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1 Summary

A major breakthrough for the multiplication in extensions of finite fields
is the algorithm of Chudnovsky and Chudnovsky (1988), by evaluation-
interpolation on algebraic curves. Indeed its complexity is linear in the size
of the extension.

— Our first contribution, Theorem A, generalizes the formulas providing
the best known asymptotic bounds for the bilinear complexity of multiplica-
tion. It improves the state of the art, and also corrects gaps in several results
in the litterature.

We then target the most important parameter, i.e. the choice of the curve.
Indeed Cascudo, Cramer, Xing et Yang showed in 2012 that the following
folklore "Conjecture Y" would enable to cut by half the bilinear complexity
in extensions of small characteristic p:

For p prime and ¢’ = 2t even, does there exist a family of curves (X;);
over the extension of degree 2t of F,, such that :

(i) the genera g; tend to infinity, with consecutive ratios tending to one
(density condition)
(i) the family (X;); has an optimal ratio of points of degree one (bound of
Drinfeld-Vladuts)
(iii) the curves descend over F,, ?

Firstly we give counterexamples in V.5.6 that invalidate a recent pub-
lished proof of the conjecture. The issue is the field of definition of Shimura
curves (that are moduli spaces of abelian varieties).

— Our second contribution, Theorem B, provides an explicit solution to
the conjecture in the particular case (p = 3 and 2t = 6). The construction,
done in VI, consists in intertwinning towers of Shimura curves then to descend
their field of definition. The same techniques also provide a new curve with
a record number of points (VI.4).

Theorems A and B enable to cut down the best known asymptotic bounds
in small characteristic, nearly by half (in Table 1.2.2).

We finally optimize in VII the effective construction of algorithms on a
given curve: firstly in small algebras, then in extensions of cryptographic
size.
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Chapter I

Summary and Main results

1 Introduction

1.1 Motivation: the bilinear complexity of multiplica-
tion in finite fields
Let K be a field and A a finite-dimensional (associative, commutative and

unitary) K-algebra. The multiplication law in A, m 4, is seen as a K-bilinear
map:

(1.1) ma Ax A A
(X,Y)——=X Y

Definition 1.1. Let n be an integer, a (possibly asymmetric) multiplication
algorithm of length n in A is the data of 2n linear forms (¢;)i=1,.n, (&})i=1,..n

on A, along with n elements (wy, ..., w,) of A, such that m_4 is equal to
(1.2) ma:(z,y) — Y dilx) - dily) - w; .
i=1

The algorithm is furthermore symmetric if and only if ¢; = ¢, for all 1.

The bilinear complezity of the multiplication m 4 in A, denoted p(A/K),
is the lowest integer n, such that there exists a (possibly asymmetric) multi-
plication algorithm of length n. The symmetric bilinear complexity p™(A/K)
is defined likewise.
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Definition 1.2. Let ¢ be a prime power and n a positive integer. Let
F,»[y]/y" be the polynomial algebra over F,» modulo y'.
The symmetric bilinear complexity of multiplication in the algebra F . [y] /v
over F, is denoted p5¥™(n, 1), and p,(n,1) stands for the bilinear complexity.
In particular,

B () = ™ (n, 1)
is the symmetric bilinear complexity of the multiplication in the extension of
finite fields Fn /F,, and p,(n) stands for the bilinear complexity.

Definition 1.3. If ¢ is a prime power, we let

1
mq = hﬂg}f ﬁ/v‘q(n)

1
M, = limsup —p4(n)
n

n—o0

and their symmetric counterparts m™ and M>™ are defined likewise.

Other complexity measures are possible, especially over the field F5. For
example, one could count both the bitwise additions and multiplications.
Or even take into account the possibility to perform computer-elementary
operations on groups of 32 or 64-bits.

1.2 The interpolation method of Chudnovsky and Chud-
novsky

The interpolation method of [Ch?| provides algorithms that have today’s
lowest known bilinear complexities for extensions of finite fields of degree
approximately greater than 20.

In the symmetric framework, the construction can be summarized as fol-
lows. It will be formalized more precisely in §1.1. Suppose that we want to
compute the multiplication in F,» over F,. Start with an algebraic curve X
over F,, equipped with a point () of degree m, and convenient divisors D
and G. For instance, let G be a collection of points of degree one P; ... P,.

Assuming the injectivity and surjectivity of the maps as represented in
the diagram below, the multiplication of any x and y in Fym can be performed
with the following five steps:

(D lift x and y to some functions f, and f,, in the space of global sections
L(D), so that f,(Q) =z and f,(Q) =v.
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@) evaluate f, and f,, separately, on each point P; of the divisor G.

3 compute, for each P;, the product of the two evaluations : a; = f.(P;).f,(FP;).
This is the critical step : here we perform deg G two-variables multi-
plications. We obtain the vector of values (ay,--- ,a,).

@ interpolate this vector to the unique function g € L(D + D) having
values a; at the P;;

®) evaluate g at Q to find the product of z and y.

(1.3)

L(D + D)

evg

[T, F.(P)

® mult.®des(G)

2 Main results and further conjectures

2.1 Theorem A for asymptotic upper bounds

Since we are mainly interested by the upper-limit complexity M,, it is nec-
essary to use sufficiently many different curves so as to deal with the worst
cases. So let us give a name to the following requirement, formalized in [STV,
Claim pl163|:

Definition 2.1. Let X;/k be a family of curves over a field k& with genera
gs- We say that the family (X;), is dense iff the genera g5 tend to infinity
and the ratio of two successive genera g..1/gs tends to 1.

On the contrary, approaching the lower-limit m, doesn’t require dense
families of curves (see 11.3.3).

The asymptotic ratios 3, of the number of places of degree r divided by
the genus, are quantities investigated in number fields (see [Leb| and [LZ] for
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recent progress). Analogously, multiplication algorithms by interpolation on
algebraic curves often require many points of higher degree » > 2. Hence the
following definition for the best possible asymptotic ratio f3,.

Definition 2.2. Let r > 1 be an integer and ¢ a prime power. For X a curve
over F,, let B,(X) denote the number of closed points of degree r. Define
A,(q) and A,(q) as the sup of real numbers 3, and 3, such that there exists a
family (respectively a dense family) of curves X over F, of genera g, going
to infinity, that satisfies:

B.(X
lim —r( )

§—00 gS

= B, (respectively f3,)

Ezample 2.3. To start with, A;(q) = A(q) is the Thara constant. See table
[1.2.2 and Theorem I1.2.5 for recent results for non-square values of ¢.

More generally, Cascudo-Cramer-Xing-Yang showed that the generalized
bound of Drinfeld—Vladuts implies the majoration (see Theorem 2.1):

A(q) < A(g) < @

Examples 2.4. The towers of Garcia—Stichtenoth being actually defined over
their prime field F), they provide an example of towers reaching the previous
bound (see 11.2.2):

- 1 .
(2.1) A, (q) = Vi -1 as long as ¢" is a square.

r

For all the values of ¢ that will be needed, Shimura curves provide dense

families over finite fields F; with many points in the quadratic extension
F,2 :see I1.2.3. The same holds for Drinfeld modular curves: see [Gek, 8-9]

(and |Geksy, Th. 2.16] for the supersingular argument needed when ¢ is even).
Their ratio matches the bound of Drinfeld-Vladuts over F 2, which reads:

(2.2) gl(QQ) =q—1

But actually one can say more. As will be re-stated in Corollary 11.2.6, taking
into consideration that the curves above are defined over F, —and not only
F 2—, and by the consequence of the generalized bound of Drinfeld—Vladuts
above, this implies :

_ g—1
(2.3) As(q) = 5
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Note that the dense families of classical modular curves over prime fields F,
are a particular case of Shimura curves.

Our following omnibus theorem generalizes essentially all the known for-
mulas providing the current best upper-limit asymptotic bounds.

Theorem A. Let g a prime power and r > 1, [ > 1 be two positive integers.
Then, as long as the respective denominators are positive, one has

(a)

Mq S 2ﬂq<r7l) 1_'_ _ 1 )
rl rlA.(q) — 1

(a’) Moreover under any of the following two cases :

(i) r =1 and q is such that A,(q) > 5 ;

(i1) let p be a prime number such that Conjecture Z holds for p. In
addition one requires: {q =pandr = 2} or {q =p?andr = 1};

then the above bound is actually symmetric :

2™ (r, )

rl rlAr(Q) -1

205 (1, 1
M;ym < /’Lq (Tv ) <1+ _ 2 )

MP™ <

(b)

N rl rlA.(q) — 2
(c¢) if 2|q
Mg™ < 2D (1 p o Lloa(?) > .
rl rlA,(q) — 1 —log,(2)
(c) if21q

M < 2ufj‘7m(r, ) T 1+ 2log,(2) .
rl rlA,(q) — 1 — 2log,(2)

Remarks 2.5. In comparison to the known results :
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e (c) and (¢’) allow from now on evaluation on points of odd degree r in
Theorem 5.18 of [CCXy|. All the arguments are actually available in
the proof of the original theorem;

e (b) allows evaluation on points of arbitrary degree compared to [BCP,
Proposition 11];

e finally, derived evaluations are now considered in all the results. These
additional tools were actually known since [Ar], [CO;| and [Ran,].

2.2 Theorem B and dense families with many points of
higher degree

A record curve with many points

The family of our main Theorem B below, arises from recursive towers of
Shimura curves. Studying another tower, this time over the field Q(+/3) of
narrow class number two, also leads to the good surprise described in §VI.4.
Indeed the fourth step of this tower, of genus five, has a greater number of
points in Fza: 871 than the previous value of 868 recorded in the tables of
manypoints.org'at the time it was found. As a bonus we obtained ezplicit
equations for the curve, that are furthermore defined over Fs.

Conjecture Y and its recent history

The following folklore conjecture asks for dense families defined over their
prime field, and matching the (optimal) Ihara constant for their number of
points after a given even field extension. It is stated as in [CCXY, Lemma
IV.4], under a form essentially equivalent to the following:

Conjecture Y. Let p be a prime number and 2t > 2 an even integer®. Does
this equality hold:
t—1

~ pt—
(2-4) Agt(p) = ot

?

'S.E. Fischer simultaneously submitted a record curve with an even simpler equation.

2Notice that the cases where 2¢ = 2 are actually statisfied with classical modular curves
: see [Mo] §5.6 for a demonstration. Whereas the cases for 2¢ = 6 are dealt with the (new)
theorem B below, and Conjecture X.
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Equivalently (by Theorem 2.1): does there erist a family (X,/Fp2) o, of
curves with genera gs tending to infinity, such that: -

(i) X is, actually, defined over the prime field F,,;
(i) gs+1/9s —— 1 ("density" of (X;)s)
§—00
(iii) | Xs(Fp2¢)| /gs — p' — 1 (Thara constant over Fj) ¢

The first contributions towards the conjecture were to make Garcia—
Stichtenoth towers more dense. It started with |[Baly|, then |BR] also dealt
with the field of definition issue, and finally [BBR| proved a descent theo-
rem. This last one uses the full power of Proposition A.1.2 (rediscovered by
Randriam).

A previous attempt was [CCXY, Lemma IV.4|, which proposes to solve
it by using Shimura curves defined on the rationals. The problem is that
the curves considered curves proposed do not necessarily descend over the
rationals. This issue was first noticed by S. Ballet when he reviewed [CCXY],
in a preliminary version. The paper was then accepted with another proof,
and the result later used as a theorem, in: [CCX,, Lemma 5.17] and |PR,
Lemma 5.2|.

Several people independently noticed that the final proof still contained
the issue of Shimura curves that do not necessarily descend over the rationals.
More nastily, even canonical models with field of moduli equal to Q sometimes
don’t descend over Q. Three such counterexamples are described in §V.5.6.
They were initially brought up in our joint work [BPRS, §3|, out of the curves
studied in [Sij;]. In particular H. Randriam and J. Voight should be thanked
for their contribution.

Anyway, the proposition of [CCXY]| to use Shimura curves turned out
to be the good idea. Indeed we could provide an explicit solution to the
conjecture for the case (p = 3 and 2t = 6), (and possibly p = 5): Theorem
B in the next paragraph.

The conjecture has just been given an existential proof in early July 2017.
Bassa-Beelen proved that Drinfeld modular curves modulo 7" over F, with
levels in F,[T], descend to F,. From Gekeler’s genus formulae, Randriam
deduces the density of such curves (we further densified the families to match
the growth rate of intertwinned towers of Shimura curves).
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Our particular solution
Theorem B. We have:

(2.5) As(3) = 336_ L

Said otherwise : there exists a family X, of curves over F3 with (increasing)
genera g, tending to infinity such that

(i) Il (density condition)
gS 5—00
X(F . .
(ii) [ X (Fe )| 3* —1 (optimal number of points of degree 6)
gS 5§—00

We also explicit a solution in the case (p = 5 and 2t = 6): intertwin the
tower of equations VI.(6.10), with the reduction of the tower of Theorem VI
of VI.6. But our verification of the next level did not terminate yet.

The key insight is due to N.D. Elkies, that one can intertwin two recursive
modular towers into a dense family, see VI1.5.3. A lookup in the table [Voiy]
of Shimura curves with small genera, filtered with the conditions on B, p and
M from the Theorem V.5.4 brought up by V. Ducet’s thesis, ends up with
the following promising candidates.

Proof Consider the Riemann surfaces Xo(pipZ) described in IV.2.5, where
their genera are shown to be dense.

By the general theory (Theorem V.5.4), these curves have canonical mod-
els over the field F' = Q(cos(27/3)) that have good reduction modulo the
inert (3). These reductions take place over F3s and have many points in the
quadratic extension Fse.

But to show that they descend over F3 requires to construct explicitly
these canonical models.

The two towers Xo(p3) and Xo(pZ) being recursive by §V1.3, their deter-
mination relies essentially on the knowledge of the two canonical Belyi maps
of genus one Xo(p2) — Xo(pr) and Xo(p3) — Xo(pr) of degrees 7 and 8.
Their monodromy are computed in Examples V.3.4 and 3.6. By the second
statement of our Theorem V.5.14, these Belyi maps are characterized by their
sole topological monodromy above X (1). The previous arguments are given
a detailed Leitfaden in VI.1.
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The Belyi maps are computed in VI.5 and summarized in Theorem C of VI.6.
The reduction of these covers are then descended over Fs.

As a sanity check we could finally compute the next steps of each tower, Xo(p3)
and Xo(p3), of genera five and seven. And compare their number of points in Fys
and F3s —28;1000 for Xo(p2) and 24; 1760 for X¢(p3)—with those predicted from
the traces of Hecke operators (Theorem V.5.5). O

Remark 2.6. the canonical model Xo(p5) of genus one has no rational point
(cf. Remark VI.5.2). So we computed the cover over a quadratic exten-
sion Q(+/—7), where it acquires a rational ramification point. So, even if
the reductions of our covers do descend to F3, they are only proven to be
isomorphic to the canonical models after a quadratic extension by v/—7. For-
tunately, since we are interested by the number of points after a quadratic
extension, this doesn’t impeed the validity of the result.

Remark 2.7. chapter V takes a long time to prove the first statement of
Theorem V.5.14, about descent of canonical covers over Q. This general
statement is not stricly necessary in the proof of Theorem B but gives very
helpful hints for the computations of VI.5. It uses the general theory of
descent of arithmetic covers, and builds on the results of Doi-Naganuma,

As a conclusion, for all primes different from p = 2 and 7, and inert in
the field Q(cos7/7) of the canonical models, the curves considered X (pip?)
have also potential good over F s and many points in Fye. So of course, a
general argument that would conclude for good reduction over any of these
primes p (as we did explicitly for p = 3) would be highly welcome.

The remaining Conjectures X < Y and Z

To deal with the remaining case p = 2, one needs another tower Xo(p*) over
the same base Xo(1) as in Theorem B, descends over Fy. Indeed one could
then intertwin this tower Xo(p*)g, with the smooth tower Xo(p?), found in
Theorem B (see VI.(5.12)). And thus produce a dense family.

A good candidate is the tower Xo(p}), where ps is the prime (3). By
the general theory it has a good reduction modulo the inert (2): Xo(p3)r,s,,
that has many points in Fos. But we don’t know if this reduction descends
to Fy. By recursivity of the tower, this would be implied by the following
conjecture.
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Conjecture X. Let B the quaternion algebra over the number field F' =
Q(cos(27/7)), which is ramified exactly at two of the three real places and
no finite place. Let p3 be the ideal above the inert prime (3), and Xo(p3) the
Shimura curve over I defined by the group To(p3) of norm one units of the
Eichler order of level p3.

Then the following morphisms descend to Fy:

e the canonical branched cover Xo(p3)r,, — Xo(ps)r,s

e and the Atkin-Lehner involution on Xg(pg)p23.

Although this is part of an ongoing work, we describe the computations
leading to the Atkin-Lehner quotient X,(p2)* of genus two in I1.4. Indeed
they illustrate the general theory and some recent algorithms.

The last conjecture, as proposed in [Rang, Conjecture A| plus the density
condition, could close the gap between symmetric and asymmetric bounds
for larger prime values of ¢, in the cases where modular curves are used (see
Theorem A, case (a)(ii)).

Conjecture Z. Let p > 2 be an odd prime. Does there ezrist a sequence
of numbers (Ny)s, with Ngy1/Ns —— 1 (density condition), such that the
5—00

Hecke operator T,(N;) acting on the space of weight 2 cusp forms So(I'o(Ns)),
has an odd determinant ¢

The following consequence was singled out in [Rang|. Let p be a prime,
N a positive integer prime to p and Xy(/N) the classical modular curve over
the rationals with the Hecke operator 7}, acting on the space of weight 2 cusp
forms So(I'o(V)). Then the congruence relation of Eichler-Shimura implies
(see IL5 for a proof) :

(2.6) Jo(N)(Fy2)]| = det(p? +1 — Ty(N)?)
In particular, considering the rational subgroup of 2-torsion points gives :
dimJo(N)(F,2)[2] < ordy (det(p® + 1 — T,(N)?))

where ord, is the 2-adic valuation. The prime p being odd, the left-hand side
determinant has the same parity as det(7,(/N)). Thus, the conjecture would
have as a consequence the following weaker conjecture:
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Conjecture 2.8. Does there exist a dense family of curves (Xo(Ny)/F)p),
such that:
(Jo(N)(F,2)) [2] = {0} for all Ng?

Remarks 2.9. Notice that our density condition says that Ng,/N, —— 1,
S§—00

which does not imply that the set of numbers {N,}_ has a positive Dirichlet
density (take (N2),). The opposite implication is also false (introduce very
sparse gaps in the harmonic series).

Removing this additional density requirement would only benefit to lower-
limit symmetric bounds:

e for the values of ¢ in table 2.3: the only effect of Conjecture Z would
then be to close the gap between the symmetric and asymmetric bounds
for ¢ = 25. Indeed, in the three other cases where the asymmetric
bounds are better than their symmetric counterparts, the families used
are not modular curves.

e for larger values of ¢: Conjecture Z would only benefit to values for
which the condition (a’).(i) of Theorem A (A;(¢) > 5) is not known
to be satisfied. So only large primes ¢ would be concerned, because
interpolation on points of degree two of classical modular curves would
be needed.

2.3 New bounds for bilinear multiplication
Symmetric multiplication in small binary algebras

The generalized interpolation method of Chudnovsky and Chudnovsky han-
dles pointwise evaluations that live in small algebras (see the beginning of
§1.1). It is thus useful to improve the bilinear algorithms in those algebras.

In Table 2.1 below are recapitulated the best known upper and lower
bounds for the symmetric bilinear complexities p5™ (m, 1) of the multiplica-
tion in the small Fy-algebras Fon|z]/2!. Each pair of lower—upper bound is
given as "L-U". When the upper bound U is in fact optimal (so L=U), then
one single value is displayed.

The three new upper bounds are displayed in bold. Whereas the two new
lower bounds (for 15 (2,2) and p3™(2,3), in addition to the exact value of
ps " (3,2)) are just emphasized in Table T1.3.1.
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The values of the upper-bounds are justified in Table I1.3.1 of 11.3.1, and
the new formulas in the annex A.2. The methods employed are described in
§VIL.2.

However most of the lower bounds are not given further justification. In
particular the three new ones mentionned above arize from the exhaustivity
of the search method described below Observation VII.2.2. The other unjus-
tified lower bounds are merely deduced from the general [Ran;, Lemma 1.9],
or from the lower bound of a subalgebra.

Table 2.1: Lower-Upper bounds on the complexities 15" (m, 1)

l\m 1 2 3 4 |s5le] 7 8 9 10
1 1 3 6 9 [13]15]16 — 2216 — 24[17 — 30[19 — 33
Y E 9 16 |16—24
Y E 15 |16 — 30
1 8 [8—21
5 11 11— 30
6| 14
7116 — 18
8[16 — 22
9(16 — 27
10][16 — 31

Asymptotic upper-limit bounds in finite fields extensions

The values appearing in Table 2.2 below are justified in Table I1.3.2. The first
line accounts for the state of the art, the second one adding the contribution
of Theorem A, the third one adds the new values of the A,.(q) allowed by
Theorem B. The fourth and last one add gradually the values of the Er(q)
implied by Conjectures X and the more general Conjecture Y. Conversely,
the line assuming Conjecture Z needs not assuming any of the previous new
values (neither Theorem B nor the two previous conjectures)

Remark 2.10. Notice that we did not state some bounds appearing in the
litterature in the lines "(Repaired) published bounds" part of table 2.2. The
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Table 2.2: (new)-Upper bounds for M:¥™ and M,

‘ Results used \q H 2 ‘ 3 ‘ 4 5 7
(Repaired) Sym || 15,2 |[BPs| | 7,73 |BPg| 6.00 5,61 4,20
Bounds Asym 8.59 6,00 4,50 4,00 3,60
Using Th. A | Sym 10,0 7,50 5,33 5,21 4,08
and Tab. 2.1 Asym 7, 00 — — — —
Adding Sym — 5,42 — 4,74 —
Th. B Asym — 5,20 — — —

S 7 — 4.24 — —
Conj. X yi
Asym 5,83 — 3,89 — —
S 2 — 4,34 :
Conj. Y ym 6,9 5,39 .3 3.63
Asym — 5,14 — — 3,97
Conj. 7Z Sym — — — 4,00 3,60
Results used \¢ 8 9 11 52
(Repaired) Sym 3.71 3.77 3.56 3
published
bounds Asym 3,50 3,43 3,33 2,67
Using Th. A | Sym — — - -
and Tab. 2.1 Asym — [ — I
Adding Sym — 3.56 — —
Th. B Asym - - - -
Conj. X Sym — — — —
Asym — — — —
Conj. Y Sym 3.58 — 3.55 —
Asym — — — —
Conj. 7Z Sym — — 3,33 2,67
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reason being that they actually cannot be considered as proven. They appear
in [CCXY, Theorem IV.6, Theorem IV.7, Corollary IV.8], [CCXy, Theorem
5.18, Corollary 5.19] and [PR, Theorem 5.3, Corollary 5.4, Corollary 5.5]|.

_ Indeed they rely on Conjecture Y, which would imply many values of
Ar(q).

Nevertheless we have already tried to take into account the theoretical
improvements made by these articles in the lines "published bounds", which
explains the adjective "repaired". So we re-used as much as possible the
proven statements in the aforementionned articles®. And applied these state-
ments with the parameters allowed by? (2.2) and (2.3).

Remark 2.11. There seems to be room for immediate improvement of the
bound M;*™ < 10,0. Indeed if the following conjectural upper-bound did
hold : p2(2,6) < 39 (instead of 42), then the criterion (b) of Theorem A
applied to (r,1) = (2,6) would imply M, < 9,75. Our reason to believe
the above conjectural bound to be accessible, is the fact that it could be
deduced from a conjectural p(1,6) < 13 (instead of 14), which is in the
range of exhaustive-search methods. Moreover the value 14 is also an upper
bound for the harder complexities us(1,6) and p4(6,1). So the conjectural
upper-bound seems credible.

Remark 2.12. The additional column for ¢ = 5% emphasizes the record of
longevity of the published symmetric bound (which still holds). Indeed,
although it had never been stated numerically, the bound can be directly
deduced from a formula of Ballet—Pieltant, which is based on an argument
as old as 1999. This exception will be discussed in remark I1.3.2.

Asymptotic lower-limit bounds in finite fields extensions

The following table gathers both (i) the best known upper bounds for the
lower-limit symmetric complexities m$*™, for small values of ¢ (see [CCXy],
V, table II), and (ii) in certain cases, proposes slightly better asymmetric
counterparts (in bold)®:

3but without the additional generalities enabled by Theorem A in the cases the results
were not stated as such

4 Arising from the well-known dense families of Shimura curves recalled in I11.2.3. Which
include the classical modular curves over prime fields as a special case

5Use the towers of Theorem II1.2.5 for ¢ = 27 and ¢ = 32, and Shimura curves for
q = 16.
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Table 2.3: (new)-Upper bounds for m, and m$™
e 2] 3] 4] 5[ 8
mg™ 5,834 | 5,143 | 3,889 | 3,903 | 3,500
mq 5.834 | 5143 | 3.839 | 3.903 | 3,500
a9l 16| o5 2r| 32
mg™ 3,429 | 3,026 | 2,779 | 3,120 | 2,667
mg 3,429 | 3,000 | 2,667 | 2,909 | 2,625

The fact that the symmetric bounds are close to the asymmetric ones, is
due to the versatility of the lower-limit measure (or, said otherwise, its low
accuracy), that enables it to be computed on fewer (and more advantageous
values) : see I1.3.3. However there is still room for improvement :

Remark 2.13. Suppose that one could bring down to 17 (or 18) the upper
bound for p(7,1) (the bilinear complexity of multiplication in Fyr), which is
so far known to be somewhere between 17 and 22. Then the upper bound for
the asymmetric complexity my would be brought down to 5,426 (or, resp.,
5,745). This would follow from the use of the Bassa & al. [BBGS| tower
over Fyr (using the trick of Lemma I1.3.4).

2.4 Effective aspects

Consider a fixed extension of finite fields with a small prime field, e.g. Fom /Fy
—with m not too small—and a fixed curve X of genus ¢g. Then the equation
(1.11) (in the §1.3 below) implies that there exists a multiplication algorithm
by interpolation on the curve X, that uses 2m + 2g + 3 interpolation points
(with degrees and multiplicities).

