
Bootstrapping Message-Linear-Constant-Round
Consensus from a Bare PKI Setup, and Separation

Bounds from the Idealized Message-Authentication Model
Matthieu Rambaud 2023-11-3 UMD crypto reading group

NIZK [Groth-Ostrovsky]

.. and the union of all its mainstream implications:
t=0 : inputs assigned

Goal: separation between the bare PKI setup..

secure channels public random stringauthentication of the issuer of a message

t=0
Toy model: corruptions = semi-honest or initially crashed.

..output the majority bit received

1 111
0 0 0 0 0

 t=1

Toy BA: multicast one’s input bit..

00000

0 0 0 0 0

Linear communication with “conditional multicast” (a.k.a. self-sortition)

0, (👍 , 📄)

♪
bulletin board, 𝄞 = public seed

publishes

(👍 , 📄) , with ℙ=𝜆/n
(else ∅)

t=0 t=1

publicly available Verifiable
Random Function (VRF oracle)

EvalProve(♪, 𝄞)

accept 0

Verify((♪, 𝄞),👍 , 📄)

“Yes”

⇒ 𝜆 players in expectation are allowed to multicast

Problem if 𝄞 known before publication of keys: adversarial key-by-key picking

1, (👍 , 📄)

(👍 , 📄)

t=0 t=1

publicly available Verifiable
Random Function (VRF oracle)

EvalProve(♪, 𝄞)

accept 1

Verify((♪, 𝄞),👍 , 📄)

“Yes”

EvalProve(♩, 𝄞)
EvalProve(♪, 𝄞)

EvalProve(♪, 𝄞)

…

 ♪
publishes ⇐

1st Way around: the imposed keys ♪ model [Lindell et al,STOC’02] , [Chan-Pass-Shi EC’19, Podc’19, PKC’20]
[Blum et al, TCC’20], [Blum et al, DISC’20]

1, (👍 , 📄)

(👍 , 📄)

t=0
t=1

VRF oracle

EvalProve(♪, 𝄞)

 ∅

Verify((♪, 𝄞),👍 , 📄)

“No”

EvalProve(♩, 𝄞)
EvalProve(♪,𝄞)

EvalProve(♪, 𝄞)

…

 ♪ ♩ ♩ ♪ ♪ ♩ ♪
♪

publishes

2nd Way around: the unpredictable 𝄡 seed revealed after publication of keys model
Thunderella [Pass-Shi, EC'17], Algorand [Gilad et al, SOSP'17], Praos [David et al, EC'18], [Goyal et al, FC'21] and [Momose et al, CCS'22
and CCS'23]

1, (👍 , 📄)

(👍 , 📄)

t=0 t=1

VRF oracle

EvalProve(♪, 𝄞)

 ∅

Verify((♪, 𝄡),👍 , 📄)

“No”

EvalProve(♩, 𝄞)
EvalProve(♪,𝄞)

EvalProve(♪, 𝄞)

…

 ♪ ♩ ♩ ♪ ♪ ♩ ♪ 𝄡
Publishes

.. 🙁 no existing implementation of has linear complexity

EvalsProofs(, 𝄡)

Achieving linear complexity in the bare PKI model:

𝄡 = H(), H collision-free, e.g., identity ♪ ♩ ♪ ♪ ♪ ♩ ♪ 🎵 ♪

 ♪ ♩ ♪ ♪
ℙ(👍)=𝜆/n ℙ(👍)=𝜆/n ℙ(👍)=𝜆/n ℙ(👍)=𝜆/n

EvalsProofs(, 𝄢) ♪ ♩ ♪ ♪
ℙ(👍)=𝜆/n ℙ(👍)=𝜆/n ℙ(👍)=𝜆/n ℙ(👍)=𝜆/n

EvalsProofs(, 𝄞) ♪ ♩ ♪ ♪

ℙ(👍)=𝜆/n ℙ(👍)=𝜆/n ℙ(👍)=𝜆/n ℙ(👍)=𝜆/n

In each new vector output:
 all “ℙ(👍)=𝜆/n” are independent

because 𝄞 is new
⇒ℙ(👍’s ≥ 𝜆/2 👍)=O(exp(-ε².𝜆))

⇒ over all q trials:
ℙ(👍’s ≥ 𝜆/2)=O(q.exp(-ε².𝜆))

(1-ε)n/2 corruptions VRF oracle

corrupts on-the-fly players which
multicast in the simulated
execution, they send their
simulated messages to Jim only

Choose any Jim, leave it honest..

World W_h,1: all
players are initially

honest, with input 1

World W_h,0: all
players are initially
honest, with input 0

Impossibility of authenticated consensus
with subquadratic multicast complexity

corrupts on-the-fly players which
multicast in the simulated
execution, they send their

simulated messages to Jim only

