^{1 \text { or } 2}$ (the Theory);
- Traces of Frobenius equals traces of quaternionic Hecke operators (the Theory).
Output: $X_{0}\left(7^{2}\right)_{\mathbf{Q}}$ is either 49.a2 or 49.a4 (LMFBD)

The genus one Belyi map $X_{0}\left(7^{2}\right) \xrightarrow{f_{2}} X_{0}(7)$

Goal: equation for f_{2} ? Input: $\{49 . a 2$ or $49 . a 4\}$, ramification:

And monodromy: $[(1,6,4,2,7,5,3),(1,6,2)(4,5,7),(1,3,4)(2,7,6)]$ Method: [Sijsling \& Voight] ${ }^{2}$ for computation and descent.
Output : $X_{0}\left(7^{2}\right)_{\mathrm{Q}}=49 . a 4$ and

$$
f_{2}(x, y)=2 x+5 x^{2}-3 x^{3}+\left(-3+3 x+x^{2}\right) y
$$

Thank you for your attention

Not meant to be shown

$$
X_{0}\left(8^{3}\right)=\underset{\omega_{1} \circ f_{2} \circ \omega_{2}}{X_{0}\left(8^{2}\right)} \times X_{0}\left(8^{1}\right) \longleftarrow f_{f_{2}}^{X_{0}\left(8^{2}\right)}
$$

$$
\begin{array}{ccc}
X_{0}\left(8^{2}\right)_{\mathbf{F}_{3}} & : & y^{2}=x^{3}+x^{2}+2 \\
X_{0}\left(8^{1}\right)_{\mathbf{F}_{3}} & : & \mathbf{P}_{\mathbf{F}_{3}}^{1} \\
f_{2}: & (x, y) \longmapsto \frac{1+x^{2}+x^{3}+x^{4}+\left(x+2 x^{2}\right) y}{2+x^{2}+x^{3}+x^{4}+x^{2} y} \\
\omega_{2}: & X_{0}\left(8^{2}\right)_{\mathbf{F}_{3}} \ni P \longmapsto(1,2,1)-P \\
\omega_{1}: & t \in \mathbf{P}_{\mathbf{F}_{3}}^{1} \ni t \longmapsto \gg-t
\end{array}
$$

of genus 7 and having 1760 points over $\mathbf{F}_{3^{6}}$, as predicted from traces of Hecke operators.

Not meant to be shown

$$
\begin{gather*}
X_{0}\left(8^{2}\right)=\text { Elliptic }_{/ \mathbf{C}} \tag{7}\\
f_{2} \mid 8 \\
X_{0}\left(8^{1}\right)=\mathbf{P}_{\mathbf{C}}^{1} \\
f_{1} \mid{ }^{2} \\
X_{0}(1)=\mathbf{P}_{\mathrm{C}}^{1}
\end{gather*}
$$

(7)
$P^{\prime}{ }_{7}$
(2) ${ }^{4}$
$\quad{ }_{8} \downarrow$
$Q_{2},(2)^{4}$
$1 \mid 2^{4}$
R_{2}