In practice one can expect that fewer points are needed —and thus to
get a smaller algorithm—for the same degree m. To start with, Proposition
VII.3.4 states that one cannot expect an algorithm with fewer interpolation
points than 2m + g — 1.

Then the search algorithm of Proposition VII.3.6 enables to construct
such an optimal multiplication algorithm, whenever it exists.

And it does exist in practice, at least always on the examples that we dealt
with. The following Table 2.4 compare the previous bounds of [BBT] for the
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bilinear multiplication in the binary extensions of [NIST]|, with our bounds
obtained with the classical modular curves. The data is a compression of
Tables VII.4.1 and VII.4.1.

Table 2.4: New effective upper bounds in the NIST extensions Fom /Fy

om || 163 || 233 | 283 | 409 | 571 |
before | 906 1340 | 1668 | 2495 || 3566
after || 900 | 1335 | 1654 || 2486 | 3555

As pointed in the final paragraph of VII.4.2, these computations date
back from 2014. They could be improved today by using quotients of Atkin—
Lehner and also one of our Shimura curves from Theorem B.



Chapter 11

Proofs of Theorem A and
numerical bounds, more on
Conjectures X and Z

1 Proof of Theorem A

1.1 Reminder of the general multiplication algorithm
Framework

Let us formalize the objects involved in the description of §1.2. A curve X
will always be assumed projective, smooth and geometrically irreducible over
F, (here often F, with p prime). Given a divisor D on X, let O(D) be the
sheaf of sections of D. Let (D) and i(D) (the index of specialty of D) be
the dimensions of the F-vector spaces, of global sections H°(X, O(D)), and
of HY(X,O(D)). So that the theorem of Riemann-Roch states itself as :
[(D) —i(D) =deg D+ 1 — g, where g is the genus of X.

More particularly, given P a closed point of X of degree n, D a divisor
and [ a positive integer, we will need the following map : the evaluation of
a global section of the line bundle O(D) at the thickened point P which
takes values in Fyn[y]/y'. Let tp be a local parameter at P : multiplication

by ty ®) provides a local trivialization of O(D) at P, and thus an evaluation

24



1. Proof of Theorem A 25

map':

€vQ L(D) —)OXVP/(Z%IP)
f —>t1])3P(D)fp mod (t5)

(1.1)

The target space maps itself isomorphically to the F-algebra F.[y]/y'.

The general algorithm

The following theorem states sufficient conditions for the algorithm of §1.2
to hold, and draws the consequences on the symmetric bilinear complexity
of multiplication in finite fields.

Theorem 1.1 (|[Ran,|, Theorem 3.5). Let X be a curve of genus g over F,
and let m,l > 1 be two integers. Suppose that X admits a closed point () of
degree deg Q = m. Let G be an effective divisor on X, and write

G=wP +  +u.P,

where the P; are pairwise distinct closed points, of degree deg P; = d;. Suppose
that there exist two divisors Dy, Dy on X such that:

(i) The natural evaluation map

L(D1 + Dg) — H Ox(Dl + D2)|

i=1

1S 1njective.
(ii) The natural evaluation maps
L(Dl) — Ox(D1)|Q[z] L(Dg) — OX(DQ)lQ[l]

are surjective.

Then

(1'2) :uq(mJ) < ZMQ(dhui)'

=1

! This map was first built, at least for the purpose, in its full generality in [Ran;, remarks

3.4-3.6]. We just corrected the signs of t;UP(D) in the reference.



Chapter II. Proofs of Theorem A and numerical bounds, more on
26 Conjectures X and Z

In fact we also have py(m, 1) < p(ITi, Ay(disu;)/F,). Moreover, if Dy = Ds,
all these inequalities also hold for the symmetric bilinear complexity pu*¥™

Sufficient numerical criteria for the hypotheses above to hold can be given
as follows. A sufficient condition for the existence of QQ of degree m on X is
that 2g +1 < ¢~ V/2(¢g"/2 — 1), while sufficient conditions for (i) and (i)
are:

(") The divisor Dy + Dy — G is zero-dimensional:
I(Dy + Dy — G) = 0.
(ii") The divisors D1 — 1Q and Dy — lQ are non-special:
i(D; —1Q) =i(Dy —1Q) = 0.

More precisely, (i) and (i’) are equivalent, while (ii’) only implies (ii) a priori.

Interesting particular situations
The first corollary is straightforward :

Corollary 1.2 (|[Ran;, Proposition 5.1|). Let X be a curve of genus g over
F,, and let m > 1 an integer.

Suppose that X admits a closed point Q) of degree deg QQ = m (a sufficient
condition for this is 2g + 1 < ¢m~V/2(¢"/2 - 1)).

Suppose also that X admits a non-special divisor S, of degree g+e—1, for
an integer e as small as possible (hence e < g by the Riemann-Roch theorem).

Consider now a collection of integers ng, > 0 (for d,u > 1), such that
almost all of them are zero, and that for any d,

na=» ngu < By(X/F,).

Then, provided

anﬂdu >2m+2e+2g—1
d,u

we have
pa(m) < ngupy(d, u)
d,u

and likewise

Sym ) < an u,usym (d,u)
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The next criterion is both sharper, and the proof actually provides an
explicit construction of such a symmetric multiplication algorithm.

Theorem 1.3 ([Ran;y, Proposition 5.2 ¢)|). Let X be a curve of genus g over
F,, and let m > 1 an integer.

Suppose that X admits a closed point QQ of degree deg Q) = m (a sufficient
condition for this is 2g + 1 < ¢m=V/2(¢g/2 —1)).

Consider now a collection of integers ng, > 0 (for d,u > 1), such that
almost all of them are zero, and that for any d,

na=» nau < Ba(X/F,).

Suppose also

an,udu >2m+g— 1.
d,u

Then: if | X(F,)| > bg, we have

e (m) <Y naup™(d, ).
d,u

Moreover, suppose X and Q) are given explicitly, that 5g + 1 points of degree
1 on X are given explicitly, and, for any d, that ng points of degree d on
X are gien explicitly. Suppose also that for each d,u such that ng, > 0,
we are giwen explicitly a symmetric multiplication algorithm of length 14, for
A,(d,u). Then, after at most 5g* computations of Riemann-Roch spaces on
X, we can construct explicitly a symmetric multiplication algorithm of length

Zd7u nd,uld,u fOT’ Aq(m) .

Remark 1.4. Although the previous criterion requires many points of degree
one , it seems in practice that only one or two points of degree one are
needed to build the divisor D (see the example in §VII1.4.2). So it would be
interesting to quantify the fact that the "favorable cases form a dense subset
of points".

The following criterion states the existence of an asymmetric algorithm
on every given curve X, such that this bilinear algorithm is essentially the
best that one could expect from this given curve X, by Proposition VIIL.3.4.
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Theorem 1.5 (|[Ran;, Proposition 5.7|). Let X be a curve of genus g > 2
over F,, where ¢ > 2 is any prime power, and let m,l > 1 be two integers.

Suppose that X admits a closed point Q) of degree deg Q) = m (a sufficient
condition for this is 2g +1 < ¢ 1/2(g"/2 - 1)).

(Fiz e, = 2 in the original statement, for simplicity).

Consider now a collection of integers ng, > 0 (for d,u > 1), such that
almost all of them are zero, and that for any d,

ng = anﬂ S Bd(X/Fq>

Then, provided
an,udu >2m+g+5,
d,u

we have
Mq<m> < Z nd,ulufq(da u)
d,u

1.2 Generalizing in Theorem A the existential crite-
rions of Shparlinsky—Tsfasman—Vladuts—Ballet and
Cascudo—Cramer—Xing

The next two consequences state the existence of a symmetric algorithm, by
an existential argument for divisors D satisfying (i’) and (ii’) of Theorem
1.1. See the introduction of [Rans| and [CCX, §4 Theorem 6| for a general
discussion on such systems of divisorial equations.

The first one was stated by [STV, Claim p159-160], and later [Bal;, Prop
2.1] gave an elementary proof as (but with the additional assumption that
q > 7). However, as first noticed in Cascudo’s PhD thesis, both arguments
actually require that the divisor group has no 2-torsion (in order for the map
D — 2D to be injective).

Theorem 1.6. Let ¢ a prime power and m > 1 an integer. Suppose we are
given a curve X of genus g > 2 over Fy, with Jacobian J=Cly(X), such
that the rational class group J(F,) contains no rational divisor of 2-torsion.

Consider now a collection of integers ng, > 0 (for d,u > 1), such that
almost all of them are zero, and that for any d,

ng = an,u < By(X).
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Then, provided

anmdu >2m+ g — 1,
d,u

we have
,uq(m) < Z nd,u,uq(d7 u).
d,u

We skip the proof, because it can be seen as a particular case of the
proof of the next theorem [set (ClyX)(F,)[2] to zero and (instead of using
Proposition 1.8(iii) for degree i = g — 1 as in [Bal;| Prop 2.1) remove the
log,(2) term in R, to be able to conclude even when ¢ < 7].

The following theorem does control for 2-torsion in the worst case. It is
a straight generalization of [CCXy, Theorem 5.18]. The parameters will be
specified in the next paragraph to derive criterions for asymptotic bounds,
then further specified in §3.2 2.

Theorem 1.7. Let X be a curve of genus g over ¥, where ¢ > 2 is any
prime power, and let m > 1 be an integer.

Suppose that X admits a closed point QQ of degree deg Q) = m (a sufficient
condition for this is 2g + 1 < ¢ =V/2(¢g!/2 — 1)),

Consider now a collection of integers ng, > 0 (for d,u > 1), such that
almost all of them are zero, and that for any d,

ng = an,u < By(X).
Let R the smallest integer such that

(1.3) R > g(1+1log,(2)) + 2m + 3log, ( +2 (if 2|q)

(1.4) R >g(1+2log,(2)) + 2m + 3log, ( + 2 (otherwise).

3qg )
(va—1)?
Then, provided

(1.5) > ngudu> R

d,u

2This presentation also avoids the choice of parameters used in the original theorem
because they are not always proven to be valid (see the comments after Conjecture Y)
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we have

prg(m) < an,uﬂq(da u).

d,u

The following proposition gathers the upper-bounding made in the proof.
The first two follow from [M, p. 39 (or p. 64)]. Whereas the third one is
borrowed from |[CCXgy, Proposition 3.4].

Proposition 1.8. Let F, be a finite field and X a curve over F, of genus
g > 1. Let J be the Jacobian of X and J(F,) the rational class group.

(i) If q is odd, then J(F,)[2] < 229
(ii) If q is even, then J(F,)[2] < 29

(iii) Let h be the class number of X and, for any integer i with 0 < i < g—1,
A; the number of F,-rational effective divisors of degree r. Then

A; g
h

¢ Vg —1)

Let us now follow the original proof of the theorem [only in the case ¢
even, the odd case being identic modulo using upper-bound (i) instead of

(ii)]. Adding the terms —log, <(\/2+g1)2) and 2¢(1 —log,(2)) to both sides of

<

the inequality (1.3) reads :

3
29+2m+210gq ( Sg(l—logq(2))+R—10gq ( igl)Q) —2

3qg )
(Va—1)? Vi
Thus there exists an even integer 2d between the two sides of the previous in-

equality. Raising ¢ to the inequalities LHS < 2d and 2d < RH S respectively
gives:

1

(1.6) J <=
qQ*(QQ*d+m)*1(\/a— 1)2 3

29 1

(1.7) g9~ CER-1( /g —1)? = 3

Using the upper-bound (ii) in the previous proposition, and combining the
two inequalities (1.6) and (1.7) above with the upper-bound (iii), yields

2
(18) h > gh > AQQ_d+m + J(Fq)[2]A2d_R
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Now let us choose a collection of pairwise distinct thickened points {P} on
the curve X such that, for each (d,u), there are exactly ny, points among
them of degree d and multiplicity u (this is possible by assumption). Let G
be their divisorial sum and @) a closed point of degree m as in the assumption.
G being of degree greater than R by assumption (1.5), the general criterion
of [CCX, §4 Theorem 6| along with the inequality (1.8) imply the existence of
a divisor D = X of degree d that satisfies the following system of Riemann-
Roch spaces vanishing conditions (with K being the canonical divisor of X):

(1.9) (K—X+Q)=0
(1.10) 12X —G) =0

Thus criterions (i’) and (ii’) of Theorem 1.1 are satisfied with the divisors G
and D.

1.3 Generalizing the bounds of Ballet: (a’)(ii)—Pieltant:
(b), Randriam: (a) - (a’)(i) and Cascudo—Cramer—
Xing: (c) - (c’)

Let (X;)s be a dense sequence of curves over F, vAv/ith genera ¢ Ngrowillg to

infinity, and a ratio of points of degree r matching A,.(q). Noting A, = A,(q),
this reads :

(d2) BT‘(XS) = Avrgs + 0(95)
(d?)) gs = gs—1 + 0(95)

Let us prove first the bound (b), which generalizes [BCP, Proposition 11],
but whose arguments were already introduced in [BP, Theorem 3.2|. Given
an integer n, let s(n) be the smallest integer such that

(1.11) TZBT(XS(n)) - 295(71) > 2n+ 3.

(d2) makes clear (or anyway it will be in the following equivalences), that
such an integer s(n) exists as soon as the denominator in the criterion (b) of
Theorem A is strictly positive.
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Moreover g being large enough, [BRR, Proposition 4.3 and Remark 4.4]
state in general the existence of a zero-dimensional divisor of degree g — 5 on
X,(n)- Thus the existence of a non-special divisor R of degree (lower than)
g+ 3.

Therefore, Corollary 1.2 applies to (1.11). Taking all ng, null except n,.;
equal to B, (X)), this reads :

(1.12) pe ™ (n) < g™ (r, D) By (Xomy)-

q

Let us now tie the asymptotics behaviors of gy,) and B,(Xu)). The
minimality of s(n) satisfying (1.11) implies :

7nlBr()(s(n)) - 2gs(n) >2n+3> TZBT(Xs(n)fl) - 2gs(n)71

Dividing the two inequalities by gs)—1, and applying the asymptotic equiv-
alences (d2) and (d3) (and (d1)) yields :

2n

P o(1) > rlA, — 2+ o(n)
s(n)

rlA, — 2+ o(n) >

hence the asymptotic equivalence :
2n + O(n> = (TZAT - 2)gs(n) + O(Qs(n))

(which implies in particular that o(n) = 0(gs@))). One can now divide both
sides of the upper-bound (1.12) by the previous equality :

0t i
n o (rlAr - 2)gs(n) + O(TL)

Multiplying and dividing the RHS parenthesis by rl, then subtracting and
adding 2g,(,) to the numerator of the RHS, gives the result by letting n tend
to infinity.

The asymmetric (a), and symmetric bounds : (a’), (c) & (¢’) are derived
similarly from the other generalized criterions stated above. Indeed, given
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an integer n, consider s(n) be the smallest integer such that, respectively :

(1.13)

B (X)) — gsny = 2n + 5 for (a)
(1.14)

rIBr(Xsm)) — gstn) = 2n + 1 under either condition (a’).(i) or (a’).(ii)
(1.15)

3 s(n .
1B (Xs(ny) — (1 +1og, 2)gsm) > 2n + 3log, < 995 2) + 3 if 2|¢ for (c)

(Va-1)
(1.16)

3 s(n .
TZBT(XS(H)) —(1+ 21qu 2)95(71) > 2n + 3log, < 48(n) 2) + 3 otherwise for (¢’)

(Va—1)
Similarly, such integers s(n) exist as soon as the respective denominators
in equations (a), (a’), (c¢) and (c¢’) are strictly positive. Then apply the
following criterions with all the ng, null excepted n,; = B, (X))
Th. 1.5 for upper-bound (1.13), Th. 1.3 for upper-bound (1.14)(i), Th.
1.6 for (1.14)(ii), and Th. 1.7 for both (1.15) and (1.16).

2 Known asymptotic ratios of closed points

2.1 Many F -points means many points of degree r

The following fact is possibly well-known. The proof given here reproduces
the arguments of [CCXY].

Theorem 2.1. Let (X, /F,) be a family of curves over a finite field F,, with
genera gs tending to infinity. Let r > 1 be an integer, and B,(X) the number
of closed points of degree r. Then the following assertions are equivalent :

Xs(Fyr
0 XFo)l
gS S§—00
B, (X mr—1
gS §—00 T

The demonstration is based on the following lemma, which itself is a

consequence of the generalization by Tsfasman of the bound of Drinfeld—
Vladuts.
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Lemma 2.2 ([CCXY, Lemma IV.3]). Let (X,/F,), be a family of curves
over a finite field ¥, with genera gs tending to infinity. If for some m > 1,
one has

1 iB;(X5)
2.1 lim — —2>1
21) S 2 1 2
then

B, (X
(2.2) lim mm—<s) =q¢m/? -1

Now, let (Xj), a family satisfying the hypotheses of the theorem. By the
identity X,(Fgr) = >y, iBi(X;), one gets
1 &iBi(X,) .. 1 iB;i(X,) , X, (Fy)
— > — — _s\a)
23) Jix 9s 2 ¢ —=1" 2 9s Z G =1 s g (¢ 1)

i=1 i|r

=1

Thus, the inequality (2.1) of the previous lemma is satisfied, so the conclusion
of the theorem follows.

2.2 Non-necessarily dense families

Being defined with equations in the prime field, the tower of Garcia-Stichtenoth
naturally descends :

Theorem 2.3 (Garcia-Stichtenoth [GS], descended over the prime field). Let
q=p" be a prime power and Fy = F,(x1) be the rational function field over
F,. Forn >1, we set

Fn+1 = Fn(zn+1>
where z,.1 satisfies the equation
(2.4) Zn + 2 = 28

with
Ty = 2n)Tp_1 € Fy, (forn>2)

Then (F,) is a sequence of function fields such that when n tends to infinity,

|Fn(Fp2’")| /Q(Fn) —p =1
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Proof Let K be the field F 2 and (K.F,) the tower of fields with constant
field K defined by equation (2.4). These are the fields considered in [GS|
(definition 0.1), whose asymptotic ratio of K-points equal to p” —1 (corollary
3.2).

What remains to be checked is that for each n, the extension degrees
|11/ F,| are preserved after constant field extension by K. But the rec-
curence argument of loc. cit. done in Lemma 2.1 and Prop 1.1 (and con-
cluded in Lemma 2.2), shows in particular that for each n, the polynomial
of equation (2.4) : 2!, | 4+ 2,41 — 24t! is irreducible over K.F),. Thus is also
irreducible over F,. O

By Lemma 2.2, the previous theorem implies that

Corollary 2.4. For all prime power q and r an integer such that q" is a

square, one has
Vv =1
Arq) = ,

When ¢" is not a square, the values of A,(q) as still unknown. But lower-
bounds benefited from recent progress: on the one hand for prime fields ¢ = p
and points of degree one (see [HS| for a survey):

Table 2.1: Lower bounds for A;(p)
 p || 2mpM] [ 3pM] || s(aM] || 7Hs] || 11 [HS] || 13 [LM] |
| Aup) || 0,317 || 0,493 || 0,727 | 0,923 | 1,14 | 133 |

On the other hand for any odd prime power ¢ = p*™*! such that m > 1,
Bassa—Beelen—Garcia—Stichtenoth produced an explicit tower that sets a new
lower bound for the number of points of degree one :

Theorem 2.5 ([BBGS]).

ml —1
P with € = P

2.5 A (pPmtly >o08  ©
(2.5) 1(p ) 2 p+lte 1

Notice that the case ¢ = p® had been firstly announced by Zink [Zi].
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2.3 Dense families

[Thay| showed that Shimura curves do provide, for any finite field, dense
families of curves with many points over a quadratic extension. For our
purpose, the explicit work [Duc| provides at least all the equalities As(q) =
(¢ — 1)/2 needed in Tables 2.2:

Theorem 2.6. For any prime power q such that : { there exists a number
field F' and a principal prime ideal p in F' above p, generated by a totally
positive element, of norm ¢ = N(p) }. Then

~ g—1

As(q) = o

Proof The existence of a family over Fy, with an asymptotic ratio of F -

points equal to ¢ — 1, will be stated in theorem V.5.4. Theorem 2.1 thus
implies that the ratio of points of degree two is (¢ — 1)/2.

The density of the family will be stated in Corollary IV.2.2 (avoiding here

the negligible set of disciminants and levels divided by p). O

3 About the new numerical bounds

3.1 For small binary algebras, in Table 2.1 of §2.3

In the following Table 3.1, we attempt to give references or explanations for
some bounds of Table 2.1 in §2.3. We do not claim to always giving credit
to the first discoverer, nor to the most efficient method. In particular, the
inequality p™(m, 1) < uf]ﬁm(e,l)uq(d) (see e.g.[Ran;, Lemma 4.6]) is often
used. For the upper and lower bounds that are new, up to our knowledge,
we provide more details about how they were established in VII.2.

The exact formulas for the three new upper bounds used here are given

in the annex A.2 : for us(3,2), pna(1,4) and p4(1,5).

Remark 3.1. We would like to point here an error in our article [Ra, Table 1]
in which these bounds were first published. The best known upper-bound for
ps ™ (1,10) is actually still 31 as in [COs, Table 2|, not 30 as claimed. The
new bound being actually p5™(2,5) < ui™(1,5)u2(2,1)™™ = 10.3 = 30,
with our contribution being the exact value p;™(1,5) = 10. This value was
already claimed in [Ra, Table 2| at entry (1,10), although the upper-bounding
in which it was used was then grossly false.
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Table 3.1: Origins of the bounds for ps(m, 1) in Table 2.1

ps ™ (my, 1) Upper bound EJSZVES
5,1
( ) ) [MOII] [BDEZ]
(6,1) < ™ (3)ps™(2) (first factor : by interpolation
’ over Py [BDEZ]
7,1
( ) ) [MOII] [BDEZ]
(8,1) < ™ (4)ps™(2) (first factor: [COg] but unknown
’ original contributor)
(10, 1) < ™ (5)ps™(2) (first factor: [COyp| but unknown
’ original contributor)
1,5
( ) ) [Oce] [BDEZ]
1,6
( ) ) [Oce] [BDEZ]
(1,7) [Oce] (proved valid over a general ring, in [COs]) [BDEZ]
1,8
( ) ) [COZ] [BDEZ]
1,9
( ) ) [COQ] [BDEZ]
(1,10) < ™ (1, 5) ™ (2), the first factor being equal
’ to 10: c.f. A2
(2,2) < pg (1, 2)p5™(2) new
(2,3) < pg " (1,3)p™(2) new
(3,2) new new
(2, 4) < p™(1,4)p™(2), the first factor being equal
’ to7:ctf. A2
(4,2) [Ran|, inequality (94)
(37 3) szm(L 3)M2(3)

37
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3.2 The upper limit bounds M, in Table 2.2 of 1.2.3

The table 3.2 below justifies the upper bounds for the M, stated in table 2.2.
The explanation consists in the criterion of Theorem A used, along with the
parameters (7, 1) chosen. These parameters are chosen:

e within the previously known values for dense families (see section §2.3)
in the lines "published bounds" and "Theorem A";

e whereas more parameters are allowed in the lines below (the new values
stated by Theorem B, then by Conjecture X and finally under the more
general Conjecture Y);

e The line assuming Conjecture Z needs not assuming any of the previous
new values (neither Theorem B nor the two previous conjectures).

Remark 3.2. On the face of it, the symmetric bound for ¢ = 52 directly
results from the formula of the proposition 10 in [BCP|. Although the authors
themselves did not compute it numerically. It seems that they thought that
it would be beaten by the bounds of [CCXj,| (see the discussion of the authors
following theorem 14, where they only mention the cases ¢ > 5).

But actually, the proposition 10 actually relies on results from 1999
(|Balj]: lem 2.2=>1.1=>cor 2.1). They are based on a coding-theoretic
argument. It consists in removing points from the interpolation divisor G,
while still preserving injectivity of the evaluation map £(2D) — L(2D — G).
So this trick only works for points of degree 1 and multiplicity 1, and does
not seem cheaply generalizable.

Finally this upper-bound runs between the drops of every further im-
provements. First because the value of 25 = p? is below the threshold of
p? > 49 of Theorem A (a’), that would ensure an even lower complexity.
Last because ¢ is odd [so the 2-torsion rank of the Jacobian is only upper-
bounded by ¢% in A (¢’)]®. Nevertheless, solving conjecture Z for p = 5 could
remove the problem of 2-torsion and enable to improve the bound.

3.3 The lower-limit bounds m, in Table 2.3 of §2.3

Remark 3.3. The morals of this part is that the lower-limit measure mostly
tgnores both the issues of two-torsion, and of the field of definition of the

3To illustrate this point, observe that if 25 were even, then the torsion upper-bounding
@9 would provide the slightly better bound 2, 87 for M5
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Table 3.2: Origins of the bounds for M, in table 2.2
Results used \q 2 3 4 5
(Repaiced Sym | [BPy) BR[| (02D | (© 21
ounds Asym [PR]5.]irop [PR;I;mp (a) (2,1) (a) (2,1)
Th. A and Sym (b) (2,5) (b) (2,3) (c) (2,2) (c) (2,2)
Tab. 2.1 Asym (a) (2,4) o o .
Adding Th. B |0 - (b) (6:1) — | @)D
Asym - @6 | -
Conjecture X Sym (b) (6,1) — (c) (3,1) —
Asym (b) (6,1) — (a) (3,1) —
Conjecture Y Sym (b) (8,1) (b) (8,1) — (¢") (4,1)
Asym — @@y | —
Conjecture Z Sym — — (a’) (2,1)
Results used \¢ 7 8 9 11 52
(Repaired) (¢) (2,1) (c) (2,1) (c)) (2,1) (¢’) (2,1) | [BPy, Prop
Bounds 10] (1,1)
(a) (21 || (a) (2,1) (@) (21) | (@ &Y | () (1,1
Th. A and (c) (2,2 — — — —
Tab. 2.1 - _ o . .
Adding Th. B - - (¢7) (3,1) - -
Conjecture X : _ _ : :
Conjecture Y (") (4,1) (c) (4.1) _ (c) (4.1) _
(a) (4,1) — — — —
Conjecture Z (a’) (2,1) — — (a’) (2,1) (a’) (2,1)
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curves. Indeed, suppose that we have painfully found a family of curves
defined over a small field F,, with controled two-torsion, and having many
points of degree r. Then the lower-limit can actually equally be computed:

e using the closed points of degree (say r) on these curves;

e or, after a base-field extension of degree r, using the closed points of
degree 1. And moreover, [Ran;, Theorem 6.3]) then allows to ignore
the two-torsion.

The explanation lies in the following property for m, [explained by the fact
that the liminf can be evaluated on fewer —so more advantageous— values|.

Lemma 3.4 (|[STV] Corollary 1.3). For any positive integer r, and prime
power q,

sym (o, '
(3.1) mam < B 2 T( ) sy
(3.2) MP™ < ,uflym(r).M;Xm,

The asymmetric counterparts also hold (removing all the symbols sym above).

Using the previous lemma, the criterions (a) and (a’)(i) (relaxing the
density condition) can then be respectively be applied to ¢". Which implies
the following (apparent) generalization :

Theorem 3.5. Let q be a prime power and r > 1 a positive integer. If

Ai(q") > 1, then
fig(r) 1
< 14 —].
M= ( +A1(qr)—1)

Moreover, if A1(q") > 5, then also m™ < uy " (r) (1 + m)

r

The last statement is used by [CCXs], V, table IT to provide most of the
symmetric bounds in table 2.3. Whereas for the asymmetric bounds, the first
statement is enough.
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4 About Conjecture X

Consider F' = Q(cos(27/7)) and "the" quaternion algebra ramified exactly
at two of the three real places (the three possible choices lead to isomorphic
models). Recall the canonical models over F:

e Xj(1) is uniformized by the (2,3,7) triangle group,

e Xo(ps) was computed in |[EIk06] and is the elliptic curve 147.c1 ([LMFDB]|
labels).

e Xo(p3) is of genus 10 and still unknown. By the first statement of
Theorem V.5.14 it descends over Q.

Among the dimension 10 vector space of Hilbert modular forms associated
to Xo(p32), the Atkin-Lehner stable are of dimension 2 and can be decomposed
into

e the old form of level p3, associated to the elliptic curve Xy(ps) : 147.cl

e a new form of level p2, associated to the isogeny class of the elliptic
curve 441.d2

Now, it is possible to compute the Atkin-Lehner quotient Xy(p3)*, of
genus 2, with the algorithm of Klug-Voight-Willis for modular forms arising
from Fuchsian groups. It has equation:

y? = 1%4-84x2° +4876x2* +1632962° 48726544 /71> —205006722+10355021120/49
which is isomorphic over Q to:

v+ (2P + 2+ 2+ 1)y = 2%+ 62° + 112* + 92° + 112% + 62 + 1

We check with the algorithm of [CMSV]—[BSSVY] that the Jacobian of
this curve is, as expected, Q-isogenous to the product of

e 147.c2, itself Q-isogenous to 147.cl,

e and 441.d2.
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5 About conjecture 7Z

Here is a sketch of proof of equation (2.6) (we follow the arguments of [Shs,
§7.5], see also [Duc, Prop IV 2.6] for the general case with Shimura curves).

Proof Let p be a prime, N a positive integer prime to p, Xo(/V) the classical
modular curve over the rationals, endowed with the Hecke correspondence
T, on divisors. Then Igusa’s theorem states that there exists a good re-

P

duction Xy(N) over F,, compatible with the moduli interpretations. The
relation of Eichler—Shimura [DS, §8.7 and exercice 8.7.2| states that the cor-

respondence T}, reduces to a divisorial correspondence fp on Xo(N), which
can be expressed as follows. Let o, be the geometric Frobenius divisorial

correspondence Xo(N) and o, its transpose. Then

T, = 0p+ 0,
Let us remind some general curve-theoretic results:
(i) by the construction of the Jacobian, the correspondence o, induces the

—_—~—

geometric Frobenius endomorphism o, on J = Jac(Xo(N)). Similarly, the
transposed correspondence o, induces the Rosati-dual of the previous O'BJ).

(ii) the composition a}p o0y, equals the endomorphism [p| of multiplica-
tion by p.

(iii) the cardinality of ‘J(Fpg)’ is equal to the degree of the endomorphism
Id — o7, (see the proof of [MilAV, IT Th. 1.1]). Letting [ # p be any prime
distinct from p, T} be the Tate (2g-dimensional Z;-) module of J and oy, the
induced morphism on T}, then by the general relation [M, §19 th. 4], the
degree considered above is equal to the determinant det(Id — o7,|T;). So :

‘J(sz) = det(Id — 02, |T)).

(iv) The following modular forms-theoretic result will be used. Let T}, g
be the complex endomorphism of the homology H;(Xy(N),C) induced by
the Hecke correspondence T;,. And T, the induced endomorphism acting
on the —twice smaller— space of level 2 cuspforms Sy(I'o(N), C). Then it is
possible to choose a basis of Sy(I'g(N), C) (made of cusp forms with rational
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coefficients) such that the matrix of T, o has rational coefficients [Ste, Lem.
3.25].

(v) Noting T, ; the endomorphism induced by the correspondence T;, on
the Jacobian J = Jac(X((N)), then the Z;-linear endomorphism 7}, ; induced
on the Tate module T;(J) actually coincides with the rational representation
of T, ;. In particular up to a base change, its matrix is equal to the direct
sum of the matrix of 7}, ; and its conjugate. Both summands are equal, when
choosing a rational basis as in (iv). Moreover the Z;-linear endomorphism
ﬁ;, induced on the Tate module YN} by the reduced endomorphism TZ], is
actually equal to T,,; by [Shy, §11 Prop 14].

We can now prove (2.6). Let a; be the 2g eigenvalues of 0;,. Let T}, be
the morphism induced by 7}, on the Tate module 7;(X,(N)) (an unfortunate

notation), and its counterpart for the reduced Jacobian : T}, the morphism
induced by T}, on T;. By (5), it suffices to prove the equality :

det (p* — T, + 1|So(To(N))) = det (1 — o7, |T1).

Firstly, the relation (5), the identification (i), formula (ii) and property
(iii) immediatly imply :

det(1 — o2, )det(1 — (o] )2) = det(1 + p2 — T, |T)

But (a) the caracteristic polynomials of 0, and of its Rosati-dual o7,

being equal, and (b) the Z;-adic endomorphism m actually being equal to
the direct sum of the rational morphism 7, (on the space So(I'o(N),C))
with itself [by (iv) and (v)], one obtains the square of equation (5) :

det(1 — 02,)? = det (1 + p> — T2,|So(To(N), C))".



Chapter 111

Conditions for friendly quaternion
algebras and Shimura curves

1 Goals and conventions

1.1 Goals

Although this chapter contains essentially well-known facts on quaternion
algebras, its purpose is to clarify some points:

- The two connected Shimura curves X (91) and Xo(91) coincide only
when the narrow class number of F' is one (Proposition 3.2). Only the
former is known to have a canonical model with many points (see V1.4
for an interesting example where they do not coincide). Whereas the
latter, although being more computational-friendly as a complex curve,
has in general several possible canonical models (see [Sij;, below Prop
3.2.4]).

- The group of Atkin—Lehner is defined by equation (4.4). The issue of
§111.4.2 is that in the setting of this thesis, the group boils down to
equation (4.3).

On the contrary in the general case (without the narrow class number
one assumption), the group of Atkin-Lehner can be strictly bigger.
This is described in the references given in Footnote 3 in Proposition
4.1. This extra-complexity can happen even if the Eichler order is of
level a power of a prime ideal;

- Corollary 2.5 gives a sufficient criterion for all Eichler levels of given

44
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level to be conjugate (see [Sij;, Proposition 2.6.2] for a thinner classifi-
cation). This allows the descent data of Theorem V.5.11.
- The purpose of this last section, about §II1.5. is threefold:

- to explain how the PSLy(R) of a finite localdef:narrow ring R acts
on the set P!(R): Lemma 5.2. This is the key to the monodromy
computations of §V.3.2;

- to provide the index-counting results Propositions 5.4 and Corol-
lary 5.6. Notice that the latter could actually be obtained imme-
diatly from strong approximation;

- and to stress that the congruence subgroup that has a Galoisian
meaning: ['(M), can be strictly bigger than the classical principal
congruence subgroup I'(). This happens when the norm of 91 is
even.

Stressing this fact is the sole purpose of Proposition II1.5.7, which
is not used anywhere else in the thesis.

1.2 Conventions

Definitions are done with the defined object on the left-hand side of the
equality defining it. A superscript dot to an algebra A, e.g. A", stands for
the subgroup of invertible elements for the multiplication. The cardinality
of a set X is noted | X].

Let F' be a number field with ring of integers Zy and Pr the set of finite
places of F'. The norm of an

Let B be a quaternion algebra with center F'. Every element x € B
has a trace t(x) and a norm n(z), the former being additive and the latter
multiplicative.

For example in the interesting case for this work where B is a (non-
commutative) field, every element x € B lies in a quadratic subfield F' C L C
B, so has a munimal polynomial over F', such that the standard involution
x — T swaps its roots. The trace and norm in L/F coincide with the
previous.

Let B, be the completion of B at a place v of F. Let ® be the finite
discriminant of B, i.e. the product of the finite places p which ramify B,
i.e. for which B, is a field. Recall that the total number of ramified places is
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even, by the reciprocity law for the Hilbert symbol (|Vig, Propriété II p75|
or [Vois, Theorem 14.6.1]).

An ideal is a Zp-lattice of B. A (Zg-) order O is an ideal which is a ring
or, equivalently, an ideal integral over Zp (see also [Voi;, Lemma 10.3.7]).

An ideal I is invertible if and only if the completions /, at each finite place
p are locally principal, generated by an invertible element ay, (see [Vois, Main
Theorem 16.6.1]). An ideal I is two-sided if and only if it has the same left
and right order O. An FEichler order is the intersection of two maximal
orders. The completion Oy of an Eichler order O at p|® being equal to the
unique maximal order of B,, the level 0N of O is automatically prime to D.

Definition 1.1. Let cor be the set of infinite real places of F', cop the subset
of real places which ramify B and O an order. Define:

- the totally positive subgroups F* C F" and Zp C Zy, and the larger
groups F'p and Zp g, which are the invertible elements which are totally
positive at cog, respectively at cop;

- the narrow class groups Cl(oor) and Cl(cop) of ideals modulo the
principal ideals generated by elements in F'*, respectively in Fg;

- the narrow class number h™ = |Cl(cor);

- the narrow class field F, = F(ocor), which is the corresponding abelian
extension;

- the totally positive subgroups BT and O, of invertible elements, re-
spectively units, of norm in F'7;

- the narrow classes of ideals C1*(O) and Cl; (O), as quotients of: invert-
ible two sided O-ideals, respectively invertible right O-ideals, modulo
principal ideals generated by elements in BY;

- the subgroups of norm one B! and O

It is assumed that B has at least one split infinite place v.

2 Classes of Eichler orders and of ideals

2.1 Global adelic dictionnary

The split infinite place condition is not necessary here.
Let O be any Zpg-order and define:

o=1] 0.
p

€Pr
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This is an additive subgroup of the following: let F be the ring of finite adéles
of F, then the ring of finite adéles of B:

B=B®pF

is in fact equal to the restricted product of the locally compact groups B,
with respect to the compact subgroups O, ([Vig, 3) p60]).

The lattices in B over Zp are determined by their completions at the
finite places of F':

Lemma 2.1 ([Vig, Proposition IIL.5.1]). Let X be any fized Zp-lattice of B.
Then one has the following bijection of sets:

{ZF—lattices Y of B} (Yp)pePF , Y, lattices of B, such that
Y, = X, for almost every p
v, %),
Y={yeB,yeY, foralp} (Vo)

Fixing an order O, the properties of being an ideal or a two-sided ideal
for O are local, so the bijection also restricts to ideals and two-sided ideals.

Finally, let O be an order in a (possibly local) quaternion algebra B, and
Npg-(O) be the normalizer of O in B". Then the principal two sided O-ideals
PIdl(Q), and likewise the principal O-ideals on the right PIdlg (O), are seen
to be given by the following exact sequences ([Voiy, 18.5.2]):

(2.1) 1 o’ Ng-(0) PIdI(O) 1
ar———— a0 = Oa = 0a0
1 o’ B’ PIdIg(O) 1
ol a0

This enables to give an idelic description of invertible ideals and of their
classes:

Lemma 2.2. Let O be a fized order. Then one has the following bijections
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of sets:
{Invertible right O-ideals} B /O
I such that I, = o, O, H(ap)p
Cl:(0) BT\B'/O"
{Invertible two-sided O-ideals} Ng- (0)/0
I such that I, = 0,0, = Opa, = Opa, O, H(ap)p
CI'(0) Np+(07)\Np+(0")/O"

Likewise, the property of being integral over Zp is local so the bijection
of Lemma 2.1 restricts to orders. Furthermore Lemma 2.1 also shows that
the property of being a maximal order is local, so the bijection also restricts
to Eichler orders. In addition, all the Eichler orders of given level in local
quaternion algebras being conjugate, one can describe the bijection in terms
of local conjugates of a fixed Eichler order:

Lemma 2.3. Let O(MN) be any fived Fichler order of level M and N(g(_‘JT))

—

the normalizer of O(N) in B". Then one has the following bijections of sets:
{Eichler orders of level Mt} B'/N(O(M))

~

O’ such that O = y, ' O(M)pyy ~—— (yu)v € B’

Conjugacy classes of
Fichler orders of level N B\E/N(O/(‘I\t))

2.2 The norm isomorphisms
The cardinality of the previous double quotients can themselves be computed
as class numbers of F:

Proposition 2.4. Let N be an ideal of F, let O be an Eichler order of level
N. Let Fy be the group of elements of F which are of positive norms at oop.
Then the norm induces the bijections:

(2.2) n:ClE(O)=BH\B /O — F\F /n(O")
(2.3) n:B\B"/N(O) — F;\F" /n(N(0))
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Proof We deal with the second statement, the first one being analogous (done
in [Vois, Corollary 28.4.24]).

Firstly, the norm map remains well defined after quotienting on the left
because by the easy way of the norm theorem, n(B) C Fp.

The| surjectivity |at any finite place p follows from the image of the central

term: n(B,) = F,. Let us prove this:

e if p splits B it is immediate;

o if B, is a division algebra, it suffices to show that it contains a ramified
quadratic extension K/F,. Indeed the norm n of B, extends that of
K, so this implies that:

n(B,) Dn(K")=F,.

The existence of K C B, ramified comes from the fact that B, con-

tains at least two quadratic subfields, and that F, has only one unique

quadratic unramified extension by [Seg, II1.§5 th 2|.

For the |injectivity |, notice that we are dealing with a mere map of sets.

Suppose that n(@) = f.n(B)n(h), with f € Fg and h € N(O). The (hard
way of the) norm theorem [Vig, I11.4.1] states that there exists b € B™ of
norm f. So up to multiplying x on the left by b, and on the right by &, one
can assume that n(a) = n(f).

Following [V015, Lemma 28.3.6], let us conclude that there exists z € B’

such that 30" = zﬁ@ Which will be enough, o being itself included in
the normalizer N((’))

There exists z € B” and [ j e O such that 430" = z(BasY).

End of the proof: thus a0 = zﬁu@ = 26(9 o

Proof of the claim: consider the Eichler order O = BN B3OS, B! the
group of ideles of norm one, and B* seen in B! by the diagonal ¢ embeddlng
The subgroup o being (compact) open in the group of idéles B (see |Vig,
Définition p59 2)]), the strong approximation theorem ([Vig, I11.4.3|) states
that B! is dense in B!. One thus has the open cover:

B'O" > B!,

The element aﬁ ! being of norm one, the inclusion above implies the
existence of z € B' and of i’ € O’ such that 33~ = z7’. Conclude with

i=3""0p. O
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Corollary 2.5 (|Vig, exercice II1.5.5] or [Siji, 2.6.1]). Under the same as-
sumptions, if h™ is odd, then there is only one conjugacy class of Fichler
orders of level Nt in B.

Firstly, the RHS of the isomorphism (2.3) is a quotient of Cl(cog), itself
quotient of Cl(ocor). Thus its cardinality divides h*. Finally we claim that

the cardinality of the RHS is a power of two, which implies the conclusion.
The claim comes from the fact that F'* C N(O), hence F"? C n(N(O)).

3 Totally positive units

If O is an Eichler order, then its local description implies that n(@) = Zp.
The leap from local to global then results from the two key theorems of
quaternions algebras, Eichler’'s norm theorem and the strong approximation
theorem:

Theorem 3.1 (|Vois, Corollaries 28.4.20 & 31.1.11]'). Let O be an FEichler
order, and Zpp the integers of F' that are positive at the ramified places of
B. Then

H(O) = ZF,B'

Let O be an Eichler order and OF (respectively Z}.) the subgroups of
units of totally positive norm. Let PB = B"/F" and POt = F'O"/F",
(respectively PO = F*O'/F") be the images in PB of the groups O" and
o

Proposition 3.2 ([Siji, Prop 3.2.1 modified|). The reduced norm induces an
1somorphism of quotient groups

PO*| ~ Zt
PO! Z;?

If furthermore F' is a totally real field, then the cardinality of this quotient
group is equal to the narrow class number h.

Proof Let recall that if G is a group, K <1 G a normal subgroup and H C GG
any subgroup, then the inclusion H — HK induces the isomorphism of
quotient groups H/HN K — HK/K.

1See also [Vig, I11.5.9]. But beware that the choice of zu € O, in the proof of IIL.5.8,
is not obvious unless all Eichler orders are conjugate.
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One considers the subgroups H = O (respectively O') of G = B". Their
elements are integral over Zr C F', so the intersection of these subgroups with
the normal subgroup K = F" is equal to O N Z} (respectively O' N Z1).
One deduces the isomorphisms of quotient groups:

_Fot ot OVZy
- F  O0YNZ, Zj

PO*

FO! ~ o! ~ O'Z;.
F-  O'nZ, Z;

that enable to express the LHS with the isomorphism:

POt ~ O'Z5

PO! O'Z;

PO' =

(3.1)

Let O® be the group of units whose norm is in Z;?.

the natural surjection:

. +7Z;
07 O°Z;

_)) .
O'Z;,

has kernel O Z3,. Proof :

e let x = o.r € OVZ} be an element of the kernel, with o € O! and
r € Zy. Then its norm is in Z;?;

e conversely if n(r) = 2% is a square in Z},, then the element z.1/2 is both
integral over Zp (z being invertible in Zr) and of norm one. Thus the
class of x in O"Zy./Z} is in O'Zy /7.

From the claim and the previous lemma, the norm induces the isomorphism:
OtZ,. ~ 7}

(%) BT T Ty
OZy n Z3

which proves the first statement.
’For the last statement ‘, let us show the equality of cardinalities:

' Zp|_ ht = [Ker(Cl(co) — CI(1))]

zy
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Firstly, the kernel of the projection Cl(co) — CI(1), is equal to the set of the
classes in Cl(co) of nonzero scalars (F"). Letting r be the number of real
embeddings of F', a set of representative of these classes consists in a set of
elements (b;); of F'*, whose ri-uples of signs ((——+---+—)) run over all the
possible combinations. But the real places of F' induce nonequivalent norms.
Thus by the weak approximation theorem, the (—1)™ possible combinations
of signs are all reachable. Hence the kernel map:

o {£1}" — Cl(c0),

that sends an r-uple (— — +--- + —) on the class (b;) of the representative
b; that takes these signs.
Consider now the surjection

Z, :
[ =5 — Kerp € {£1}"
Zy
in the previous kernel, that sends a unit on the r;-uple of its signs. The

kernel of f is equal to the generators of ideals with trivial class. l.e. to the
(classes modulo Z;? of) totally positive units. Hence the exact sequence:

5 5 — {£1}" = Ker (Cl(c0) — CI(1)) — 1
ZF ZF

One can conclude noticing that the two central terms of the sequence have
the same cardinality? . Indeed by Dirichlet’s units theorem:

. . ~ 7‘1—1
ZF/ZF,tors =7 ’

the additional factor two needed coming from the equality
|Z;_',tors/z}7‘2| = 2. D

2In the case of a general number field F, letting Z}_’R be the totally real units, one still
has |Z}, g /Zi?r| = 2. Indeed let i be the (logarithmic) embedding of Z},/Z;; .. onto
a lattice in R™*™2~! (the vector subspace of elements whose sum of coordinates is zero).
Let Hr be the vector subspace R™ 1721 of dimension 7 — 1 of elements whose complex
coordinates are zero. Then Z;?,R / thors is equal to the preimage of the following lattice
of H: i(Z1:/Z 1 o) N H. In conclusion, the only roots of unity in Zj g being {£1}, the
cardinality of the quotient Z}, g /Z ;g is equal to 2
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4 Atkin—Lehner

4.1 The group of two-sided ideals
Let O be a Zp-order, one deduces from equation (2.1) that
(4.1) Ny (0)/(F'0") == PI1dI(0)/PIdI(R) .

Let us now describe the group of invertible two-sided ideals Idl when O is
an Eichler order of level 1. Let p be a finite place, 7 an uniformizer of
the discrete valuation of Zp, and O, the completion at p. Recall that all
two-sided invertible Oy-ideals are principal. They are as follows:

e If |p 1 91| then one has the bijection ([Voiy, (23.3.20)]):

{Prime two-sided invertible O,-ideals} {Prime ideals of Zy}
P PNZr

— if pt®: then P =pO, ;
— if p|D: then one has the two-sided prime ideal P with P? = pO,
("pO, ramifies").

e For |p°||N| (see [Vois, Proposition 23.4.11]), one has O, = My(Zpy).
0
4
by the —non obvious— two-sided ideal J = Opw = wO, and pO,. With
the single relation J? = p¢Q,,.

Counsider then w, = ( é ): the group 1d1(0O,) is abelian, generated

In particular, the previous classification and Lemma 2.1 imply the following
exact sequence of abelian groups for the global Eichler order O :

(4.2) 0 — 1d(Zp) — 1d1(0) — [ Z/22
ploN
4.2 The groups of Atkin—Lehner involutions

Let again O be an Eichler order of level 1. The following group is studied
in [Rot, §4.1] (where it is shown to provide nearly all the automorphisms of
the Shimura curve X,(N)):

(4.3) W' = Np+(0)/(F"OY)
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Proposition 4.1. Assume that the narrow class number is one®. Then

(4.4) w'= [ z/2z
ploN

Proof Proposition 2.4.(2.2) implies in particular that every two-sided ideal
is generated by a totally positive element. So the LHS of bijection (4.1)
restricts to :

(4.5) Ng+(0)/(FOF) == PIdI(O)/PIdI(R) .

Next, OF being equal to O! by Proposition 3.2, the LHS is equal to W!.
Finally, every two-sided ideal being principal, the RHS is described by (4.2).
O

5 Indices of congruence subgroups

5.1 Definitions

It is assumed for the commodity of the exposition that the (possibly non
unique) split infinite place of B is real.

We fix in this section O a maximal order of B and 91 = [, p;’ any ideal
of F', prime to the finite discriminant ® of B, along with its decomposition
in primes. For each prime p = p; dividing 9N, choose 1, an embedding of B
into its p-adic completion B, = My (F,). The completion O, of O is an order
conjugate to the integral matrices My(Zp,). One then defines the standard
Fichler order O(M) C O of level M, equal to the elements z € O such that
their image in My(F},) is upper-triangular modulo p® for all .

Let ¢, : F' — F, = R be the corresponding embedding. Choose tp, :
B — Mj(R) an extension of ¢, to B.

The groups O(M)! of units of norm one, and O(M)" of units of totally
positive norm, are sent isomorphically by ¢p, onto subgroups of SLy(R) and
GL; (R).

Let 7 : BT — PGL2(R) be the embedding ¢p, followed by the quotient
modulo scalar multiplications. Define the following subgroups of PSLy(R) :

3In the general case, the normalizer group W = N+ (O)/(F"O") is described correctly
[Vois, Corollary 28.7.21]. The error in [Vig, Exercice II1.5.4] was firstly fixed by [LV,
Proposition 1.17], also described in detail in [Duc, Proposition III.3.14].
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- the congruence subgroups of level O1:
(5.1) To(MN) = 15, (01 (N))
(5.2) LE(N) =15, (OT(MN)) ;

- the principal congruence groups —which pairwise coincide with the pre-
vious groups when 91 = 1:

(5.3) L(N) = 1p,{y€ 0O v—-1ecNO'}
(5.4) M) =, {y €O, y—1€NO"};

- the kernel of the natural map (see also (5.6) below):
(5.5) (M) = Ker{T'(1) — PSLy(Zy/NZp)}
- and for every group I' € SLy(R), define its image ([Miy, p 106]):
'~ Pr=r/z()

in PSLy(R) the group of direct holomorphic automorphisms of the up-
per half plane.
In conclusion one has the inclusions:

L)< () <Tp(MN) C To(1),

the two LHS groups being normal in everything because they are kernels (of
the natural morphisms in SLy(9%) and in PSLy(9)). One of the purpose of
this section is that, unlike for the classical modular groups, IV(9) can be
strictly bigger than I'(91): see Proposition 5.7.

5.2 Reduction and some cardinalities

Prop-Def 5.1 ([Be|). Let R be a finite local ring and p its single maximal
ideal. Define the set

PY(R) = {(u,v), uR+vR = (1)} / ~

Where ~ is the equivalence relation of simultaneous multiplication by an
invertible A € R".

Then in each couple, either u or v is invertible. Thus P*(R) is the disjunct
union of the two following subsets of classes :
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(i) {(1,8), B e R}
(i) {(a,1), @ € R\R" = p}

Proof Claim: in every couple (u,v), either v or v is invertible. Proof: if not,
then they both would be in the maximal ideal p so the ideal generated by u
and v would be contained in p. The classification follows. m

Lemma 5.2. The group PSLy(R) acts transitively on P(R).

The fizator subgroup 0f< (1) ) 05 {( g Z ) € PSLQ(R).}.
The following subgroup acts transitively on the following subset (ii) :

To(p) = {( “ Z > € PSLy(R), c € p.}

c

Lemma 5.3. Let R be a Dedekind domain and p a maximal ideal of norm
q= N(p) = |R/p|. Letk be a strictly positive integer, consider the finite local

ring R = R/p*, its mazimal ideal p = p/p* is nilpotent of order k. Then:
(i) |ﬁ‘ =¢"! and ‘E} =qF
(ii) |GLo(R)| = ¢" ¢ V(g = 1) ... (¢" = ¢" ")
(iii) [SLa(R)| = |GLW(R)|/(¢" - ¢*7")
(iv) SLn,(R/M) =[], SL.(R/p) where M =[], p
(v) |PSLo(R)| =|if pt (2) | |SLa(R)|/2, |if p|(2) and k = 2|: |SLao(R)|/q.

Proof [(i)] The existence of a p-adic valuation yields an isomorphism R/p —
p’/pt*t for all i. Thus the nested quotients p’/p™*! are all of cardinality g.
Composing their indices gives the two assertions.

[(ii)] For all i < k — 1, the reduction map GL,(R/p"™') — GL,(R/p’)
is surjective. The kernel is equal to the subset of matrices congruent to the
identity modulo pi = p?/p'*t!. E.g. forn = 2:

1+pi pf )} B /il
— — C GLy(R )
{( Pl AR

where all the ideals p are of cardinality ¢ as seen in (i). At last the cardinality
of the linear group over the field R/p with ¢ elements is classical.
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|(iii)] The determinant map GL,(R) — R is surjective with kernel the
subgroup SL,(R). But ‘Ti*‘ = |R|—|p]

|(iv)] Follows from the Chinese remainder (Sun Tsu) theorem argument
of [Miy, Lemma 4.2.3]

[(v)] Tf [p 1 (2) | then the polynomial f = X? — 1 has exactly two dis-
tinct roots (1 and —1) and a nonzero derivative in R/p. Thus by successive
Hensel liftings, it has also exactly two distinct zeros in R = R/p*. Now if
p[(2) and k = 2|, then let A be an element of R such that (1+ )2 = 1. This
implies that A\ = —2), which belongs to the maximal ideal p. p being prime,
)\ itself belongs to p. But then A2 = —2)\ € p> = 0. Conclusion: any A € p
suits, this set being of cardinality q. ]

The link with congruence subgroups is first seen from the natural mor-
phism of rings:

(5.6) O/NO =5 My(Zp/N)

of reduction modulo 9. Let us define it and verify in the same time that
it is an isomorphism (although we won’t need this actually). Indeed by the
Chinese remainder (Sun Tsu) theorem, it suffices to prove it for 9 = p* a
prime power. Then, recall that completion at p commutes with quotienting
by p*. Finally:

O,/p* 0, = My(Zp /p*) = Ma(Zp /p").

Now, the following (hard) result shows that congruence (sub)groups sur-
ject onto their PSLy(Zp /M) counterparts:

Proposition 5.4. Let N be an ideal prime to the discriminant D, then
(5.7) F(l)/F’(‘ﬁ) . SLa(Zp/M) ;

Proof Let us restrict the isomorphism (5.6) to the units of norm one to show
(5.7). Zp being a Dedekind domain, [Vois, Proposition 28.2.5] states the
surjection:

So considering 7 € SLy(Zp/M) and v a lifting, the strong approximation
states that there exists by € B! such that:
- at p 1Ot |by — 1] € p, so by is integral in Oy;
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- at p, p|9T: by — ], € p*T, s0 by = vy mod p» and by is integral in
Op-
Thus b; € O and reduces to 7 modulo 1. O]

This result enables one the recover in particular the [ocal indices of in-
clusion of the units of norm one of Eichler orders, computed with Lemmas
5.2 and 5.3.(i):

(5.8) [PO; : PO(p*)a] = [PY(Zp/p*)| = |Zr/p"| + p/p*| = ¢" (g + 1).

5.3 Indices

Passing to the global indices requires the classical combination of Eichler’s
norms theorem (Theorem 3.1) and of the strong approximation theorem for
quaternion algebras with a split real place:*

Proposition 5.5 ([Sij1, Prop 2.5.3 (i)]). Let K' C K be two compact open
subgroups of B", K, = K N B and likewise K}; = K N B*. Then:

Ly [K : K']
(5.9) (K5 : Kp] = n(K) : n(K')]
+ . — WK : K]
(5.10) (K Kg] = n(K) : n(K")]’
Where
h= |ME) N Zry
n(K’)

And fortunately in the case of congruence groups from Eichler orders, the
following corollary implies that the local and global indices coincide. Set the
following functions [Duc, top of page 52|, defined on the ideals of Zp (noted
here 9 and ©) and taking integer values :

_ 1
(5.11) ®(D) =[(Zp/9)'| = N(D) g@[ (1 - W)

(5.12) vy =N ] (1 + ﬁ)

IR

4Is this additional argument really needed ? Indeed one can quotient everything by
I(91) and, thanks to Proposition 5.4, work with congruence subgroups of PSLy(Zp /1)
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Corollary 5.6 ([Sij;, Corollary 2.5.4]). Let p be a prime ideal of F of norm
q, N an ideal prime to the discriminant ® and k > 1, then:

(5.13) (1) : To(ph)] = [LH(1) : T (p%)] = ¢* (g + 1) ;
(5.14) [C(1) : To(M)] = [[+(1) : T ()] = T(N)
Proof For both the indices [I'(1) : To(p*)] and [F/(Q: I (p*)], consider

the compact open subgroups K = O and K' = O(p*)". The numerators
of formulas (5.9) and (5.10) contain the index [K : K']. It is equal to the
product of the local indices [K, : K;]. They are all equal to one except at p,
where it is ¢" (g + 1) by (5.8).

Then the denominator [n(K) : n(K’)] equals one, by the local description
of Fichler orders.

Finally the factor h equals one because it is a subgroup of the one-element,
group [n(K) : n(K')].

In conclusion, [O! : O(p*)l] = [0 : O(p*)F] = ¢* (¢ + 1). Finally,
observe that by Theorem 3.1, the two groups appearing in each index have the

same center: Z}. (respectively Z1). So the projective indices [['(1) : To(p*)]

and [['*(1) : T'd (p*)] are equal to the previous global indices.
Equation (5.14) results from the same argument, considering all the primes

dividing M. O
Proposition 5.7. Let p be a prime ideal prime to the discriminant ®. Then:
(5.15) [T'(p%) - T(pF)] = if p 1 (2)]: 1

(5.16) if k= 2,p|(2) and p* £ (2) |: N(p)/2

(5.17) if k= 2,p(2) and p*|(2) | N(p)

Proof Firstly, if p 1 (2), then I'(91) = I"(9M) by the first case of the proof of
Lemma 5.3 (v). So the projectivized groups also coincide.
Then if p|(2) and k = 2, the last case of the proof of Lemma 5.3 (v) shows
that:
I+Xx 0
0 1+A

so [I7(p?) : T'(p?)]. The first subcase is when p?|(2), so that T'(p?) also contains
—Id. In which case the projectivized indices are preserved. The other subcase
is when this does not hold, so only I"(p?) contains —Id. O

(5.18) TI'(p?) C {M € SLy(p?), M = ( ) mod p?, A € p},



Chapter IV

A dense family of Riemann
surfaces

The conventions are those laid in §I11.1.2, and in §IT1.5.1 for the congruence
subgroups. In particular O is a maximal order.

In addition it is assumed that the quaternion algebra B is a field and
that the split real place v is unique.

1 Arithmetic groups

Theorem 1.1 (|Vig, IV 1.1 (1)]). The image 15, (T(N)) is a discrete sub-
group of SLy(R). It is cocompact if and only if B is a division algebra'.

Definition 1.2 ([Vig, IV.1 5]). A subgroup of SLy(R) which is commensu-
rable to such a group ¢, (I'(MN)) is called an arithmetic group.

! The reference states a second property in the case where B would have at least two
infinite places. But the proof depends on the following general claim which I am not sure
of. The second property would imply this very strong statement: suppose there are exactly
two split infinite places (say v and w). Then the image 1 ,(O!) (a priori a discrete group
1) is dense in SLy(R).

[: Consider four topological subgroups of the ideles B} : (i) G” = B = (SLa).,
(the idelic factor at w). (i) U'(=G’.C), with component 1 at w, (iii) O and (iv) Bk.
Suppose that By = BLU and BL NU = O! (so that BY /B = U/O"! ). The assumption
made is that ("D’aprés 111.4.3 : (2).."): G”O! is dense in U = U’G"” . From this the
author deduces that (p105, "(2) I'image de..."): the projection of O! is dense in U’.

But actually I can only deduce that U N BLG” is dense in U]

60
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Counterezample 1.3. Consider the rational non-division quaternion algebra
M,(Q) (with discriminant 1). The unique class of maximal orders is O =
My(Z), and the group of units O' = SLy(Z) acts on H via PSLy(Z), which
is the -non compact- triangle group (2,3, c0)

The following general theorems then imply that the previous groups have
a bounded fundamental domain, framed by a finite number of arc of circles,
and without vertices on the real line :

Proposition 1.4. Let I" be a subgroup of PSLy(R).

o ' is discrete if and only if it acts discontinuously on the upper-half
plane H. I is then called a Fuchsian group.

o [Kat, 4.1.1 and proof of 4.5.1 & 4.5.2] T is of finite covolume if and
only if: every Dirichlet fundamental domain has a finite number of
sides and no side included in Pk. T is then called a Fuchsian group of

the first kind.

o [Kat, Cor 4.2.7] Let T be a Fuchsian group of the first kind, one says
that T is cocompact if and only if T\'H is compact. This is also equiv-
alent to the fact that (i) every Dirichlet domain is both of finite area,
and (ii) T has no parabolic element.

Definition 1.5 ([Kat, Formula (4.3.4)]). Let I" be a Fuchsian group of the
first kind. The signature of T' is the data (g;eq,...,e.;s) of: the genus g of
the quotient I'\'H, the orders e; of the r inequivalent elliptic points and if
any, the number s of parabolic points.

Let us see how to determine the signature of I' a cocompact Fuchsian
group of the first kind. An important case for this work is :

Prop-Def 1.6. Suppose that we are given a hyperbolic triangle ABC' with
angles a, 8,7 (so a+ 5+ v < 1, see [JS, 5.6.5-5.6.6, & p258]). Consider
the group of reflexions through the sides, and let I' C PSLy(R) be the index
two subgroup of direct isometries. Namely, ' is generated by the rotations
0a, Op, ¢, Of angles 2, 23, 2y, around the vertices A,B,C.

Suppose furthermore that there exists positive integers a, b, ¢, such that
a=mn/a, B =m/b,v=7Z%. Then

e a fundamental domain F'is made of the triangle ABC, joined with its
symmetric through a side (say AC);
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e [" has the presentation :
(1.1) <6a,5b66, 6% = 0p = 0¢ = 1 and 6,650, = 1>

[Notice that, possibly modulo taking inverses of the generators, the
presentation of I' given above still holds when reordering (a, b, ¢)].

e and the Riemann surface I'\H has genus 0.
Such a Fuchsian group is called a cocompact triangle group®.

Proof The first statement follows from [Mag, I1.5 Th. 2.8]. The difficulty
consists in showing that the images of ABC' under side reflections, fill the
hyperbolic plane without gaps and overlappings.

The second is also stated in the result mentionned above. Or more gen-
erally follows from the proof of the theorem of Poincaré—Maskit (apply the
presentation of [Kat, p98] with g = 0).

For the last : consider B’ the symmetric of B through the side AC. Then
from the first statement, a fundamental domain of I' is the quadrilateral
ABCB’. But the group T identifies the vertices B and B’ (by the rotation
2a), and identifies the pairs of sides : BC with CB’, and AB with AB’.
This triangulation of F' thus induces a triangulation of the Riemann surface
X = T'\H into 3 vertices, 2 edges and 1 free side. Thus, by the formula of
Euler—Poincaré [JS, 4.16.2|, the genus gx satisfies 2 —2gx =3 —2+1. So is
Zero. 0

FEzample 1.7. The list of all arithmetic triangle groups is stated in |Tak|. The
Proposition 1 states furthermore that two such groups are commensurable in
PSLy(R) iff they arise from the same quaternion algebra.

Fzample 1.8. Let A be a cocompact triangle group with indices (a, b, ¢) and
I' € A a subgroup. Then the covering map of Riemann surfaces:

(1.2) f:XT)=T\H—P'=A\H

has degree d = |A/I'|. Tt is called a Belyi map and X a Belyi curve. Consider
(separately) two additional assumptions:

2We don’t know if the following definition, given in [Sh;] (3.18.2), is equivalent : a
group of genus 0 with exactly three inequivalent elements. Namely, does a group with this
definition necessarily have its Dirichlet domains equal to a quadrilateral ?
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(a) Suppose that T has no elliptic point, then the genus g of X satisfies

(1.3) g(X(F))zlJrC—l(l—é—%—l).

[Proof : notice that all points in the preimage of the fixed point of J, have
ramification index a by f, and so there are g of them. Conclude by the
formula of Riemann—Hurwitz].

(b) Suppose now that I' is normal in A. Then by [Wol, Lem 1 & proof
of Th. 6|, there also exists another pair of groups I"< A’ such that I has no
elliptic points and

X(I') = X(I).

So in particular the assumptions of situation (a) are satisfied with T < A’

(c) Actually it can be shown [Wol, Lem 8 & end of proof of Th. 6| that
if g(X) > 1, then X has many automorphisms if and only if X is a curve
X (A) of the form described in (b). The automorphisms group of X are then
G =T"/A’ for an auxiliary pair A’ <I" chosen as in (b).

Counterezample 1.9. Let p > 7 a prime number and X (p) the quotient of
the extended upper half plane H* = H U cusps of I'(p) under the action of
the principal congruence subgroup I'(p). Then, although the projection map
X(p) — P& = X(1) is a Galois covering map between compact Riemann
surfaces, the triangle groups that define it : I'(p) <A(2, 3, 00) are not cocom-
pact.

Indeed I'(p) has cusps (of common ramification index p, see [DS, §3.9
table 3.3]).

So one is a priori not in the situation of the previous example. And
actually the conclusions of (¢) < (b) do not hold : X (p) does not have many
automorphisms. Indeed it can be shown ([Maz, Appendix of part I by J.P.
Serre]) that the automorphism group of X (p) is PSLy(F,), which is (7 — 22)
times lower than the Hurwitz bound 84¢(X (p) — 1).

More systematically, the genus is determined by the orders of the elliptic
cycles and the area of a fundamental domain :

Definition 1.10. Endow the upper-half plane with the hyperbolic area nor-
malized as follows : 1/2m(dxdy/y?). The area of a Fuchsian group I', noted
pu(I'\H), is the hyperbolic area u(F') of any fundamental domain F of I" (all
these areas being equal by [Kat, Th. 3.1.1]).
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Property 1.11 ([JS, 5.10.3] or [Kat, Th 4.3.1]). Let I' be a Fuchsian group
of the first kind with signature (g;my,...,m,). Then

(1.4 P\ = (20— 2) + 31— )

i=1
Where the area itself can be determined from:

(A.1) The shape of a Dirichlet domain F, by the formula of Gauss—
Bonnet:

Property 1.12 (|JS, Cor 5.5.6] or [Kat, exercice 4.6|). The area of a n-sided,
hyperbolically star-like, polygon F with angles o is

n
n—2 o

(1.5) wEF) = — ~ 29

s

Ezample 1.13. Consider a non empty hyperbolic triangle T" with angles 7, 7, =.
The genus being 0, the area p(7") thus equals

1 1 1 1
n-40-(G+ )
w(T) 2 a * b * c
[which is the formula of Gauss-Bonnet|. The triples of integers which mini-
mizes this sum while keeping it strictly positive is (2,3,7).
Actually, a mere case enumeration using Property 1.11 (see [JS, 5.10.7])

shows that the (2,3,7) triangle group is the cocompact Fuchsian group with
the smallest hyperbolic area.

(A.2) A subgroup construction :

Property 1.14 (|JS| prop 5.10.9 ii). Let T be a cocompact Fuchsian group
of the first kind and A a subgroup of index n. Then u(A\H) = nu(T\H).

(A.3) The arithmeticity of I :

Property 1.15 (Shimizu’s formula). Let us narrow the setting of Theorem
1.1: let F be a totally real field of degree n and discriminant dp, B a division
quaternion algebra of discriminant ® with exactly one split real place, and
I' be the arithmetic group arising from the units of norm one of a mazimal
order. Then

(1.6) W(IVH) = —

(271-)271

Ay Cr(2)D(D)
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Where we recall :

. 1
(D) = [(Zr/D) | = N(D) };[ <1 - W)

For a shorter idelic proof see [Vig, IV.1.Exemples 5) & IV Corollaire 2.7],
and [Vois, Main Theorem 39.1.8] for the higher-dimensional case.

The next section deals with the elliptic invariants m,; in the arithmetic
case. Notice that, for every given artihmetic Fuchsian group, this information
can also be obtained by [Voig, Algorithms 3.2 & 4.7|. Namely, given an exact
pseudo-basis of a quaternion order, it returns (i) a (numerical) Dirichlet
fundamental domain for the groups of units (either of norm one or totally
positive) with arbitrary center, and (ii) an exact presentation of I" by elements
which pair the sides of the domain (the sides being possibly cut into two
halves).

2 Elliptic points and genera

2.1 Density of general genera

Let Xo(9)c and X (M) be the Riemann surfaces To(MN)\H and T'§ (M) \H,
and ¥, ® the functions defined in equation IIL.(5.11).

Proposition 2.1 (|Duc, equations (IIL.5) and (IV.13)]). Fiz F and let the
disciminant ® and the level N take every possible values. Then the gen-
era gno and gy o of Xo(M)c and Xg (M)c take arbitrarily large values.

And there exists constants Apmaz and Aj,... such that they satisfy gé;% <
AP w(@,)0(0,).

Fymax

Notice that the first statement (gé;f) arbitrarily large) is not obvious.

Indeed one has to control for the number of elliptic points in [Duc, equation
IT1.5]. Tt will be shown in this section how to do it on an example.

Corollary 2.2. Allow the discriminants (D;); and the levels ()i to vary
and take every possible values. Then the families (Xo(M)c);jx and (X (Mi)c) )k
have dense genera in the sense of Definition 2.1.
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2.2 General elliptic points counting

Let I' C SLy(R) be an arithmetic Fuchsian group. Suppose that ' =
tpo(O(M)!) is the image of the units of norm one of an Eichler order, so
that I' contains —1. Let x be an element of B of minimal polynomial
f = X? — trace(r)X + n(x) over F. One says that the conjugacy class
of x is a conjugacy class of minimal polynomial f.

Let ¢ > 1 be an integer, and z a point of the upper half plane whose
fixator in T is of order q. One says that the orbit I'(z) is an elliptic cycle of
order ¢, and its image z € Xo(M)c an elliptic point of order gq.

Lemma 2.3 (|Vig, IV.2.9]). The number of elliptic cycles of order q is equal
to the half of the number of conjugacy classes, in I', of elements with minimal
polynomial X? — 2 cos(2m/(2¢)) X + 1.

Remark 2.4. A precision on the demonstration. The fact that g and ¢ are
in the same cyclic group implies that they stabilize the same unique element
z € H. The equality ¢’ = ¢g”gg” ' thus implies that the image ¢” € PSLy(R)
is in the same cyclic group as g and ¢’. And so in particular ¢” commutes
with ¢’

Definition 2.5 ([Vig, p26]). Let R be a quadratic order over Zp, of fraction
field L, and O an order of B. One says that an embedding ¢ : K’ — B induces
an optimal (or mazimal) embedding of R in O if and only if .= (O)NL = R.

Proposition 2.6 ([Vig, Corollaire 5.14]). Let h be an element of B which is
strictly quadratic over F, and f = X% —tX +n its minimal polynomial. Then
the number of O(M)'-conjugacy classes in O(N) of elements with minimal

polynomial f, is equal to
Zml(R)v
R

where R runs over the orders of F(h) containing h, and my(R) is the number
of O(M)'-conjugacy classes of mazimal embeddings of R in O(N).

Proposition 2.7 (|Vig, I11.5.11 and I11.5.13|). Suppose that there is only
one conjugacy class of Eichler orders in B. Let R be a quadratic order over
Zp, and for all p prime, m,(R) the number of classes of mazimal embeddings

of Ry in O(M), modulo (O(MN),) . Then :

(2.1) mi(R) = [nrd(O(M) ") : nrd(R7)].h(R) H my(R),

prime
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where h(R) is the number of classes of ideals of R (and nrd the reduced norm
on B).

We will be only interested in the cases where the completions B, are
matrix algebras. So the values of m, will be computed only in these cases.
They are given by the following proposition.

Proposition 2.8 (|Vig, I11.3.5]). Let (F,7) be a local field, B = Ma(F') the
matriz algebra over F and O, an Eichler order of level n™. Let K = F(g)
be a quadratic extension, which is supposed generated by an integer g such
that the order R = Zp|g] be maximal. Let p(X) = X?—tX +m the minimal
polynomial of g, one defines the sets

E(n) = {x € Ri"’ p(z) = 0.}
Then the number of maximal embeddings of R in O, modulo the conjugacy
by O, is equal to :
e |E(n)| if O, is mazimal (n =0), or if t* — 4m is invertible;
o |E(n)|+ |Im(E(n+ 1) — E(n))| otherwise.

So in particular whenever the order: O(M), of the quaternion algebra
completed at p is maximal (so for almost all p), then the factor m,(R) in the
product of (2.1) is equal to one.

2.3 Case of the group (2,3,7)
Global embedding numbers

Let F' = Q(cos(27/7)) then [F : Q] = 3. Fix one real place ¢, then let B be
the quaternion algebra over I’ which is ramified exactly at the two other real
places (and no finite place)®Let 9t = [], p5* be an ideal of Zp along with its
decomposition in primes.

3Actually the geometry of the groups to be built doesn’t depend on the choice of «.
Indeed let o be an automorphism of F' and let B? be the quaternion algebra ramified
exactly at the two other places than ¢?. Then, the finite discriminant being trivially
Galois-invariant, we obtain that B is the conjugate quaternion algebra of B in the sense
of Remark V.5.7. Which thus trivially leads to the same Shimura curves.
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Lemma 2.9. For each n, let , be a primitive n-th root of unity. Then the
set of numbers q, such that there exists a quadratic extension of F' containing
Cogs 15 equal to {2,3,7}. In addition for these values of q, the orders Zp[Cay)
are mazximal in the corresponding fields F((ay)-

Proof The first one is a brutal enumeration.
For the second one I trust Magma. O]

The maximality condition of Proposition 2.8 is thus satisfied for all the
local orders obtained by completion of these orders.

Furthermore the narrow class number of F', |Cl,(F')|, being equal to one,
all the Eichler orders of level 1 are conjugate in B by Corollary I11.2.5. Thus
the assumption of Proposition 2.7 holds.

Lemma 2.10. Under the same assumitions:
o MZp[Cy)) =1 forq=2,3,7.
e nrd(OM)") : nrd(R")] = 2 for R = Zr[(ay) and for all M.

Proof For the first, I trust Magma.

For the second, let use the equality nrd(O(M)") = Zj,  from Theorem
IT1.3.1, where Z}?,B are the units which are positive at the places that ramify
B. So if 11 = tp, is the split real place, let these places be 15 and ¢3. To
obtain generators of this group, ask Magma for the signs of three generators

Uy, Uy, Uz of Zy.: [—,—,—][—,+,—],[+,+,—]. From these signs, one de-
duces generators of Zg p: {U?, U3, UyUs, U3} The index in Zjy can now be
computed in an elementary way. O]

Putting together Lemma 2.3, Proposition 2.7 and Lemma 2.10, the num-
ber of elliptic points of order ¢ in Xo(N)c, ¢ € 2,3,7, is equal to

(2.2) eq:% o210 [ mr) = ] me(Zrlca)) -

R=ZF[(24] p prime p prime

In the rest of the section we will only consider levels 1 of the form pé.p%,
where po and p; are (resp.) the unique prime ideals above (2) and (7).

It is thus sufficient to compute the factors my,(Zp[Co4]) and my., (Zg[Coy))
in (2.2). Indeed the others are equal to one so play no role in Proposition
2.7.

Notice similarly that the embedding number m, at p is one as soon as
p 1 91, because the local order O, is then maximal.
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Local embeddings of Zy[(,]

e at p7; : The minimal polynomial of (4 has no solution modulo p;. Thus
my, = 0 as soon as j > 1 [and one otherwise].

e at po : The minimal polynomial of (4 has a unique solution modulo
po and no solution modulo p3. Thus my,, = 1if ¢ € {0,1}, and 0
afterwards.

Local embeddings of Zy (]

The discriminant of the minimal polynomial of (s is equal to (3), so is in-
versible modulo p, and p;. Thus we are in the first case of Proposition 2.7.

So by Hensel’s lemma, the roots modulo p, (respectively pr) lift to a
unique solution modulo p, (respectively p) for all i > 1 (respectively j) > 1.

e at pr : my, = 2 distinct roots as soon as j > 1 [and 1 for j = 0].

e at py 1 my, = 0 root as soon as i > 1 [and 1 for i = 0.

Local embeddings of Z|[(14]

e at p; : The minimal polynomial of (34 has an unique solution (with
multiplicity two) modulo pr, then no solution modulo p% for j > 2.
Thus m,, = 1if j € {0,1}, and 0 afterwards.

e at py : The minimal polynomial of (i4 has its discriminant invertible
modulo ps. Thus we are in the first case of Proposition 2.7. Further-
more these roots all come from the two disctinct roots modulo p, by
Hensel’s lemma. So my,, =2 as soon as ¢ > 1 [and 1 for ¢ = 0].

2.4 Outcome : elliptic points for 91 = pj.p’
Corollary 2.11. The elliptic points of the Riemann surfaces Xo(pé.p;)c are:

o [i=j=0]:[2,3,7];
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o |i=0|, j=1:[3,3,7] then for j > 2 : [3,3];

o for therest ({1 >1} N {j >2}) : [9].

2.5 Density of the genera in the family Xo(pé.pj})c

Corollary 2.12. The genera of the Riemann surfaces Xo(pé.pj%)c are:

o |j=0| i=1: 1then fori1>2:8726/T+1/7;

o |j=1,1>1:8716/T+1/7;

e i=0| j=1: 0then for j >2:7722/3+1/3;

o for the rest ({i >1} N {j>2}): 72[871.6/7+1/7].

Proof [2,3,7] is a triangle group, so of genus 0. The others are deduced by
Riemann—Hurwitz and by recurrence. O]

The following fact, which was pointed to us by N.D. Elkies, allows to
conclude that the ordered genera (g;;);; of the family Xo(ph.p7)c are dense
in the sense of Definition [.2.1:

Proposition 2.13. Let p and q be to numbers relatively prime to one an-
other. Then for all € > 0, there exists N such that, as soon as p'.¢” > N,

there exists i', j' such that p* .¢%" > p'.¢’ and ‘i{g; — 1‘ < €.
The following proof was greatly contributed to by H. Randriam, and also
by J. Pieltant.

Lemma 2.14. Let p be an irrational number. Then for all € > 0, there exists
N a positive integer such that the fractionnal part {N.p} <.

Proof Let M be large enough such that % < €. Let us partition the interval
[0,1] in M intervals [i/M, (i + 1)/M] of equal length. One considers the
sequence of the fractional parts ({n.p}).en. By the pigeonhole principle,
there exists two distinct values of this sequence: 0 < {Ny.p} < {Na.p} < 1
that lie in the same interval.
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e If Ny > Ny, then the positive integer Ny — Ny suits.

e Else if Ny = Ny + k, with k a positive integer, let u be the difference
p = {Na.p} — {(No+ k).p} < 7;. Hence the fractional part {k.p} is
equal to 1 — . One can iterate and consider the sequence of fractional
parts: {No.p}, {(No + k).p}, {(Ng + 2k).p} . ... Tts first values decrease
regularly, with steps equal to p. But by hypothesis p < % Thus the
sequence eventually reaches a value (of the form {Ny+m.k}) contained
in the first interval |0, % < ¢[. Finally, the positive integer Ny + m.k
suits.

]

Lemma 2.15. Let p and q be to numbers relatively prime to one another.
Then for all € > 0, there exists integers a and b such that 0 < alogp +
blogq < €. Furthermore one can choose the sign of a.

iogp is irrational.
ogq

Proof p and ¢ being prime to one another, the quotient

6/

For a > 0, it suffices to apply the previous lemma to o = 182 and e =

log g logq”
One then chooses a = N and b = —E(N%).
For a < 0, one applies the previous lemma to a = iggg. O
Let us now prove the proposition.
Consider € > 0. By the previous lemma there exists:
e a,b two positive integers such that ‘Z—Z — 1} < €,
e and also ¢, d two positive integers such that Z—i — 1} < €.

One chooses N large enough such that:
p.¢y >N=(i>corj>b).

Consider p'.¢” > N. Then by this choice of N, at least one of the two
following inequalities is satisfied:

7 > b One chooses " =a+i>0and j =45 —b> 0. Thus M:p—ZiS

’oplgd q

strictly lower than 1 and satisfies ‘pii:gé 1| <e

p

7

¢ > ¢ One chooses i’ =i—c > 0et j' = j+d > 0. Thus, p};:gj = f}—i is strictly

./ -/
P .
pl.q

larger than 1 and satisfies ‘ — 1‘ <€



Chapter V

Descent of canonical models

1 Leitfaden

The following three results:

(a) Theorem 4.12 (ii): a ramified cover with no automorphisms and field
of moduli Q descends to a cover over Q . (i): This descended cover is
furthermore unique, up to Q-isomorphisms of covers;

(b) Theorem 5.11 Let Xy(1) be uniformized by a triangle group with dis-
tinct indices, arizing from a quaternion algebra with Galois-stable dis-
criminant. Let 91 be a Galois-stable ideal. Then the complex cover
Xo(M) — Xo(1) has field of moduli equal to Q;

(c) Proposition 5.12: the ramified covers Xo(M) — Xo(1) have no auto-
morphisms;

...imply the main result :

Theorem 5.14 : Let X(1) be uniformized by a triangle group with distinct
indices, arizing from a quaternion algebra with Galois-stable discriminant.
Let O be a Galois-stable ideal. Then the complex cover Xo(M) — Xo(1)
descends to a cover over Q. This descended cover is furthermore unique, up
to Q-isomorphisms of covers.

72
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2 Field of definition and field of moduli of cov-
ers

The definitions and statements in this paragraph stick to covers of Pj.
They correspond to regular extensions E/k(T'), with geometric counterpart
Ek>P [k>P(T).

One could have stated the results for a more general base By instead,
with function field K /k. And thus dealt with regular extensions E/K and
their geometric counterpart Fk*P/Kk*?. In this generality Prop 2.6 would
not always hold: see the counterexamples following [DE, Remark 5.5|.

Another advantage is that if &’ /k is a Galois extension, then 7 € Gal(k’/k)
has a straightforward prolongation to Kk’ = K'(T): the one that fixes 7.
We will adopt this one throughout. Changing this prolongation (i.e. the
k-structure of P}, as illustrated in footnote 1) would change the field of
moduli: see [DE, p45].

Definition 2.1 (Ramified cover [DébDol| §2.1). Let k be a field. A (branched)
algebraic cover of P} is the data of (i) X a proper (projective), geometrically
integral smooth curve over k, along with (ii) a finite, non constant, generically
unramified morphism 7 : X — Pj.

The assumption geometrically irreducible is equivalent to the extension
of function fields k(X)/k being regular. That is to say : [k(X) : k(T)] =
[k(X) : E(T)], which is itself equivalent to k being algebraically closed in
kE(X).

The function field functor yields an equivalence of categories between the
categories: {birational classes of covers; subcover maps} and: {finite regular
field extensions; field inclusion maps} [Débs, §3.3.3 & §3.3.4].

Definition 2.2 (|Déby, 3.1.15]). Let k be a field and £'/k an extension and
E/K'(T) a finite extension. One says that :

e F is defined on k as mere extension of k' (or as mere curve), if and
only if there exists a finite regular extension Ey/k(T') such that Eyk’
and £ are k’-isomorphic;

e E/K'(T) is defined on k as mere extension of k'(T') (or as mere cover)
if and only if there exists a finite regular extension FEy/k(T) such that
Eok" and E are E'(T)-isomorphic;
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e [Cultural: suppose furthermore that E/k'(T) is a Galois extension,
endowed with an isomorphism v : G — Gal(E/K'(T)). Such a pair
(E,u) is called a G-extension. Then it is defined on k as G-extension if
and only if there exists a finite regular G-extension Ey/k(T") such that
Eok’ and E are (G-equivariantly) k'(T")-isomorphic.|

One then says that k is a field of definition, and that Ey/k(T) is a k-model
(resp. as mere curve, mere cover and G-extension) of E/E'(T').

Prop-Def 2.3 (Action of Gal(k'/k) |[DébDo, §2.3 & §2.6]). Let k'/k be
a Galois extension with Galois group I', and again E/K'(T) a finite (G-)
extension. Let F//k(T) be a Galois closure containing F.

Let 7 be an element in I', the extension "E/k'(T) is defined as follows.
Let 7 be any arbitrary prolongation of 7 to Gal(F/k(T')) that fixes T', then:

(21) k/<T) Cinel %(E) Cinel F

where all the C,q stand for the set-theoretic inclusion in the fixed Galois
extension' F.

[Cultural: for the G-extensions (|Débg, Prop 3.1.17|): "E is the "G =
7G7 l-extension with action "u = 7u7 1. |

Furthermore for any such choice of prolongation 7, "E/k'(T) is k'(T)
isomorphic to the base-change by 7 of the extension E/k'(T). Thus "E//K'(T)
is in fact well defined up to a &’(T")-isomorphism of extension.

Finally if E/K'(T) is defined over k (as a k', ¥'(T') or G-extension), then
it is (k', k'(T'), respectively GG)- isomorphic to its conjugates "E/K'(T)).

1 As discussed in [DE, p45], other choices of k- structures for Kk’ = k'(T) may lead
to nonisomorphic conjugates, and hence different field of moduli. This issue is analogous
to the case of varieties over finite fields, where different k-structures lead to different
geometric Frobeniuses over k’. For example here, the choice of a fixed Galois closure F
implicitly determined the k-structure :

(2.2) k(T) @ k' — K'(T)
' x,y — incl(z).incl(y)
So this choice yields the (functorial in 7) collection of isomorphisms 7(k'(T)) — k'(T),

which are simply the subset-identity in F. But composing (2.2) with a homography r
would lead to conjugate these isomorphisms by 7(r).
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Proof For the base-change claim, consider a commutative diagram:

where ¢ : E— L and ¢ : K/(T) — L coincide on the right-hand bottom
corner k'(T). Then ¢ o 7! factors both ¢ and ¢ [indeed, going from the
left-hand bottom corner k'(T) to L by the two exterior paths shows that
1=poincloT™1|. So the universal property for the tensor product is satisfied.
Let us prove the final assertion (in the &'(7")-extension setting). Let Ey/K
be a regular extension such that Ey®y)k'(T) = E. Then the previous iden-
tification with the tensor-product yields the following &'(T')-isomorphisms:

E2F ®7— k’/(T) = (EO ®k(T) k’l<T)) ®7- k/(T) = Eo ®TOiHCl k/(T)

Where incl is the inclusion k(7") C &'(T"). Which is unchanged after compos-
ing by 7. So the latter is equal to Ey Qina k(1) = E. O

Ezample 2.4. C(v/T +1i)/C(T) is defined on R as C-extension, but not
as a C(T)-extension. Indeed suppose that it were the case. Let 7 be the

C(T) — C(T)
= —1
; C(VvT+1i) — C(VT —1i)
ion
VT +i— VT —i
proposition, there exists a C(7')-isomorphism ¢ : C(v/1T +1i) — C(/T —1).
By C(T)-linearity one has T +i = (/T + 1) So p(v/T + i) is either equal
to VT + 1 or to —/T + 7, both being impossible.
Ezample 2.5. E = Q(&)(TY?)/Q(&)(T) is defined over Q as Q(&y)(T)-
extension. Indeed it arises from the extension Q(7"/%)/Q(T), of same degree.
[Cultural: it is not defined as a G = (Z/dZ) -extension. The most

straightforward proof is probably to check that E is not G-conjugate to its
twists® . It will be done in counterexample 2.8.|

R(T)-linear morphism , and 7 the R(T)-linear prolonga-

. Then by assumption and by the previous

2Another proof for this, suggested by [Débg, 3.1.16] : show that the (d) of corollary
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Proposition 2.6. Suppose that k is a field of characteristic zero, k'/k a
Galois extension and let F/k(T) be a Galois extension.Prolonging the action
of Gal(k/k) to k(T) by firing T, assume that Gal(k/k) stabilizes the set D
of geometric branch points of F/K'(T).

Then noting G = Gal(F/k(T)), N = Gal(F/k'(T)) and ' = Gal(k'/k),

there exists a section s to the following exact sequence:

(Seq/Split) 1 N G -1 1

Proof For a quick reference: the first criterion stated in the discussion done
below |DE, Th. 5.1| applies here. Indeed k being of characteristic zero,
the condition (Sec/Split)” is equal to (Sec/Split). And k(7T') has an infinite
number of closed points.

For a proof, adapt for example [Déby, Th 3.2.1]. ]

If E/K'(T') is defined on k (in either one of the three meanings of Definition
2.1), then it is isomorphic to its conjugates. This necessary condition is
restated group-theoretically as follows (see also [DébDo| §2.7) :

Definition 2.7. Same assumptions as in Prop-Def 2.3

[k’ /k is a Galois extension with Galois group I, E/E/(T) a finite (G-) extension
and let F'/k(T) be a Galois closure containing E. Note as above G and N the Galois
groups of F/k(T) and F/k'(T). Let H C N be the fixator subgroup of the (G-
Jextension E/K'(T). For every 7 in T, choose T any prolongation to G that fixes
T]. One says that :

e |Wol, lemma 5| the field of moduli of E as mere k'-extension (as mere
curve) is the subfield k,, . of k" fixed by

{r €T, such that 7(E) is k’-isomorphic to E};

3.1.18 is not satisfied. First, the distinguished generator of the inertia at the ideal (Tl/d)
is by definition (3.1.4.1) the element v € Gal(Q(ﬁd)(Tl/d)/Q(fd)(T)), which sends 77/¢

on £TY?, Tts conjugacy class C' boils down to {7} because G is abelian. Compute
what does this conjugacy class become when one conjugates the extension by an element
o € Gal(Q(&;)/Q)- Solet o : € — & (j invertible mod d), and & its prolongation to
the automorphism of Q(&,;)(T"/?)/Q that sends T/? to itself. Then the inertia invariant
of the conjugate G-extension °Q(&4)(T4)/Q((£4)(T)), is equal to {77 (med D} Indeed
it suffices to check that & o9 = (m0dd) o =1 gends indeed T4 on ¢TY/¢ [Which could
actually be directly deduced from the last point of corollary 3.1.13]. This invariant is
different from C' so the (d) of the corollary is not satisfied.
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e [DébDo, §2.17 restated| the field of moduli of E as mere extension of
K'(T) (as mere cover) is the subfield k,, ¢ of k' fixed by

{T € I, such that there exists o, € N, 7TH7 ' = ngHgo;l} :

e [Déby, prop 3.1.17 b)| suppose furthermore E/k'(T) Galois, endowed
with a fixed isomorphism w : N/H — Gal(E/E'(T)). Then the field
of moduli of (E,u) as G-extension of k'(T) is the subfield k,, of &’
fixed by the automorphisms 7 € I" such that there exists y, € N/H =
Gal(E/K'(T)), such that

-1

Vg € N/H, Tu(g)7T " = x,-u(g)x;

The ramification divisor (and thus the set of branch points on the base)
is automatically invariant under the subgroup of Gal(k'/k) fixing the field of
moduli of £ as a cover.

Counterezample 2.8. [Cultural: let d > 3 be an integer and { = £, a d-th
root of unity. Then the field of moduli of the G = (Z/dZ) -extension E =
Q(£)(TY) /Q(&,)(T) is not Q. For this, consider any 7 € Gal(Q(ﬁd)/Q) :
£ — & (j € (Z/dZ)"), and extend it to E by fixing T'/?. Suppose that
threre exists x, : TV? — ¢*T'? in Gal(E/Q(&)(T)) such that for all g :
TV — TV in Gal(E/Q(&)(T)) the relation (2.7) holds. This is actually
impossible because applying it to T'/% would imply jI = [ for all 1]

3 Subgroups and their monodromy representa-
tions

3.1 Facts

Consider the group of permutations (S, .) with the reverse composition law:
a.b=bo a. One says that a group morphism G — (Sy,.) that induces a
transitive action on the set of d elements, is a transitive right representation

of G'in Sy.

Prop-Def 3.1. let G be a group and d an integer. Then one has the following
bijection of sets of conjugacy classes, induced by the (non canonical) two
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arrows:
G-conjugacy classes of Sg-conjugacy classes of transitive
subgps of index d: H C G right-representations (Sy,.) + G
HCG action on the right classes ¢H : (SH\G’ ) <G
FIXG(l) Igb : (Sd, ) +— G

Given a subgroup H, one says that the (S; conjugacy class of the) group
morphism ¢y : G — (Sy,.) is the monodromy representation of H.

Its kernel is equal to the intersection of the conjugates of H in G: Nyegg ' Hy.
This is in particular the largest normal subgroup of G contained in H.

The image of G in (Sg,.) is thus isomorphic to the resulting quotient

group :

(3.1) G/ﬂ g 'Hg.

geG
It is called the monodromy group of H.

Proof The second arrow does induce a well defined map when quotienting
the source and the target by conjugacy [if two representations are conjugate
(by 0 € Sy), then the fixators Fixg(1) are conjugate (by any element of G
sending 1 to o(1))].

Let show that the first arrow also does.
(i) Two choices of numberings of the set G/H yields conjugated permuta-
tions.
(ii) Two conjugate subgroups H yield conjugate permutations.
Let us show the second point with the left-action convention ¢ : G — Sq/m,
by commodity. Let n be an element of G, (g;)i=1..q a set of representatives
of G/H and (ng;n~') the corresponding set of representatives of G/nHn™".
Let o be the permutation of {1..d} such that for all i, ng; € g,u)H (so for all
i, i € Ngo—1(;yH). Then for all v € G, Yng; € Gp(y)oo(i)H € Jo10p(7)00 (i) .
Next, the arrows are inverse to each other because (i) the kernel of the

right action H\G — G is H and (ii’) (idem to (ii)) permutations with con-
jugate kernels are conjugate in Sy.

Finally for the kernel of G — Sg/x : it is equal to the intersection of the
fixators of the right classes Hg;: N&,g; ' Hg;. It is immediate to show that
this subgroup is normal in G. [
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Ezample 3.2 (w1 of P! minus r points). Consider the group on r generators
with the following presentation:

(32) 7T1:<51a'--7(5r7 (5157‘:1>
Then the conjugacy classes of subgroups m; D H of index d correspond to
{r-uples of permutations (oy,...,0,) in (Sg,.) such that o;..... o, = 1}/~

where ~ means simultaneous conjugacy in Sj.

Attention : the data of a r-uple of permutations (the images) alone does
not determine the group morphism ¢p. It determines it modulo a choice of
ordered generators 0; (the preimages).

The following lemma will be used for explicit computations:
Lemma 3.3 (|Déby, 7.4.2]). Let G act on the left on a finite set X, ¢ :
G — Sx) the corresponding transitive left-representation. Let x € X be any

element and G, be its stabilizer. Then the representation ¢ is isomorphic to
the left representation G — Sg/q, -

3.2 Case of congruence subgroups

A complete example

Ezample 3.4. Consider the degree 3 totally real field F' = Q(cos(27/7)) and
fix a generator a of I’ with minimal polynomial P,,;, = X3 + X? —2X — 1
over Q. Fix the basis [Ry, Ry, R3] = [1,,a?] of the ring of integers Zp.
Consider the prime ideal p; C Zp of norm 7 above the totally ramified prime
(7) C Z. In the previous basis, it has the following two generators :

pr = Z([49,0,0], [25,10,1].)

Consider now the quaternion algebra B over I’ ramified exactly at two
real places (noted ¢5 and ¢3) and no finite place. Fix a presentation of A :

A:F<1,i,j,l<:, 2= 202420 +1, P=a’+a—2, z’j:k:,>

Fix any Eichler order O(py;) of level p; (F having narrow class number one,
they are all conjugate by Corollary II1.2.5). For example the one with the
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following pseudobasis:

(Zp(R1),1),
(Zp(7TR1,5Ry + Ry),1),

(Ze(3 R}, (1) + (02 + )i+ ),

(Ze(g ), (07 +0) + (o — L)+ )

Now consider the subgroup G = ['y(p7) of PSLy(R) defined as in IIL.(-),
i.e. the image of the units of norm one of the order O(p7). It has the following

explicit presentation as a triangle group:
G = (04, 0, Oc, §F =08 =62 =1, 0,040, = 1)

where the generators are expressed in the previous pseudobasis:
do =[—2R2 — R3,0, —%Rl, Ry + %Rg],
O =|—R1 — 2Ry — R3, Ry — 2Ry — R3, %Rg, Ry + %Rg],
d. =[2Ry + R3,0,0, — Ry — %Rg]

Let ¢y, : A — My(F},) be an embedding of A into the matrix ring com-
pleted at p7 such that O(p7) maps onto the integral matrices which are upper-
triangular modulo p;. There are several possible maps (compose at the source
with PSLy(ZF)), so we should have also made it explicit.

Let us consider the residue ring Z g /p2, which is finite local with maximal
ideal p7. The embedding ¢, composed with the residue map 7,z modulo pZ:

A— MQ(ZEW) - MQ(ZF/pg)a

induces a surjective morphism of G onto the subgroup Ly(p7) C PSLy(Zr/p2)
of matrices which are upper-triangular modulo p;. This morphism is deter-
mined by the respective images of the generators of G :

(=330 [1,0,0] [ [1,-1,0] [-3,2,0]
M. = ( 2,-1,0] [3,—3,0] ) My = ( 3,2,0] [1,—1,0] )

~([1,-3,0] [0,—-1,0]
Mc_( [1,3,0] [—2,3,0])
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Define O(p2) C O(p7) as the canonical Eichler suborder of level p2 relative
to the same choice of the embedding ¢,, [namely: elements which map by ¢,
to integral matrices upper triangular modulo p-|.

The previous data finally allows to compute the monodromy representa-
tion relative to the subgroup

H=PO(p3)! =Ty(p?) € G = PO(p7)" = To(p7)

of the units of norm one (modulo —1). Indeed, it is equivalent to quotient ev-

erything by the normal subgroup IV (p2)< PO!, and compute the monodromy

representation of the quotient subgroups I'g(p2) C [o(p7) modulo IV(p2).

But, thanks to Proposition I11.5.4, reduction modulo I'(p2) sends con-
gruence subgroups onto their counterparts in the finite group PSLy(Zg/N)
(the groups studied in II1.5.3). So it is equivalent to work with these latter
subgroups from now on.

We describe the left-representation ¢y : G — (S7,0). By Lemmas 3.3 and
5.2, it suffices to compute the left action of the matrices M,, M, M. € T'y(p7)
on the subset (i) of Prop-Def 5.1, equal to {(«, 1), a € (Zr/p3)\(ZFr/p2)"}/ ~.
After arbitrarily numbering this subset, we obtain the corresponding triple
of permutations :

o702 =0, =(1,6,4,2,7,5,3), 0, = (1,6,2)(4,5,7), 0. = (1,3,4)(2,7,6)]

Which satisfy, as expected, o, 0o 0, 0 0. = 1. Finally these permutations
generate the monodromy group of H in S;, which happens to be of order
3xT.

Caution 3.5. : as warned in example 3.2, the previous triple 075 alone does
not always determine the representation ¢g. It determines it up to the choice
of the generators of GG that map to the triples. So, in the case that there
would exist two such choices leading to nonconjugate representations, the
map ¢y would not be determined by the sole triple.

Which is what happens here. Indeed, another run of the algorithm with
a different presentation for G yields a second triple:

or1 = loa=(1,7,4,5,3,6,2), 0, = (1,5,7)(3,6,4), 0. = (1,2,3)(4,5,6)]

which is non-simultaneously conjugate to the first one (but generates a con-
jugate monodromy group, as expected).
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These are actually the only two possible triples®: an exhaustive search by
the algorithm Belyilnit in [Sijs] shows that these are the only ones with this
cycle lengths and monodromy group of order 21.

Summing-up: if one fixes arbitrary generators of GG, then the monodromy
representation ¢g of the group H will be necessarily given by one of the two
triples 07 and o75.

Ezrample 3.6. With the same quaternion algebra as above, consider the prime
ideal (2) = py C Zp of norm 8 above the inert prime 2. Then I'y(p2) €
PSLy(R) is again a triangle group, of signature (7,7, 2).

The computations take place in PSLy(R) with R the local ring Zr/p3.
The output is the (isomorphism class of) the monodromy group of the sub-
group [o(p2) C To(ps). Tt is the subgroup of order 23.7 in Sy generated by

anyone of these two triples:

0'2,1 = [(1757377a87274)7 (17&372747576)’ (1’2)(374)(576)(7v 8)]
(72,2 = [(1737572767 77 8)7 (1757278767374)7 (172>(374)(576)<77 8)]

And this time again they represent the two possible simultaneous conjugacy
class of triples generating this monodromy group. So, forgetting again the
generators of I'g(py) that map to these triples, one ends up with two possi-
bilities for the monodromy representation.

Ezxample 3.7. With the same quaternion algebra as above, consider the prime
ideal p3 = (3) C Zp of norm 27 above the inert prime 3. Then [y(p3) €
PSLy(R) is a Fuchsian group of genus one on two generators: Uy, Us sat-
isfying U1U,U; U, = 1 (Tt is the fundamental group of the pointed ellip-
tic curve Xo(p3)). The same computations yield a monodromy group for

Fo(pg) C Fo(pg) of order 32.13.

Comparing the monodromy groups with PSLy(Zr/p?Zr)

With the same notations and conventions as in sections II1.1.2 and III.5,
let p be a prime of F' and D1 an ideal of F. We would like to compare the
monodromy groups of the inclusions:

3 Anticipating on the results of VI5.2, a monodromy computation shows that triples
071 and o7 correspond to the inclusions of T'o(p2) C T'o(p7) and of its Atkin-Lehner
conjugate wy,Lo(p2)wy. C To(pr) (see also VI.5.4). A direct computation with explicit
Atkin—Lehner conjugation of groups would be obviously more satisfactory.
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o T'o(p?) C Ty(p), with the group PSLy(Zr/p?) = To(1)/T"(p?);

e and of I'(1) C I'y(N), with the group PSLy(Zr/9) = I'(1)/T"(N) (by
Proposition I11.5.4).

The former is dealt with in this section (and we thank H. Randriam for
drawing our attention on this point), on the cases of Examples 3.4 and 3.7.
The latter will be dealt in general in Proposition 5.15.

Property 3.8. With the same quaternion algebra B as in Erxamples 3.4,
3.6 and 3.7 and for p equal to p; or p3, the largest normal subgroup N of
G =Ty(p) contained in H = T'y(p?) is strictly bigger than I'(p?).

Thus the Galois closures of the covers (see Theorem 4.7) Xo(p?) — Xo(p)
are strictly smaller than X'(p?) — Xo(p).

Proof By the equation (3.1), the quotient G/N has cardinality equal to the
monodromy group of the inclusion H C G. Recall that these monodromy
groups for p;, Py and p3 have cardinalities:

3.7, 25.7 and 3%.13,

as computed in Examples 3.4 and 3.7. On the other hand:

T : )
G T'(p?)] = [To(p)/T'(p?)] =
G T9) = )T = o s

(1
where the numerator equals |PSLy(Zr/p?)| by Proposition II1.5.4 and the
denominator is given by the (5.13) of Corollary I11.5.6.
Using the formula for |PSLy(Zp/p?)| of Lemma T11.5.3, one gets:

@D =-g) L _ L.
2x(¢*—q) q+1 2
4

(3.4) q q (qz_l)(QQ_Q) :qB(q_l)

x (144q) @ —q

~—

(3.3) (G :T(p?)] =if21¢:

Which gives for p7, po and p3:
3.7, 2°.7 and 3'%.13

which are all strictly bigger than the orders of the monodromy groups recalled
above. [
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4 Arithmetic covers with no topological auto-
morphisms

4.1 A field-theoretic criterion of descent over the field
of moduli

Lemma 4.1. (Partial functoriality of the monodromy representation (1)).
Let G be a group, and N, H C G two subgroups. Let ¢y be the transitive
(left) monodromy representation of the subgroup H C G. Assume that the
restriction ¢oyp|n : N — Sq is transitive. Then

(i) oul|n is equal to the representation corresponding to NNV H C N;

(ii) ‘%’ - ‘N]r\w]H

Proof Note N/H the left-classes in G/H that have a representative in N. It
is stable under the left-action of N. Consider the injection of sets: N/H C
G/H. Then the assumption that the left-action of N is transitive implies
that it is a bijection. In particular there exists a set of representatives n; of
the left classes G/H that all belong to N, thus the first statement.

Next, the set morphism N — G/H induced by the inclusion being surjec-
tive, factorizing on the left by the equivalence modulo H yields the bijection:

N _)G
NNH H

hence the second statement. O

Lemma 4.2. (Partial functoriality of the monodromy representation (2))
Let i be an automorphism of G and G D H be a subgroup of G of index
d. Then if ¢ : G — Sg/u is in the conjugacy class of the (left) monodromy
representation of H C G, then the conjugacy class of the representation
¢ G — Sgrpm), is equal to that of ¢ o™t

Proof Let {g;}i=1..q be an ordered set of representatives of the right classes
G/ H, and choose accordingly the set {¢)(g;) }i=1.q of representatives of G /¢(H).
Let v be an element of G. Then by definition of ¢':

Y1b(gi) b (H) € (ggr ) 0))¢ (H)
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Composing by ™! gives:
V()9 € 950y H

So by definition of ¢ : ¢(v=1(7))(2) = ¢/ (7)(4). O

This enables to restate the field of definition condition using representa-
tions:

Proposition 4.3 (|Débsy, Prop 4.1.2|). Let k be a field, k' a Galois extension
with group I' = Gal(k'/k) and F/E(T) a finite Galois extension containing
E'(T), with groups G = Gal(F/k(T)) and N = Gal(F/k'(T)). Suppose that
the sequence (Seq/Split) has a splitting s (for example under the assumptions
of Proposition 2.6):

1 N G T 1

Consider E/K' (T) a mere extension with fized field H C N of index d and
¢ : G — Snyu the corresponding transitive (left) monodromy representation.
Then the data of Eo/k(T) a reqular k(T)-model of EJK'(T), is equivalent to
the data of a group morphism ¢ : I' — Sy such that for all x € N, and all
Tel,

6(s(r)zs(7) ") = p(r)(@)p(r) ™"

Proof By the splitting, G is isomorphic to the semi-direct product N<T.
Thus, morphisms G — S, correspond to pairs of group morphisms {(¢ :
N — Sg,0: ' = Sy)} that are compatible to the semi-direct product.
Finally, ¢ being transitive, any prolongation (¢, ¢) : G — Sy is transitive.
So by the correspondence of Proposition 3.1, arises from a subgroup Hy € G
of index d. Finally, the restriction ¢ of (¢, ) to N being transitive, (i) of
the Lemma 4.1 implies that HoN N = H. O]

And likewise to restate the field of moduli condition:

Lemma 4.4 ([Déby| Prop 4.4.3). Same assumptions as in Definition 2.7

/let k be a field of characteristic zero, k' /k a finite Galois extension of group
T, E/K(T) a finite (G-) extension of degree d. Let F/k(T) be a Galois closure
containing E. Let again G and N be the Galois group of F/k(T) and F/k'(T), and
for each 7 € T, note s(7) =T any prolongation of T to G fizing k(T) /
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Let now H C N be the subgroup fizing E2 and ¢ the corresponding repre-
sentation. Then an element T € T fizes the field of moduli of E if and only
if there exists o, € Sy such that for all x € G,

¢(s(r) " as(7)) = pro(x)e .

Proof N being normal in G, the conjugation by s(7) is an (outer) automor-
phism of N. So by Lemma 4.2, the monodromy representation associated to
s(r)Hs(t)~! is equal to z — ¢(s(7) 'ws(r)).

Next, noting x, € N the conjugating element as in 2.7, the point (ii)
in Prop-Def 3.1 shows that the representation associated to the conjugate
subgroup x,Hx ! is equal to a conjugate permutation, say r — gp;laxpT). O

Let ¢(N) be the monodromy group of H C N. Notice that for all 7, 7 €
I', the quantity
90;1%1-29071 Pro
Belongs to the centralizer C' = Ceng,(¢(N)). Thus if it is trivial, the ¢,
define a group morphism I' — S; and the proposition 4.3 applies:

Corollary 4.5 ([Déby, Prop 4.4.4]). Under the same assumptions as in 4.4,
suppose that the field of moduli of E is k. Then if Ceng,(¢(N)) = {1}, E
comes from a reqular extension Eo/k(T).

Remarks 4.6. This can be seen as an analog of Weil’s descent theorem for
quasi-projective varieties with no automorphisms [MilAG, Th. 16.32]. Indeed
by Theorem 4.7 (iii)&(v) and Theorem 4.9, the centralizer Ceng,(¢(N)) is
antiisomorphic to the automorphism group of the corresponding topological
cover. But a direct proof showing that it is the automorphism group of the
field extension would be way more satisfactory!

Other descent criteria are derived in [Déby, Prop 4.4.4] with the same
approach of obtaining such a group morphism I' — G. With more work,
[DébDo] express the obstruction to its existence, as a cohomology class with
coefficients in the center of the monodromy group Z(¢(N)). Thus they obtain
the striking corollary 3.2, that descent is possible as soon as this center is
trivial.

4.2 Characterization and descent from topological mon-
odromy

The Galois theory of connected covers of topological spaces basically states:
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- a dictionary between subgroups of the 7 of the base, and connected
covers
- such that the action of the m; on the fiber —by prolongation of paths—
corresponds to the monodromy representation of the subgroup
- and such that the automorphisms of the cover are the permutations of
the fiber that commute with the action of the .
It can be summarized as follows:

Theorem 4.7. Let t = {t,...,t,} a sel of points in P& and [ : X — P&\t
a topological (non ramified) connected covering of degree d. Fiz a point to €
P\t. Then the lifting property of paths defines a right-action of m1 (P&\¢, to)
on the preimage f~'(zy). The representation p of w1 (P&\¢t, to) in Sq induced
s defined up to conjugation in Sy. It is called the topological monodromy
representation.

(i) [Don, §4 prop. 7 and §4.2.2] Let xq be a point of X. Then the conjugacy
class of p coincides with the class of the right-monodromy representation
¢ of the subgroup f.(m1(X,x)) C m(PE\L, to).

(ii) [Don, idem] Note X the universal covering space of X. Then modulo
isomorphisms of covers and conjugacy in Sy, one has the following
bijection of isomorphism classes:

Isom. classes of top. connected Conjug. classes of transit. right-
covers of degree d f: X — PG\t repres. (Sq,.) < m(PE\L, to)

X =X/H H C m(PL\t, t).

(7ii) [Déby, th 7.6.1] The group of automorphisms Aut(f) acts on the left
on the preimage f~'(z9). This defines an injection in (Syz,0)/ ~,
whose image is equal to the centralizer in Sy of the monodromy group
d(m (PENE, to)) (acting on the right on the preimage). These two ac-
tions thus define the antiisomorphism:

(S4,0) D Aut(f) ™ Cens, (qs(m(Pg\t,to))) C (Sa,.)

(iv) [Déby, th 7.7.1] Suppose now that the covering f is Galois. Then the left
action of Aut(f) is transitive. Moreover by a group-theoretic lemma,
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the previous anti-isomorphism induces an anti-isomorphism with the
monodromy group itself :

~ P\t 1)

Aut(f) S d(m(PE\t, 1)) = m(Pe\t to)
)= olmPelbiol) = 5o oy)

(v) In particular, (iii), (iv) and equation (3.1) of 8.1 show that the mon-
odromy group of a cover is equal to the automorphism group of the
Galois closure.

Thanks to the dictionnary above, it is possible to prove that in the case of
Riemann surfaces, then —up to isomorphism— the topological cover f comes
from a compact analytic ramified cover defined above the missing points ¢.
This is Riemann’s (analytic) existence theorem:

Theorem 4.8 (|Don, §4.2.2] or [Débs, §8.2.1]). Let X’ be a compact connected
Riemann surface, F : X — P& a proper analytic map of degree d which is
ramified above t C P& and let X = X — f~Y(t) be the (punctured) Riemann
surface. Then, the restriction of F to the topological (unramified) covering
[ X = PE\t, ([Don, §4.1] or [Déby, th. 8.5.3]) defines the first arrow of
the following bijection of isomorphism classes:

Isom. classes of proper analytic

maps F: X — P& Isom. classes of top. connected

of degree d with X compact. covers of degree d f: X — PG\t
Fi restriction f
[fill above the branch points| f

Finally, the following theorem states (i) that a compact analytic cover is
birational to the analytification —call this functor (.)anf of an algebraic cover
f:X — P& (def. 2.1). (ii) and that, up to fixing a finite Galois closure, the
two monodromy representations correspond (the one from Galois theory of
fields, and the one from topological coverings (p, as in th. 4.4)).

Theorem 4.9. Let P(T,Y) an irreducible polynomial in C[T,Y] such that
degy (P) > 0. Consider the function field E = C[T,Y]/P(T,Y). Then the

projection to T induces an algebraic cover of degree d (up to birational map):
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F : X — P&, where X is an integral smooth projective curve with function
field E [Deby, §8.3.5 € th. 8.8.12]. Note this F = Cover(E).

For the reciprocal correspondence, let X be a compact Riemann surface
and f : X — P& be an analytic cover. Then the image of the induced
morphism between function fields:

[ M(Pg) = M(X)

is equal to the subfield C(f) [Deéby, th. 8.3.6]. Furthermore the field extension
[M(X): C(f)] is of degree d [Déby, th. 8.3.11].

This induces the bijection of classes:

Isom. classes of separable Birat. classes of proper analytic]

field extensions of maps F : X — Pg }

/_—/\——\

degree d [E : C(T)] of degree d with X compact. J

=

E () ano Cove Fon . yan 1
. . — P¢

(M(X): C(f)] [ X = P&

Moreover [Déby, 8.3.12 c)] the extension [E : C(T)] = [M(X) : C(f)]
is Galois if and only if the corresponding topological cover f : X — Pg
(restriction of F to the smooth locus) is Galois. In this case the pullback of

s {Aut(f> — Gal([M(X) : C(f))

. defines an anti-isomorphism.
X=X

The next theorem shows that descent of covers from C to Q is unique:

Theorem 4.10 ([Déby, §12]). Let t C P& be a Q-rational set of points.
Then any algebraic unramified (étale) cover W — PG\t descends to cover of
Pla\t, which 1s furthermore unique up to Q-isomorphisms.

Remark 4.11. In the demonstration proposed in [Sey, th 6.3.3], the statement:

(4.1) (X xY) =m(X) x m(Y)

holds in the case where at least one of the two factors X or Y is compact
(|Sza, cor 5.6.6]).
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But the situation here is as follows: Q C K C C is an algebraically closed
field, K’ = K (t) a transcendental extension of degree 1, and one of the two
factors above : X = PL\t is not compact. So it is needed that Y be compact.

Although the author claims that it is exactly the case: Y = C' = P, the
problem is that to prove this, the author needs that any unramified cover
W — X xg K(t) does extend to W — X x g P} (although it is a priori
only defined on the generic fiber). Which is not obvious, at least in higher
dimension : for example the argument of |Sza, cor 5.6.6] would only show
that the morphism extends to an affine subset Y of Pl

But there exists a way around, using Bertini’s connectedness theorem,
which is specially devised to avoid the formula (4.1): see [Sza, Remark 5.7.8]
and the proof of 5.7.6 above. This approach generalizes [Déby, §12| for the
case of covers with arbitrary smooth connected projective base.

This finally allows to state a criterion that guarantees the unicity —and
sometimes the existence— of the descent an algebraic cover, only from its
topological monodromy representation:

Theorem 4.12. Let Q D k' O k D Q be a Galois extension of number fields
with group T' = Gal(k'/k). Consider an algebraic cover f : X — Py, of degree
d ramified at most over a finite set t C Py, and let p : m (Pg\t, to) — (Sy, -)
be its topological monodromy representation.

(i) Suppose that the monodromy group p(m (PE\L, to)) has trivial central-
izer in Sy, then f has at most one model* over k: fy: Xo — P;.

(ii) Suppose furthermore that the field of moduli of f is k. Then f does
have a model over k.

Proof Let F//k(X) be a Galois extention that contains the extension E/k'(X)
corresponding to f. Let again G = Gal(F/k(T')) and N = Gal(F/K'(T')) be
the corresponding Galois groups, H C N the subgroup corresponding to F
and ¢ : N — S, its monodromy representation. By the last statement of The-
orem 4.9, and by (i), (iii) and (v) of Theorem 4.7, the centralizer Ceng,¢(N)
is equal to Ceng,(p(m1(Pg\¢,t0))). Which is trivial by assumption. The
second statement now follows from Corollary 4.5.

Tt can be seen as a GAGA instance of the general principle stated in [Sej, ITL.1)].
Indeed by Theorem 4.7, Ceng,(¢(m1(P&\E, to))) C (Sa,.)) is anti-isomorphic to the au-
tomorphism group of the cover. Once again, a purely field-theoretic proof of this, that
wouldn’t involve the topological monodromy, would be very welcome!
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For the unicity, suppose now that there exists two models Ey/k(X) and
E{/k(X) of E over k. Then by the correspondence of Proposition 4.3, they
would respectively be determined by group morphisms ¢, ¢’ : I' — Sy such
that for s a fixed section of the exact sequence and for all 7 in T,

¢(s(r)as()™h) = p(1)d(x)p(T) ",

(and similarly for ¢'). But these two relations then imply that o(7)¢’(7)7!
is in Ceng,¢(N) = {1}. So ¢ and ¢’ coincide, and so do Ey and Ej,. O

5 Descent of the canonical covers X,(N) — X (1)

The conventions are those laid in §1I1.1.2, and in §II1.5.1 for the congruence
subgroups. In particular O is a maximal order. The additional assumption
made at the beginning of Chapter IV also holds (unicity of the split real
place).

This last assumption implies that the field F' is totally real (otherwise the
complex place would be split).

Let 9 be a ideal of F' and oo the infinite places of F. Then let F'(M.0c0)
be the abelian extension associated to the ray class group of modulus t.00.
In particular when 91 = 1, one recovers the narrow class field F., = F(c0) of
Definition III.1.1.

Set Xo(M), Xo(OD)F, X(D), X(O)* and X'(M) for the quotients of the
upper half plane H by [o(91), ['§(N) ete.

5.1 Canonical models and their reduction

Shimura provides canonical models for the analytic quotients of the upper-
half plane by principal congruence subgroups :

Theorem 5.1. Consider the compact Riemann surface TT(M)\H. Then
there exists:

- a smooth projective curve X (M)T over the class field F(MNoo) C C;

- and a holomorphic function ¢ : H — X(M)* X pose) C;
which is the unique morphism, up to a compatible F(Noo)-isomorphism of
curves, that satisfies the following:

(i) [Shi, Th. 3.2 & 3.3] ¢ induces a biholomorphism
FM\H — X7 (N) Xp@meo) C
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(11) [Shy, 3.2.3 (canonical model condition)] Let O a mazimal order that
contains the Eichler order of level N involved. Then for all purely
quadratic imaginary extension L of F such that Z;, C O , let z €
H be the fixed point of L. Then z comes from an algebraic point of
X(M)*, whose field of coordinates k(z) generates the class field of L:
L.F(Moo)k(z) = L(Noo). z is called a CM-point for L.

Similarly, canomnical models X (N) for the Riemann surfaces T'§ (M)\H
exist and are all defined over the narrow class field® F,, = F(0).

They are furthermore functorial with respect to the inclusion of congru-
ence subgroups®.

Theorem 5.2 ([Shy, Th. 3.17 simplified|). In addition to the assumptions of
the section, suppose that N = 1 and that F s of narrow class number one.
Let z be a CM point for L as above , then the action of Gal(C/F) on Xt (1)
sends CM-points for L to CM points’ for L.

FEzample 5.3 (Triangle groups from maximal orders [Shy, 3.18.3]). Suppose
again that F' is of narrow class number one. Suppose that the Fuchsian
group I't(1) C PSLy(R) is a triangle group with distinct indices a, b, c. Then
Shimura’s canonical model over F for the Riemann surface I'"(1)\H = P&
has three rational points. And in particular is equal® to P1.

Proof: consider the elliptic point z, of order a. Then it comes from an
algebraic CM-point for the (strictly) quadratic cyclotomic extension F((,).
So by Theorem 5.2, this CM-point is mapped under Gal(C/F’) to a CM-
point for F'(¢,). But the orders of the three elliptic points being distinct, it
is mapped to itself.

5See for example [Duc, formula IV.2] for a treatment in the modern approach.

61.e.: quotienting the upper-half plane by a larger congruence subgroup yields a func-
torial map X" (M) — X (') between the two models: see [Del, Corollary 5.4], defined
over F, (by [MilSV, Theorem 13.6], the field of definition of the connected components
X (M) being F, by [Sij1, (3.6)]). So we are surprised not to be able to descend the map
fo in VL5.1.

"Indeed, the condition on 7 in loc. cit. is empty because F(c0.91) = F. The auto-
morphisms being taken over F' (and not only L), this statement is in a sense stronger
than the prediction of the [Shy, Th. 3.5] in this particular case (see the formula (4) in the
introduction of loc. cit.). But we don’t know if there also exists a reciprocity formula over
F (and not only L).

8A similar argument, using the automorphisms of P§ and Theorem 5.6, enables [Hal,
Proposition 1] to prove that Pl is also a canonical model in the cases where I'{ (1) has
(i) exactly three elliptic points of the same order, along with (ii) a fourth elliptic point of
distinct order.
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Theorem 5.4 (Reduction with many points [Duc, Th IV.4.5]). Let p be a
prime of Zg of norm q = |p| which: (i) does not divides the finite discrimi-
nant ® of B nor the level M (ii) and has trivial class in Clo(F). Consider
B a prime above p in the narrow class field F.

Then the canonical model X (M) (over F) has good reduction modulo
B over Fy.

Under these conditions, allow the discriminant ® and level N to vary
such that the genera sorted in increasing order: g; = gnp = g(X; (M) tend
to infinity. Then the number of F 2-points is asymptotically optimal:

| X (0) (F2)|

gi 1—00

\q_l

Let T'=T(p) be the Hecke operator [Duc, p63] acting on the Jacobian of
the Riemann surface Jac(X (M)). The dual of this action on the classes of
divisors, is an action on the space of holomorphic differentials , which identify
themselves to the quaternionic modular cuspforms for the group I’y (7).

Theorem 5.5 (Point counting). Under the conditions of Theorem 5.4, let
T = T(p) be the Hecke operator acting on the Jacobian of the Riemann
surface Jac(X, (M)). Then the number of points of the curve reduced at p is:
(5.1) | Xd O (F,)| =q+1—Tx(T)

(5.2) | Xd O (Fp2)| =" +1—Te(T?) + 2qg

Proof Apply |Duc, Corollary 2.7] and, to obtain the second equation in this
form, replace T'(p?) using [Duc, Corollary 2.3] with r = 1. O

5.2 Field of moduli: the Theorem of Doi—Naganuma

Doi and Naganuma show that the quaternion algebra with conjugate dis-
criminant leads to the conjugate canonical model. Which implies a field of
moduli property under Galois-invariant conditions.

One considers once and for all a subfield FF C C. Let us call © = ¢, this
set-theoretic inclusion, corresponding to the place v. By the asumption laid
in the first paragraph of Chapter IV, v is the unique real place of F' that
splits the quaternion algebra B.
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Then, let 0 be an automorphism of C. The set-theoretic image oF =
o(F) is the field. Denote ¢, the set-theoretic inclusion oF C C, which is
also a field inclusion. It thus corresponds to a place v,p of oF. °

Theorem 5.6 (DN, Theorem|). Let B’ be the quaternion algebra over oF
which 1s ramified exactly at:

- the infinite place top;

- and the conjugate o(D) of the finite places © where B is ramified.
Consider O(N) an Fichler order of level N in B, and X (M) g, the canon-
ical model for the corresponding group of totally positive units TT(N) (cf.
I11.5.1 and Theorem V.5.1)

Then the conjugate curve X+ (M) is a canonical model, over the class
field o Fymye, for the subgroup of totally positive units of a certain Eichler
order O'(c(MN)) of level o(N) in B’'.

The same result holds when considering the canonical models Xo(9)"
over Fy,, and their conjugates “Xo(M)* over o F .

Similarly, there exists isomorphisms between the curves X (M) and their
conjugates: see e.g. [Moo, 2.14 Theorem| (or [MilClo, Theorem 5.5|) for the
modern approach.

Remark 5.7. It seems to us that an important point must be clarified in the
litterature.

Suppose that oF' = F, so that ¢ = ¢,p.

Suppose in addition that ¢(D) = 9.

Then in Theorem 5.6 one has B’ = B.

But attention : B’ is not the conjugate algebra °B = B ®p, F. Because
’B is ramified at the infinite place ¢ o 0~1, which is different from ¢ = ¢, p.

Assume e.g. that there is only one conjugacy class of Eichler orders of
a fixed level. Then the canonical model for the congruence group I'(a(N))"
of the conjugate algebra ?B is trivially equal to X (DM)*, and not to "X (MN)*
("sens évident" in [Vigy, Theorem 3|)

Example 5.8. Let us describe the curves referenced as e5d5D5i/ii in [Sijs,
Tables A.1/2/3] (they will also serve as Counterexamples 5.18). Let I be
the quadratic field with polynomial #> — ¢ — 1 and non-trivial automorphism
o. Let ps5 the prime ideal above the ramified prime 5, and p;; and o(py1) the
two primes above the split (11). Fix a real place ¢ of F.

950 that if o F = F, then vop = v
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Let B be the quaternion algebra with finite discriminant ps; and split
exactly at ¢.

Consider the two congruence groups I'g(p11) and I'g(o(p11)). This has a
meaning since B has a unique conjugacy class of Eichler orders of given level,
because the narrow class number of F' equals one.

Then the canonical models of these congruence groups: Xo(p11) =e5d5D5i
and Xo(o(p11)) =ebd5D5ii, have conjugate Jacobians over F: see Table A.3
of loc. cit.)

How can one explain this 7 We are in the same situation than in the
previous remark: the discriminant being Galois-invariant, the algebra B’ of
Theorem IV.4.5 restated above is equal to B. Thus by Theorem 5.6, the
conjugate curve “Xg(p11) is equal to Xo(o(p11)).

FExample 5.9. Let us recompute Example 3 page 21 of Voight-Willis 2013.
There is a slight typo in the reference: with minimal polynomial a? + a — 1,
then the value of a should be the opposite of what is stated in the first
paragraph of Example 3 in the reference. Let us detail our input and results
below:

The totally real field is F(a), of degree 2 over Q and with minimal poly-
nomial a? +a — 1.

We generate an algebra B ramified at: the prime p = (5a + 2) with
N(p) =31, and the place which sends a« -+ A = —1.61... (and not —0.61... )

We generate a CM point fixed by an embedding of the CM extension of
polynomial y? + y + 2, as the origin of the power series expansions

— We obtain the same j-invariant as in the paper, equal to —18733.423...
Which is recognized as the embedding of

—(11889611722383394a + 8629385062119691)/31°

by the split real place.

Then: we generate the conjugate quaternion algebra B? as in Remark
5.7, i.e. where the ramified places are the conjugates of both the finite and
infinite ramified places of B.

— We get the same j-invariant ”j7” = j = —18733.423.., as predicted by
the trivial statement of Remark 5.7.

Now: we generate the "Doi-Naganuma' quaternion algebra B’ as in The-
orem 5.6. l.e. B’ is ramified at the conjugate of p , but at the same infinite
place as B.
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— We find the conjugate j-invariant : j' = 12438.17832..., equal to the
embedding of —(11889611722383394a + 8629385062119691)/31% by the ram-
ified real place. So it is indeed the conjugate of j, as predicted by Theorem
5.6.

To be sure, we also check that the conjugate algebra B’ also leads to the
same j-invariant: j°' = j'.

Corollary 5.10 (|[DN, Corollary, slightly relaxed|). Suppose furthermore
that:

(i) F is Galois over Q;

(i) B has a unique conjugacy class of maximal orders;

(1ii) the discriminant © is Gal(F/Q)-invariant;

(iv) the level M is Gal(F/Q)-invariant.
Then Q is the field of moduli (as a mere curve) of the canonical model X (IN)
of Tt (M)\H.

5.3 Field of moduli of canonical covers
We would like to show more in the case of triangle groups:

Theorem 5.11. In addition to the assumptions of Corollary 5.10, suppose
furthermore that
(i) (= 1) F is of narrow class number one. [Thus: F(oco) = F, and

T+H(0N) = T(N) and TF(N) = To(N) | by 11.3.2);
(v) the group T(1)=7(0O') C PSLy(R) is a triangle group with elliptic
points of distinct orders.
Then Q is the field of moduli of the canonical cover X(M) — X (1). The

same result holds for the canonical cover Xo(M) — X (1).

Proof As in Theorem 5.1, let ¢, pn, ¢, and @, n the biholomorphisms
defining the canonical models of X (1) = PL, X (1) = PL, X(M) and X (MN).
By the assumption (ii’) and the example 5.3, the three elliptic-CM points on
both the models P}, are F-rational. So composing by a F-isomorphism, one
can choose them to be at 0,1, 0o with the same orders on both P1.

As in 5.6, let O" be the maximal order of B’ = B that gives rize to
X (M). By assumption it is conjugate in B to O : let a be the conjugating
element. Then the left multiplication by « acting on H, induces an isomor-
phism «. from the complex quotient I"(M)\H = o 'T'(N)a\H to T(MN)\H
(and similarly for T'(1)).



5. Descent of the canonical covers Xo(N) — X(1) 97

We follow the argument of [Sh;, 3.14.3]: consider the biholomorphism
¢y oa. It realises X (M) as a canonical model for the conjugate Eichler order
a tO(M)a. Thus by unicity of the canonical model (Theorem 5.1), there
exists a compatible F(91)-isomorphism a. between X (91) and X (N) (and
similarly a compatible F-isomorphism a. for I'(1)).

But the image by a. of the elliptic points on a™'T'(1)a\H are the elliptic
points in the same order for T(1)\H. So the induced morphism a. sends the
points 0, 1,00 of PL to the points 0,1, co of P}, thus is the identity.

So that the right-face of the commutative cube (O):

(O) T(1)\H z PA%
T'(M)\H Al X (M) _
o ) a
. a 'TT(1a\H —= — Pl
o~ 'T(M)a\H e X (M)
is in fact a F(M)-isomorphism of covers of PkL. O

5.4 Field of definition

Descent and topological characterisation

Under the assumptions of Theorem 5.11, the cover X (M) — X (1) being also
Glalois, the Proposition A.1.6 implies that the cover is defined over Q. We

would like to draw the same conclusion for the nonGalois covers Xo(0M) —
X(1):

Proposition 5.12. Let B be a quaternion algebra over a number field F
which has at least one split infinite place. Let N be an ideal of Zg the ring of
integers of F'. Fix a mazimal order O along with nested congruence subgroups
of units of norm one: G =T'(1), H =T'((MN).

Then, [excepted in the case {F = Q and 2|9}/ the monodromy group of
the subgroup H C G has a trivial centraliser in Sg/p.
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Thus the topological cover Xo(M) — X (1) has a trivial automorphisms
group.
Proof By |Déby, Lemme 7.6.5], it suffices to show that Norg H/H = {1}.

Recall that the kernel I(91) of the natural map from G to PSLy(91), is
also included (normal) in H. So it is sufficient to prove the proposition after
quotienting everything by I"(0) (exercice). Note G and H the quotients (i.e.
the images in PSLy(Zp/M)).

From the Chinese remainder (Sun Tsu) decomposition of Lemma II1.5.3
(iv), it is also sufficient to prove the proposition it in each component.
Namely for each prime factor p¢||M, one can consider from now on the

group G = PSLy(Zp/p°) and its subgroup H = T'o(p¢). And what is to
be shown, is that the normalizer of the subgroup of upper-triangular matri-

—~—

ces: Iy(pe), in PSLo(Zg/p¢), is reduced to I'g(p¢) itself. Consider an element

( a b ) € PSLy(Zr/p°) in the normalizer. Then for every ( o ) in
c d 0 u-!

—~—

[o(pe), the conjugate:

1 (d —b)(u v )(a b)
ad —bec\ —¢ «a 0 ut c d

is upper-triangular.

But the bottom-left entry is proportional to ac(—u + 1/u) — vc?, which is
thus equal to zero.

Choose first © = v = 1. Then ¢® = 0, so ¢ € p. Thus a is not in
p, otherwise the determinant ad — bc would not be invertible. Hence a is
invertible.

Choose next v = 0. Then simplifying by a, it remains ¢(—u + 1/u) = 0.
The following claim shows that there exists a u such that one can simplify
by —u + 1/u, and thus conclude that ¢ = 0.

there exists an invertible u such that —u + 1/u ¢ p (so is again
invertible). Indeed fix p an element of p. Then the polynomial X (—X+1)—p

in the residue field Zy/p has at most two roots and a nonzero derivative. So
by Hensel liftings it has still at most two roots in Zg/p°. So, provided that
the cardinality |Zp/p¢| is greater than 2|p/p®|, then such a u exists. But by
the formulas of Lemma 5.3 (i), the difference between the two cardinalities
is equal to ¢¢ — 2.¢°!, where ¢ = |Zr/p|. By assumption ¢ > 2, so this
difference is strictly positive, which proves the claim. O
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Remark 5.13. As a sanity check, one can verify this fact numerically for the
cases that are of interest for this work. Namely for B the quaternion algebra
of Examples 3.4, 3.6 and 3.7, let p be one of the primes po, p7 and p3 of
Zr, compute the monodromy group of the inclusions T'y(p?) C I'(1) with the
same algorithm as in Example 3.4. Then trust Magma for the fact that it
has trivial centralizer in Sg,/y.

Theorem 5.14. Under the additional assumptions made in theorem 5.11:

(i) F is Galois over Q;

(i7’) F is of strict class number one (so F(o00) = F);

(ii) the discriminant ®7 is Gal(F/Q)-invariant

(7ii) the level M is Gal(F/Q)-invariant.

(iv) the group T'(1)=7(O%) C PSLy(R) is a triangle group with elliptic

points of distincts orders.
Then the canonical cover f: Xo(M) — X (1) descends to Q.
This descent is furthermore characterised as being the unique cover over

Q (and actually over any algebraic extension of Q) that has the monodromy
representation of the topological cover Xo(M) — X (1).

Proof From Proposition 5.12 and the fact that the field of moduli of the
canonical cover f is equal to Q (by Theorem 5.11), the theorem 4.12 (ii)
applied to £’ = F and k = Q implies that the canonical cover f descends to

Q.
Theorem 4.12 (i) applied with &' = Q and k = Q then implies the unicity

statement. ]
An alternative proof for descent only

Proposition 5.15. Let N be an ideal of Zp. Fix a mazximal order O and

nested congruence groups of units of norm one: G =T'(1), H = To(N) and
"M < H.
Then the greatest normal subgroup of G contained in H
(5.3) N={()gHg"
geG

is equal to T'(MN).
Thus the Galois closure of the corresponding topological cover Xo(MN) —
X (1) is equal to X'(IM) — X (1), with automorphism group equal to PSLy ().
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Proof One can again quotient everything by the normal subgroup I''().

Again from the Chinese remainder (Sun Tsu) decomposition of Lemma
I11.5.3 (iv), it is also sufficient to suppose from now on that G = PSLy(Zr/p¢)
and H = To(p©) /I (p®) (for p¢||9T). And thus to show that the largest normal
subgroup N of G included in H is {1}.

Firstly, conjugating H by g = ( (1) (1) ) shows that

NC{(g Cﬁl )}

Finally let n € N be such a diagonal matrix. Then the equation (5.3)
shows that it remains diagonal after any base change of the free module
(Zp/pe)2 [This fact was pointed to us by B. Meyer|. So if (e, eq) is the

canonical basis, considering the base change by ( 1 (1) ), there exists a

scalar A\ € Zp/p® such that the basis vector e; + e is taken to A(e; + ey) =
ae; +a tes. Thus a™!' = \ = a.
For the last statement, the (hard) Proposition III.5.4 implies that the

inclusion I'(1)/I"(91) C PSLy(M) is an equality. O

Let us derive an alternative proof of the eristence statement of Theorem
5.14. By Proposition 5.15, the monodromy group of the cover f : Xy(MN) —
X (1) is equal to PSL2(M), which is center-free by construction. So by the
(hard) [DébDo, corollary 3.2] (see remarks 4.6), Q being the field of moduli
of the canonical cover f, it descends to Q.

Remark 5.16. One can check Proposition 5.15 numerically one some cases.
Let B be the quaternion algebra of Examples 3.4, 3.6 and 3.7. Let p be one
of the primes p7, po and p3 of Zr, compute the monodromy group of the
inclusions Ty(p?) C T'(1) with the same algorithm as in Example 3.4. The
cardinalities of these monodromy groups are equal to 23.3.74, 29.32.7 and
22.312.7.13.

These cardinalities are expected be equal to |PSLy(Zp/p?)|. Which is
indeed the case, as verified from the formulas given by Lemma II1.5.3.
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5.5 Why the assumptions in Doi—-Naganuma are neces-
sary

Counterezample 5.17. The assumption (iii) in Corollary 5.10 is necessary.
Indeed consider F' the Galois totally real field of polynomial t3 — 2 — 2t + 1,
¢ a fixed real place of F, p; the ideal over 7, and py3 one of the three ideals
over 13. Consider the quaternion algebra B ramified exactly at: the finite
places p7p13 and at that the two real places other than ¢. Then the canonical
model of the curve X (1) is of genus one, and its Jacobian is one of the three
elliptic curves e7d49D91i/ii/iii described in [Sijs, Tables A.1/2/3]'0 .

By the Theorem 5.6 they form an orbit under the Galois group of F.
Notice also that the assumptions (i), (ii) (the narrow class number of the field
F being one) and (iv) (the order is maximal) of the corollary are satisfied.
But none of the j-invariants is rational, so the field of moduli is not Q.

Counterezample 5.18. The assumption (iv) in Corollary 5.10 is necessary. In-
deed the counterexamples Xo(p11) and Xo(p);) e5d5D5i/ii in loc. cit. satisfy
all the other assumptions. But since their levels are not Galois-stable (p1;
and p’,), it is thus not surprising to see that their Jacobians have non-rational
J-invariants.

Counterezample 5.19. The assumption (ii) in Corollary 5.10 is necessary.
Indeed the genus one curve €2d1125D16: X (1) in loc. cit. satisfies all the
other assumptions (it arises from a maximal order and the algebra has a
Galois-stable discriminant). But the conclusion of the corollary does not
hold because the Jacobian of X (1) has a nonrational j invariant.

5.6 Canonical models not defined over their field of mod-
uli

Overview of the counterexamples

Three canonical models appear in the work [Sijs|, that have their field of
moduli (as mere curves) equal to Q —because they satisfy the conditions of

19Notice that in the reference, it is instead the finite discriminant prp,3 that is fized, and
the infinite discriminant ¢ that varies. But the two constructions are actually the same.
Indeed one passes from one to the other by conjugating the whole quaternion algebra (both
finite and infinite places). Which leads to the same curve, as stressed in Remark 5.7.
UThe curves €9d81D51i/ii/iii would also provide a similar counterexample.
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Corollary 5.10—, but are not defined over Q. These curves are all of genus
one and arize from maximal orders (X = X (1)).

The left-hand column of table of Table 5.1 is a reference for the data for
each of the three curves, as given in the tables of [Sijs]. The second and
last columns give the number field F' and the finite discriminant ® of the
quaternion algebra B (where, for example, p; and p} stand for the two primes
over the split prime 3). The two columns in the middle describe whether the
primes 2 and 3 are inert in F'

Table 5.1: Counterexamples

curve F 2 inert | 3 inert Df
2d13D4 | o [ o po
e2d13D36 popsph
e3d8D9 Q(\/ﬁ) no yes P3

Proof for one counterexample

Let us show that the curve X with label e2d13D36 is not defined over Q.

X is a curve of genus one defined over F, but doesn’t necessarily have a
rational point. However one can derive properties of its Jacobian .J, which
is an elliptic curve over F"

e Its conductor equals 6, by [Sijs, Proposition 2.1.6|.

e The valuation of its j-invariant at ps is equal to -10 (resp. -2 at p3 and
p5). Let us detail this result for the valuation at py. First, define the
quaternion algebra H ramified exactly at both infinite places of F' and
at psp5. Call Oy the maximal order of H. As in [Sij3, Proposition 3.1.9
(ii)] , consider Og(p2), a level py suborder of Op. Consider the set of
classes of right ideals of Og(ps), noted Pic,(Og(p2)). To each ideal
class [I(ps)] in this set, associate the weight'? |O;(I(ps))"/Zy|. These
weights can be computed by running the Magma ([Ma]) file PadInit in
[Sija]. The sum of these weights is then equal to the opposite of the
valuation of j at po, by [Sijs, Proposition 3.1.14 (iii)|.

12Equal to the cardinality of the projectivized group of units of the left-order of I(ps).
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Now if the curve X were defined over Q, then the Jacobian J would de-
scend to an elliptic curve Jq over Q, by the argument of [MilJV, Proposition
1.9]. So, let us suppose that such a rational model Jq does exist, then

e the conductor of Jq is either equal to 6, or to 6 - 132. This is proven
by the following discussion, whose arguments were brought to us by
Randriam:

— at every place p but 13, the extension FizQ,, does not ramify, so the
conductor of Jq has the same valuation than J, by Proposition 5.4
(a) of [Sil]. (As regards the particular cases of 2 and 3, note that
J has multiplicative reduction at these places, so the valuation of
the conductor of Jq is necessarily equal to 1 at these places.)

— at the place 13 where the extension Fy/Qi3 ramifies, Jq cannot
have multiplicative reduction. For that if it were the case, then J
would also have multiplicative reduction at 13 (by [Sil, Proposition
5.4 (b)]). This contradicts the result above on the conductor of J.

e the j-invariant of Jq should be equal to the one of J. So, in particular,
it should have the valuations at 2 and 3 predicted above.

Then, by a lookup in the tables of Cremona (proved to be exhaustive, see
the introduction of |Cr]), only two elliptic curves F; and Ey over Q fulfill the
conditions above:

Y2+ 2y +y = 23 — 70997 + 7275296
y? 4 zy = 2° — 119984122 + 15995824272

But considered over F', neither of their conductors is equal to 6 (one
obtains isomorphic curves over F of conductor 6.13). So neither of them can
be Jq, which therefore does not exist.

Alternative verifications (and nailing down the crucial point of the
thesis)

In [Sij;, Chapter 7|, 5.6 it is shown that the canonical model of J over F is
given by

(5.4)

Jr 4 (r4+ Doy + (r+ 1)y = 2° 4 (16383r — 38230)z + (1551027r — 3576436)
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where r is a root of t* —t — 3. Notice that the j-invariant is equal to
18013780041269221/9216 so Jg is rational. Thus Jp has field of moduli
Q (in particular is a Q-curve). And actually Jq 1s isomorphic over Q to an
elliptic curve over Q. But our point here is that the curve Jp over F itself,
i.e. the canonical model, doesn’t descend over Q: this is one of the main
subtleties that motivate this thesis.

Explicit methods to prove rigoroulsy equation (5.4) were also performed
in [Sijy].

Nevertheless, we would like to make a digression and recall the additional
sanity checks for the validity of equation (5.4) that were performed in our
joint work [BPRS, §3.8]:

e First, we checked that every quadratic twist of this model involving p,
p3 and pj, leads to a strict increase of the actual conductor 6, so cannot
be a candidate for J.

e In addition, we compared the traces of Frobenius on J at several primes,
to those predicted by the isomorphism of [Sijs, (5.16)] (or stated in
[DV, Th. 5.9]). This isomorphism asserts that the representation of
the Hecke algebra on the (one-dimensional) space of differentials on
E, is isomorphic to the representation of the Hecke algebra on the
subspace of the Hilbert cusp forms on F' that are new at ®. The com-
parison was made possible, since the traces for this last representation
are also computable in Magma (by the work of Dembélé and Donnelly
[DemDo]).

Now: take equation (5.4) of the jacobian J for granted, and let us show
(Nodesc): J does not descend to an elliptic curve over Q. Hence, as remarked
above, this will give one more proof that the curve e2d13D36 is not defined
over Q. For example, here are two ways to see (Nodesc):

e The trace of the Frobenius of J at the prime (11) of F, is equal to 22,
which is not of the form n? —2-11.

e Alternatively, one can check that the Weil cocycle criterion is not
satisfied for the curve J. Namely, letting o be the conjugation of
the quadratic field F', this boils down to verifying that, for any F-
isomorphism f, : J — J? from J to the conjugate curve, then f, does
not satisfy f, o o(f,) = id. The automorphism group of the elliptic
curve J being of order two, this is quickly done.
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Finally, there exists a last — and more straightforward — way to prove
that €2d13D36 is a counterexample. It does not use the actual equation for
the canonical model J, nor appeals to the various sophisticated theories used
above (that predict the traces, conductor and j-invariant). This approach
consists in computing the traces of the Hecke operators on J in the direct
manner. Namely, [Sij;, Algorithm 4.2.1] (available in [Sijs|, TakData) enables
one to compute the action of the Hecke operators on the homology of the
complex curve Y. Then, the computation of the trace at the inert prime
(11) leads to the same result, and thus conclusion, as above.



Chapter VI

Explicit recursive families

The notations and assumptions of Chapter IV hold, and as in Chapter V the
field F' is supposed to be totally real.

1 Leitfaden

Let us trace back the logics of this chapter and its role in the proof of Theorem
B. The statements about canonical covers are summed-up in Theorem C in
§6.1 at the end of this addendum.

(a) the moduli interpretation of the involution of Atkin-TLehner (§2.3 para-
graph "Atkin—Lehner");
implies that:

(b) the dotted map ¢ in diagram (3.2) in §3.2 is surjective;
One has:

(c) ¢ is injective;

Proof: follows from §2.1, which describes the Atkin-Lehner involution
in our narrow class number one setting. Or, as suggested at the begin-
ning of §3.2: shown in [Duc, Proposition TV.5.1].

Then (b) + (c) implies that ¢ is bijective. Which implies that:

(d) towers of Shimura curves are recursive;

Also, one has :

106
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(e) the first steps of the towers considered in VI.5 descend over Fi;

Proof: the unicity statement of Theorem V.5.14 shows that the candi-
dates for the canonical covers found in §5.2 are the correct ones. This
is stated neatly in the wrap-up Theorem C of §6.

Thus (d) + (e) implies:

(f) the whole towers descend over Fg;

The possibility to intertwin modular towers of coprime levels (§3.1) +
the density of the genera in the intertwinned family (§1V.2.5) finally
implies that:

(g) Theorem B holds.

2 Sketch of the moduli interpretation

We would like to detail the moduli interpretation over the complex numbers,
that underlies the recursive modular towers introduced in [El, 3rd variation].

The field F is assumed to be of narrow class number one (Definition
[I1.1.1). The assumption that B is a division algebra is dispensable here (it
is only necessary for the quotients T'o(D)\H to be compact).

2.1 The involution of Atkin-Lehner

Thanks to the classification of I11.4.1 and to Proposition I11.4.1, the following
description from [Ogg, §2| also applies in the class number one setting.

Let [ be a prime of Zp, i > 0 an integer and O(I*) an Eichler order of level
['. The group of invertible two-sided fractional ideals that are maximal at
the ramified places, can be described as follows: (i) the obvious ones zO([")
for r € Zr\{0} (ii) a nonobvious one J = J(I*), that satisfies J? = ['O(I").
It is defined as follows by its completions at each finite place:

- at every p # [, J, = O(I"),

- and (a) either [|D then J is the maximal ideal of O(I%); (b) or else:

m 0

w; = (O‘ 1) Ji=wi O(1) = O(l). w;.
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J is principal, generated by a totally positive element
w; € 0([1)

in the normalizer of To(IY). Thus the holomorphic transformation of the
upper-half plane H defined by w;, induces an involution of the Riemann
surface Xo(I')c.

Furthermore two such generators w; and w/ differ by an element of F"O*.
that is independant of the choice of w;. By unicity of the canonical model
condition, as in Theorem V.5.11, it induces an involution w; of the canonical
model Xo(IY): the involution of Atkin—Lehner.

2.2 Classical modular curves

Without level: the classical complex modular curve X(1), without the cusps,
parametrizes the isomorphism classes of complex elliptic curves E. Namely:

TeN— E,C/(Zr ® Z)

With level: Xo(N) (without the cusps) parametrizes the isomorphism
classes of elliptic curves endowed with a cyclic subgroup of order N (see [DS,
Theorem 1.5.1]). Equivalently, X,(/N) parametrizes the isomorphism classes
of isogenies £ — E/H defined by a cyclic subgroup of order N.

Atkin-Lehner: For [ prime and ¢ a positive integer, the matrix w; =

( Oli (1) ) defines an involution w; : z — —1/I*2 of the upper-half plane
H, and normalizes the congruence group I'o(l*). Thus yields a well-defined
involution w; of Xo(I%).

In the previous moduli interpretation, this involution sends the isogeny
{E=C/(rZ®Z) — F' = E/(H = (1/1'))} to the dual isogeny {E' =

C/(r2®1/1'Z) — E'/(/1) Y B).

2.3 Rational quaternion algebras

Let B be a rational quaternion algebra with discriminant D, let us fix

L: B —= B®qR = MR)
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a real splitting and O a maximal order. For each 7 € H, let Y, be the vector
< T ) of C2.
1

Without level

(See |Lan, IX], the notes of J. Stankewicz or [Vois, §42.6]). The space (B ®
R).Y; is the full C?) thus:

(2.1) n,:b€ B —b.Y, C C?is an embedding, and

(2.2) A, = 0.Y; C C?is a lattice.

Every complex torus of dimension two, with multiplication by «(B) and

uniformized by a lattice isomorphic to ¢(Q), arizes in this way —up to B-
equivariant isomorphism (|Lan, Theorem 4.2]).

Fix in addition T' € O, such that 72 + D = 0. It defines a positive
involution p on B:
¥ =T'7T.

Then the skew-symmetric form:
1 —
E.: ((a)Y;, o(b).Y,) — Etr(Tb”a) = tr(Tab)

is (up to a sign) a Riemann form with respect to the lattice A, of determinant
one. Notice that the Rosati involution is induced by the involution p.

Two such principally polarized (B, ¢, O, T)-lattices (or "QM-lattices") A,
and A, are (B-equivariantly) isomorphic if and only if 7/ € +(O")7 (|Lan,
Theorem 5.1|)

Thus the complex Shimura curve Xo(1) parametrizes the isomorphism
classes of (B, t,O,T)-principally polarized abelian surfaces.

Example 2.1. Assume that the discriminant D is one. Thus B is the matrix
algebra M,(Q), with the (non-positive) involution M — M = tr(M)Id — M.
YAGY /4

Let O be My(Z). Thus A, = ( g
-

curve: Fll. x FEll..
If furthermore T = (

) and A, is the square of an elliptic

0

(1) ), the (positive) involution p is thus M —

M the transposition. Therefore the restriction of the Riemann form:

ET : (Ml-iny MQY;—) — tI‘(MlT t]\42)
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to each factor (C x {0} and {0} x C) coincides with the canonical Riemann
form on FEli,.

With level: case of the matrix algebra

Let us keep on the previous example with B = M(Q) and O = My(Z). The
N-torsion on A, = Ell, x Ell; has a straightforward basis as a Z /N Z-module:

w1 =((). () () ) =

Rigidify the previous isomorphism classes of squares of elliptic curves, with
a subgroup Q of A[N| = (Z/NZ)*. Q@ is asked to be a sub-Z/NZ-module
isomorphic to Z/NZ & Z/NZ and cyclically generated under multiplication
by the quaternion order O = My(Z). Thus @ is easily seen to be of the form:

[ (Z/NZ).C/N B (Z/NZ).C/N
Q= ( (Z/NZ).C/N)+AT_M2<Z/NZ>'( ; )+AT,

with C' a complex number of order N modulo NA.. Thus of the form ¢+ dr,
¢,d € Z and ged(c,d, N) = 1.

Let us now characterize standard representatives of rigidified squares of
elliptic curves, mimicking [DS, Theorem 1.5.1]. Consider any square of ellip-
tic curve Ell.» x Ell.» endowed with a subgroup @) of the N-torsion as above.
From the condition ged(e,d, N) = 1, there exists a matrix

7:<a Z)E(’)l:SLQ(Z)

C

Define 7 = .7/ and C' = ¢7’ + d as above. Then multiplication by C defines
an isomorphism from the rigidified square of elliptic curves:

(2.3) [EuT < EIl,, ( g; x 21% ) + AT]

to [ET/ X ET/,Q].
Let us finally study when two standard representatives for 7 and 7’ as
in (2.3) are isomorphic. An isomorphism commuting with the quaternionic
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multiplication is necessarily an homothety. Therefore there exists a complex
number m and v € O = SLy(Z) such that

(2.4) m(I)zy(Tl)

And thus 7 = .7/ and m = ¢’/ + d, where v = ( a4

b ) It is further-
d

c
more required that the torsion subgroups are sent to one another:

. Z/NZ.1/N Ll Z/NZ.1/N AL
Z/NZ.1/N Z/NZ.1/N
Thus considering the first coordinate, (¢7’+d)/N must belong to 1/NZ+71'Z,
so d =0 mod N and 7 belongs to the standard Eichler suborder

Z 7

O(N) = ( N7 7 ) C O =My(Z).

In conclusion, To(N)\H parametrizes isogenies between principally po-
larized products of elliptic curves, defined by a subgroup @ of the N-torsion,
isomorphic to Z/NZ & Z/NZ and cyclically generated under multiplication
by the mazimal order O = My(Z).

With level: general case

In the previous case, the order O = My(Z) had a canonical explicit matrix
action on the N-torsion points: the one induced from the complex action of
B = M,(Q) on C2

Here one needs to make a choice. Consider the surjective morphism of
O-modules:

/N

Ny A€EO — L(/\).( 1N

)€ %A/A:A[N}.

Choosing an isomorphism as in the proof of Proposition 111.5.4:

v O/NO = My(Z/NZ),
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n-/n factorizes through a —non-canonical—isomorphism of M,(Z/NZ)-modules:
TN Mo(Z/NZ) == A[N].

Letting e;; be the standard elementary matrices in My(Z/NZ), define the
N-torsion point:

(25) CT = 777—/N<612) < Nr/N <611M2<Z/NZ)>
(the analogous of < 1/0 N )) It generates likewise a QM-cyclic subgroup:

Q- =T~ (M2(Z/NZ)).C; + A
of A[N], isomorphic to Z/NZ & Z/NZ.

Let us study when two standard rigidified QM abelian surfaces:

[Aw QT] and [A’T/7 QT’]

are isomorphic. Once again (i) an isomorphism is necessarily induced by
multiplication by a complex number m (ii) and there exists v € O, such
that 7 = v.7" and the equation (2.4) holds.

Here the additional condition is that ), is sent to @),». The group Q)
being cyclic under O, one has:

m.Cr € 1(0).Cr,

So that, letting e € O be any element that reduces modulo N to e, by
equation (2.5) there exists u € O such that:

m.¢(e).< I?% > = L(u.e).< /N )

Replacing the LHS with (2.4) yields:

L(e.y)( Tll//]]\\][ ) = L(U.@).( /N )
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Finally the vector ( ;; x ) having no torsion under O, this implies the

equality in O:
ey =u.e

Reducing modulo N, identifying O/N QO with a matrix algebra by the isomor-
phism 7y and multiplying the matrices, this implies that ~ is upper-triangular
modulo N. Thus belongs to the standard Eichler suborder. The unit v being
furthermore of norm one, this results in:

Two standard rigidified QM-abelian surfaces for T and 7' are isomorphic
if and only if T € To(N)7'.

Remark 2.2. The Morita equivalence for matrix algebras (|Lam, proof of The-
orem 17.20] or [Brou, Proposition 1.25|) implies that every nonzero My(Z/NZ)-
submodule @ of A[N] is isomorphic to Q' = €1:Q ® e11Q). Where My(Z/NZ)
acts on the left on Q" by matrix—column vector multiplication.

So in particular @ is fully determined, as a My(Z/NZ)-module, by the
Z/NZ module generated by C' = e1;). Which is, in our case, free of rank
one.

However the isomorphisms of My(Z/NZ)-modules allowed in our situa-
tion are only those arizing from complex homotheties.

This is why we did not use this argument as in [Cl;|, and stuck with
non-canonical choices and explicit computations.

Atkin-Lehner

The case of the matrix algebra mimicks the case of classical modular curves.
The involution of Atkin—TLehner:

e (01
N ~N 0

sends the standard rigidified QM lattice:
r— [MQ(Z).< T )’ ( Z/NZ.1/N ) +AT}
1 Z/NZ.1/N
to the standard rigidified QM lattice:

—_~—

e b () (I ) e
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Where wy.7 = —1/(N7). Thus the complex homothety of multiplication by
7 sends A, to the —non standard- rigidified QM lattice:

(7). (SN ) o]

One recognizes the pair that parametrizes the dual isogeny of ANT But beware
that the QM-structure and the polarization have been twisted by wy.

In the general case, let us borrow the more intrinsic description of the
QM-cyclic isogenies proposed in |Cl;]. Assume for simplicity that the level
N is a prime power p°. The Eichler order O(p®) is the intersection of the two
maximal orders O and O’, who differ exactly at their completions at p:

Op:(zp Zp)andO;:(Zf p‘)
Z, 7, P° 2y

This gives rize to two isogenies, of kernel isomorphic to O/O(p®) = Z/p°Z:

T

(26) quoi A, = CQ/L(O(pe)).< 1 ) s Aﬂc?/w).( I ) and

60 w0 uow(]) = s 00 (])

The maximal orders O and O are conjugate by the Atkin-Lehner element:
O’ = w,Ow; . Let us see how the involution w, of the upper half plane, sends

q1t0q2. LetMe:<a b
C

and let m. be the complex number ¢7 + d. Then the following commutative
diagram links ¢ .. to ga:

) = 1(we) be the real matrix corresponding to w,,

(28)  C/Luopnut( T ) o fom (7))

c2/b(0(pe)).( I ) e c2/L(o').( I )
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Once again, although the vertical arrows are isomorphisms, they twist
the polarization and the QM-structure by w,.. The same diagram obviously
applies to g2, and q.

Finally, the polarization being principal, it enables to define dual isoge-
nies:

(2.9) q) ‘A1 — A, and
(2.10) @ Ag— A

In conclusion, the involution w, sends the QM-cyclic isogeny:
Goq Arg — Aro

to the dual isogeny:
q1 0 CI;/ : AT,Q — A‘r,l

(up to twisting the polarization and the QM-structure by w).

Wrap-up

See [El;] for the analogous case of classical modular curves. Let p be a prime
number and i > 0 an integer. The complex curve Xo(p'™')c parametrizes
"cyclic p' isogenies" between QM polarized abelian surfaces A; — A,. le.
isogenies that arize from a subgroup @ of A;[p°], which is isomorphic to
Z/p°®Z/p° and generated by a point C' under multiplication by the maximal
order O. This data is equivalent to the chain of cyclic p-isogenies:

Jopi-tc Jopi—2c Jo.c

(2.11) A Al/o.piflc : C 225 A,
The projection f;y1: Xo(p"™!) — Xo(p') sends such an isogeny to the one
defined by the p*~!-torsion point pC. That is to say, sends a chain (2.11) of

cyclic p-isogenies to the chain truncated at the end :
Jopi-tc Jopi—2c
e

A Al/o.piflc ‘ . ‘/O—"’C>A1/O.pc

The involution of Atkin-Lehner w; sends a cyclic pl-isogeny A; — A to

its dual Ay — A;. Thus the composition w; o f; 11 o w;, 1 sends a chain (2.11)
to the chain truncated at the beginning:

Jopi—2C Jopi—3c Jo.c

Al/o.pl*lc ' Al/o.pHC ' 20 4,
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2.4 Over totally real fields
Without level

For general totally real fields F' 2 Q, the following classification makes it
necessary to enlarge the quaternion algebra B by a CM field K.

Proposition 2.3 ([Shg, Prop. 1]). Every division algebra over Q with a
positive involution belongs to the following four types of algebras.

(Type 1) Totally real algebraic number field F';
(Type II) Central simple algebra L over F such that Lg = LoqR = [[14" My(R);
(Type 111) Central simple algebra L over F such that Lg = L ®q R = [[=8" H;

(Type 1V) Central simple algebra L over a totally imaginary quadratic extension
K of F.

So consider the larger quaternion algebra L = B ®p K (|Shy, §7.3]) and
fix, as in the rational case (|Shy, 7.13]):

(i) positive involution p of L (as in |Shy, Prop. 2|);

(ii) a complex representation ® = ®; @ ... Pip.q of L equal to [F : Q]
copies of My(C), such that p induces the transconjugation of matrices
(|Sho, (6.1.1)]), and such that, in particular, the subfield F' acts through
its real place in ®; and its complex places in ®;~; (see [Shy, (6.1.3)]
and [Sho, (8)]);

(iii) an ideal 9t of L with left-order a maximal order O (|Shy, 7.13|: for
example choose M = O a maximal order).

Then consider the isomorphism classes of simple complex polarized abelian
varieties A such that ([Shy, 1.4]):

(i) A is of complex dimension n = 4[F : Q] and the endomorphism field
Endq(A) is isomorphic to L via the complex representation © ([Shy,
1.4] or [Shy, 4.1]);

(ii) thus if D is the complex lattice that uniformizes A: A = C"/D, then
® induces an isomorphism of L-modules: n: L — QD. It is asked that
n~ (D) = M ([Shy, (9)-(10)] and [Shy, §4.1]). Thus the endormorphism
ring End(A) is equal to the maximal order O;

(iii) the involution p of L induces the Rosati involution.
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By the discussion summed up in [Shg, Theorem 1|, all isomorphism classes
of such (L, ®,p, T,9M)-abelian varieties arize (with redundancy) from the
following construction. Let 7" be an element of L such that: (i) 77 = —T

and (ii) —i®1(T) is conjugate to ( (1) _01 ) and —i®;1(T) to ( (1) (1J )
(IShe, (11),(12),(25)] or [Shy, (6.1.4)]).

Let D be the unit disc and for all z € D, let Y, be the vector of (C?)F*Ql =
(RHIF:Q with its first Ri-component equal to Y., = (1,z,2,1), and the
others equal to Y, ;~; = (1,1,1,1). Consider the lattice A, = ®(M).Y, C
C2FQl Then the skew-symmetric form:

E.(®(a).Y,, ®(b).Y,) = tr(aTb’)

is a Riemann form.

Two points z and 2’ in D give isomorphic polarized lattices if and only
if they are in the same orbit of D under the action of a certain subgroup of
units of L: 2’ € ©&y(I'(T,9)).z [Shy, Theorem 2].

With level

Rigidify the previous (L, ®, p, T, 9t) abelian varieties, by endowing them with
a full level O structure: that is to say, a basis v of the 91-torsion ([Shy, 7.13]).
E.g. the full level 9t = (1) is an empty set. By the statement [Shy, (4.2.5)]),
the unit disc D parametrizes (with redundance) all such rigidified polarized
lattices.

Two points z and 2’ D give isomorphic rigidified (L, ®, p, T, M, v)-lattices
if and only they are in the same orbit of a certain subgroup of units I'(7", 9%, 901)
of L [Shg, Theorem 2].

The miracle is then that, under a suitable choice of CM field K ([Shy,
Proposition (7.6)]), the congruence subgroup I'(M) C B C L in B coincides
with the fixator I'(T', 91, 9t) C L of a full level ¢ structure ([Sh;, Propositions
411 & 6.3]).

Thus every intermediate congruence subgroup I': T'(1) C T' C T'(M) also
fixes intermediate level structures. E.g. I'y(91) parametrizes cyclic subgroups
and thus cyclic isogenies.

In conclusion, switching to the upper-half plane by [Shy, (7.3.1)], the
complex curve Xy(M) parametrizes exactly the isomorphism classes of: iso-
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genies, between such (L, ®, p, T,9N) abelian varieties, defined by a group of
rank 2[F : Q] which is O-cyclically generated by an Di-torsion element.

3 Recursive families

The goal of this section is to prove the recursivity of the modular towers
introduced in [El, 3rd variation|, the moduli interpretation underlying them,
and to recall how two curves of coprime levels can be intertwinned. This last
fact, although already considered in [El;, 2nd variation| is the key point of
this work and was pointed to us by Elkies.

3.1 Intertwinning coprime levels

Consider m and n two coprime ideals of F'. The following diagram commutes:

(3.1) Xo(mn)

e

Xo(m) x Xo(n) —5 Xo(n)

-

Xo(m) o X(1)

The ideals m and n being coprime, Corollary I11.5.6 implies that the de-
grees of the projections from 7, and 7, are equal to ¥(n) and ¥(m), them-
selves equal to the degrees of the projections Xy(n) — X (1) and Xy(m) —
X(1). So the induced map ¢ : Xo(mn) — Xo(m) x Xo(n) to the fibred prod-
uct is of degree one onto its image. This image is a connected component of
the fibred product.

The main point is that the complexified map ¢¢ is surjective. Thanks to
the moduli interpretation in paragraph "Atkin-Lehner" of §2.3 above, then
the proof is formally the same as in [Ely, top of page 2| (use the wrap up
of ). Thus the fibred product is geometrically (irreducible), thus ¢ is an
isomorphism.
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3.2 Equal levels

Let « > 0 be an integer and [ a prime ideal of F'. Firstly, one easily checks
that the outer-arrows of the following diagram commute (see also the proof
of [Duc, Proposition 1V.5.1]):

(3.2) Xo(11#).

Wi 420 fi130W; 13

e

XO([iJrQ) % XO([iJrQ) - XO([iJrQ)

Lpz fH-QL

XO([HQ) Wi410fi420Wi42 XO([iJrl)

fits

Indeed with the notations of §2.1, consider the ratio r = w; 1 ow;y3/w; 11 W;ta.
One the one hand r generates the integral two-sided ideal pO(p*™'). Thus
by the narrow class number one assumption, r belongs to F*O(p*™!)". On
the other hand it is a quaternion of totally positive norm. In conclusion
r € FrO(p"™)*. Which is included in F*O(p**!)!, by Proposition I11.3.2.
Thus r induces the identity on Xg(p**).

The induced map ¢ is again of degree one onto its image for degree
reasons.

It is also left as an exercice that the complexified map ¢¢ is surjective
(see the wrap up of the moduli interpretation §2.3 above). Thus the fibered
product is geometrically (irreducible), thus ¢ is an isomorphism.

By successive pullbacks of morphisms, a recurrence implies the closed
formula for Xo(I*):

(33)  Xo(®) x  Xo(?) Xo(l2)  x Xo(?)

\Xo(l)‘fg/\Xo(l) \Xo(l)/

w10 faows w10 faows w10 faows f2

4 A new curve with many points —in need of a
moduli interpretation

We thank J.—P. Flori for bringing our attention to [Has|.
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4.1 Predictions from the theory

Let F be the totally real field F = Q(v/3). Let py and ps the primes of norm
two and three over the ramified primes (2) and (3), and B the quaternion
algebra ramified exactly at: p, and one infinite place. The narrow class
number ht = |Cly(F)| is two —with corresponding abelian extension F., =
Q(v/3,7). So we don’t know if a modular tower can be built from Atkin-
Lehner involutions —there exists possibly more than one involution at each
step ! Nevertheless, our attempt to build recursive curves succeeds:

Consider a maximal order O in B and the Fuchsian group I'{(p3) in
PGLJ (R) arising from the units with totally positive norm O(p3)™ of the
Eichler order! of level pj in O. By Theorems V.5.1 and V.5.4, X (p3) is
defined over the narrow class field F, and has good reduction modulo the
prime p5 = (5) over the residue field Fj:.

The number of Fsa-points of the reduction X (pgl)F52 is given by Theorem

V.5.5. One can compute the matrix of the Hecke operator T'(p5) using two
independant algorithms available in Magma:

e the generalization of modular symbols [GV] (which further generalizes
[Sijy, Algorithm 4.2.1] for genus one curves);

e the action of Hecke operators on spaces of Hilbert modular forms
[DemDo|. As mentionned earlier, the correspondence of Jacquet—Langlands
states that the action of T'(p5) on the space of holomorphic differen-
tials on X (p3), is isomorphic to its action on the subspace of py-new
Hilbert cusp forms on F of level p3.

But beware, the output of both algorithms is the matrix of the full Hecke
operator [Duc, equation (IV.10)] acting on the Jacobian of the full Shimura
curve [Duc, equations (IV.1) and (IV.2)] defined over F. Which has h* = 2
connected components, of which X (ps:). The matrix being diagonaliz-
able with rational values, we simply divide the trace by two, and obtain
’871 points over Fsa ‘

Magma tells us that the Fuchsian group T'j (p3) has . So this
number of Fsi-points is bigger than the previously best-known value for this
genus, equal to 868.

![Has] studies the subgroup T'o(p3) of units of norm one, of index two in T'd (p3) by
Proposition II1.3.2
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4.2 Verification with explicit equations

Magma tells us that the Fuchsian groups I'(1), I'y (p3) and T'¢ (p3) have sig-
natures < 0;2,3,12 >, < 0;2,2,3,3 > and < 0;2,2,3,3,3 >. By Corol-
lary T11.5.6, the indices are [['(1) : T'd (p3)] = N(p3) + 1 = 4 and [ (p3) :
If (#3)] = N(ps) = 3.

One deduces from this a possible ramification behaviour for the mor-
phisms f; : Xy (p3) — X(1) and fy : X (p3) — X(p3) of degrees 4 and 3.
Let R;, Q; and P; be the elliptic points of orders 4 in the curves Xo(1), X (p3)
and X,(p3), —possibly with a prime (e.g. P}) when two points have the same
order. Non-elliptic ramification points are just numbered with their ramifi-
cation indices. e.g.: (3) is ramified of order 3 above R3. The numbers beside
the arrows are the ramification indices of the points (hence the redundant 3,
etc.).

Xo(p3) (2) Py Py (2) Py, P3, Py (3)
le?) x ll 1l % 1\1/1 3l
Xo(p3) (2) (2 5 (3) @3 5
AN 7 A N
Xo(1) Ry R3 Ryo

Remarks 4.1. Considering the covers f; and fs individually, there is only one
possible ramification behaviour for them.

But for the composition f; o fo, there are two possibilities: one could
swap the ramification above the branch points Q3 and Q% (one ramified point
instead of three non-ramified, and conversely). However this would have lead
to a different monodromy triple for f; o fo. And, thanks to computations
similar to Example V.3.4, we could discard this possibility

Fix the coordinates of Ry, R3 and Rjs at A = —27/625, 0 and co. Set
w = v/—2. Then the function:

fit) = (= 1)t —1/5)

has the desired ramification behavior with @2, @, of coordinates +w/5, and
with @3, Q% of coordinates 1 and oo.

Let us multiply from now on the coordinates on X (p3) by five, for the
sake of reduction modulo (5): Q2 =w, Q) = —w, @3 =5 and Qs = oc.
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Exercice: a nonidentity involution of P! (in characteristic not two) has
trace zero. We look for an involution w; that both swaps @2, @), and Q3, Q5.
The first condition implies that w; is of the form(z + 2¢)/(cx — 1) or 2/x.

Then the second implies:
_ dx+2

wyp = .
r—>5

We find similarly:
fo(z) = =32 — 223
which has the desired ramification data with P, = w, Py = —w and Ps, P;, Py
the roots of P(X) = (X +1)(X? — X +5/2).
We finally look for an involution wy that swaps +w, so of the form (z +

2¢)/(ecx — 1) or 2/x, and which furthermore stabilizes the polynomial P(X)
up to scalar multiplication. A numerical solving for ¢ provides

Tz +4
Wo = .
2T o 1

Applying the closed formula (3.3), it follows that the function field of
Xo(p3) is defined over F3 by:

(4.1) 323y + 223y + 42 + 42 + 229 + 3wy + 32 +2 =0 and
(4.2) 322 28 + 4y 4y + 292 3y +3y+2=0

From this equation, one can run general function field theoretic algorithms
in Magma to confirm that this curve is indeed of genus five and has 871 Fxa-
points.

4.3 A still unknown moduli interpretation

The complex curve Xy(1) parametrizes classes of polarized abelian varieties
with quaternionic multiplication by B as in 2.4. Whereas X/ (1) parametrizes
only weak classes: that is to say, such polarized abelian varieties modulo
multiplication of the polarization by the action of a totally positive element
of F' (|Shy, 4.7, 4.10, 4.11]).

BUT -contrary to the situation Xy(p3) — Xo(1)- the curve X (p2)
DOES NOT seem to parametrize the quaternionic p3-isogenies between classes
of abelian varieties parametrized by X (1). Indeed suppose that it were the
case, then X (p3) would parametrize three ps-isogenies of type Rz — R —
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Rs or Ris (R being any point, elliptic or not). But I see only two possi-
ble such isogenies when looking at X (p3), which are R3 — R — R3 and

5 The intertwinned tower X(p}.pl) over F;

5.1 The towers Xy(p%) and X,(ph)

Let us describe the ramification data determined at the end of chapter IV.
P;, Q; and R; stand for the elliptic points of orders i in the curves Xo(1),
Xo(px) and Xo(p3), k = 2,7 —possibly with a prime (e.g. P.) when two have
the same order. Non-elliptic ramification points are just numbered with their
ramification indices. e.g.: (2)? stands for four ramification points of order
two above (3. The numbers beside the arrows are the ramification indices
of the points (hence the redundant 2%, etc.). Xo(p?) starts from the left and
Xo(p}) from the middle.

Xo(p?) (3)7 Py Py (3)7 (7)
le? & 1 1‘ % 7‘
Xo(p7) (3)? Qs Qs (2)* Q7. (7)
flls R ‘1/ 24 1‘7
Xo(1) Rs R, R
Xo(p3) (7) Py Py (7) (2)*
f2|8 \ 1 1‘ / (2)4l
Xo(p2) (7) Q7 Q7 (3)° Q2 (2)*
f1l9 \1‘ / 33 124
Xo(1) R, R3 Ry

We saw that X (1), Xo(p2) and Xy(p7) are of genus zero, whereas Xo(p2)
and Xy (p3) are of genus one.

Recall from Example V.3.2 that covers of degree d of the projective line
minus three points, are in bijection with conjugacy classes of triples of per-
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mutations satisfying:
{80,80,00 € Sa, Ga0 806, =1}
Recall the triples for the cover fo : Xo(p3) — Xo(p2) obtained in Example

V.3.6. Depending on the conjugacy class of the subgroup 'o(p2) inside T'o(p2),
one obtains two possible conjugacy classes of triples:

g

[(1,5,3,7,8,2,4), (1,8,3,2,4,5,6), (1,2)(3,4)(5,

: )(7:8)]
(1,3,5,2,6,7,8), (1,5,2,8,6,3,4), (1,2)(3,4)(5,

)(7,8)]

Remark 5.1. These two possible choices are equivalent for our purpose. In-
deed, one of them determines the cover f,, whereas the other one determines?
wy o fo. Anyway, computing the fibre-product (3.2) after substituting wy o fo
to fo gives the same result (exercice).

2 6
oy 6

Likewise for Xo(p2) — Xo(p7) one got in Example V.3.4:

[(1,6,4,2,7,5,3), (1,6,2)(4,5,7), (1,3,4)(2,7,6)]
[(1,7,4,5,3,6,2), (1,5,7)(3,6,4), (1,2,3)(4,5,6)]

a7
o7

Each of the four previous permutation triples generate groups in Sy, or
Ss, which have a trivial centralizer. Thus by the (i) of Theorem V.4.12, if
one fixes generators for e.g. the m (Pg — {Q7, Q%, Q2}), and one fixes one of

those triples, e.g. 0, then two covers over a number field that both have the
triple o9, will be isomorphic over the number field and not only C.

5.2 Computing the covers

The goal is now clear: for each pair of triples (07,7 and 0y/»), find one of
the two uniquely possible covers f, : E — P! having this monodromy action.
Then check for good reduction over Fj.

j-invariants and rationality of quaternionic modular forms

Thanks to an algorithm for covers of the projective line arizing from sub-
groups of triangle groups, kindly shared by John Voight, we could determine

2Which is the subcover from the image subgroup of T'g(p3) by the Atkin-Lehner invo-
lution wy. This image is non-conjugate in T'o(p2) (nor in I'g(1): see Remark 5.4)
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the j-invariants of the complex curves of genus one Xo(p2)c and Xo(p3)c
whose monodromy over P! equals the triples above. Namely:

(5.1) jr = —3375 and j, = 1792

The method consists in, e.g. for Xo(p?)c:

(i) embedding in PSLy(R) the Fuchsian group I'y(p7), seen as the (7,3, 3)
triangle group A, as described in [KVMSV, Prop 2.5] (not the quater-
nionic embedding). And then in the group of direct transformations of
the unit disc centered at the elliptic point Q7 of order 7 of A (as in
[KVMSV, p 11]) ;

(ii) determining a set of coset representatives for the subgroup I' = [y(p2)
defined by the triple o7 [KVMSV, Algorithm 3.5]. And thus a funda-
mental domain for I' in the unit disc;

(iii) determining a basis {g(z)} for the (one dimensional) space of weight
two modular forms for this subgroup ([KVMSV, p30-33|);

(iv) by integration of this differential form on the fundamental domain |
determining the periods lattice of the elliptic curve X, (p?)c ([KVMSV,
p44-45]);

(v) and possibly compute the Belyi map to Xo(p7)c ([KVMSV, p33-35],
though we didn’t use it).

Let us share a surprising pattern in the development of g. After comput-
ing a power series expansion with precision 140 in the unit disc centered at
()7, and normalizing the variable w — w/A (we chose A equal to the ratio of
the two consecutive non zero coefficients of g of degrees 7 and 8), we found:

g(w) =1—2/3.w+2*/3%w® +27/(3".7)w" 4+ 27 /(3".7)w® 4+ 2°/(3'°.7")w™
—28.5/(318.72.13)w™ — 2'°.5/(3'°.7%.13).w™ + 2% /(3% 72 13)w'"
—21.31/(3"%. 72 13)w* + ...

This is surprising, firstly because although ()7 is not an elliptic point for
I', the development follows a periodic pattern : 1101000 1101000. .., where 0
means a zero coefficient and 1 a nonzero one. Finally because the coefficients
could be clearly recognized as rational numbers, although the general theory
only predicts them to be algebraic.

It also raizes the question of, when one has determined numerically a
larger basis of ¢ > 1 modular forms, does there exist numerical methods
to find a linear transformation to apply to this basis in order to retrieve a
rational one (after a further simultaneous normalization).
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Theoretical predictions for the canonical models

Several hints help. First, the canonical models of the Shimura curves X, (p?)r
and Xo(p3)r —a priori defined over F— are actually defined over Q by Theorem
V.5.14 applied to the corresponding covers fi o fo : Xo(p?)r — X(1).

In addition: [Sij;, Th 3.1.6] gives information about the conductors of the
Jacobians over F' = Q(cos(27/7)). The one of Xy(p?)r is equal to a strict
power of p;. So by the same argument as on page 102, after descent over Q,
the conductor is of the form 7°, ¢ € [1,2]. Similarly the one of Xo(p2)r is
equal to a strict power of p,. So after descent over Q, is of the form 7°.27,
i€{0,2} and j € [1...8] (remind that the exponent of a prime p > 3 in the
conductor of a rational elliptic curve can’t be greater than two).

Finally: a lookup in [LMFDB]| selects eight possible elliptic curves for the
Jacobian of Xy(p3)r. Among which, only one has the traces of Frobenius
equal to traces of Hecke operators of level p2 at the primes ps, ps, p11 and?

pi7:

(5.2) Jac(Xo(p3)r) : ¥ = 2° + 2° — 114z — 127

The case of Jac(XO(pg) F) is similar but an ambiguity remains at this
stage, so the determination will be described in what follows.

To start with, in order to compute f,, one would like to know the field of
the coordinates of the (CM-elliptic of order seven) branch points Q7 and Q.
For example, by identifying them as the points that are unramified above Ry,
by fi. So let us compute this last map.

Determining the cover f; : Xy(ps) — X (1)

The triple of the genus zero Belyi map f; happens to have a trivial central-
izer. So the equation of f; can be determined without ambiguity from its
ramification data.

To start with, the branch points Ry, R3 and R; are rational over F' by
Example V.5.3, so can be set at oo, 42 and 0. The following representative
for the isomorphism class of f; was then computed with the "ASD trick"

3The respective traces being —8, —18, 72, —126. Surprisingly, the traces of the other
candidates differ only from their signs. I must miss an elementary fact about elliptic curves
here.
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described in [Bir]:

(x+13/7)"(2* 4+ 7)

(5.3) fi=
U (2% — 172/631° + 2914/14722 — 130204/7203x + 39913/441)

In particular Q7 and @, are at £/—7.

Equation of the cover f, ., : Xo(p3)q/—7 — Xo(p2)qn/—7 over a
quadratic extension (because of a pointless canonical model)

To start with, both the canonical covers f; and f; o fo descend to Q by
Theorem 5.14. So the pointed cover (fa, (P7, Pr)) descends to Q (here (P, P2)
is seen as a point of degree two). But, as we will see in Remark 5.2, the
canonical model Xy(p3)r has no rational point. So it is hopeless to find
equations for f, over Q from the rational Weierstrass model (5.2).

We still want to use this Weierstrass model, thus we are going to compute
Jo,r(y=r) over the quadratic extension Q(+v/—7. So let us chose the smallest
finite field of good reduction containing z = /—7: namely Fa, to compute
the cover fop,, modulo 29. In particular, the trick detailed in [SV, page 39|
saved days of computations*.

Next: a (two-variables) Hensel-lifting, followed by lattice methods to rec-
ognize rational coefficients (we thank B. Meyer for discussions about this),
lead to two possible isomorphism classes of covers defined over Q(v/—7) C
F(v/=7)) and ramified over {Q7; = oo, Q% =1, Qy = 0}. They are given by
the following f, and its complex conjugate fo, where z = /—7:

1
5.4 =

(54) faren = o — 1/32(91z + 169)
+1/12544(—272 — 151)2° + 1/3136(712 — 109)2> + 1/3136(4912 + 4231)x:

+1 /3136(—8411z—14971)+y(1 /614656(—132—49)2>+1/153664(2052+49)>

[1/12544(—2 +11)2*

+1/76832(—317z + 1519)x + 1/153664(—26132 + 5831))] .

4Precompute all the possibilities for the polynomials expressing the resultant between
f2,7,, and its derivative.
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And the (CM-elliptic of order seven) unramified points above @7 and Q%
are in affine coordinates:

(5.5) Py =[1/32(912 + 169), 1/128(—1911z + 931)] and:
P, =[—14z + 16, —982 — 49]

The "ASD-trick" described in [SV;, Lemma 2.7| provides a sanity check
that the equation for f, p, /=% given here has the correct ramification data.
Let (7) = [2, —7z] be the ramified point of degree seven above @, = 1. Then
the sum of points 2.P; + Q7 — 5.(7) on the elliptic curve Xo(p3)p,/—7) is
expected to be the neutral element, which is indeed the case.

Remark 5.2. We can check that (fs, (P, P;)) indeeds descends to Q: the
map ¢, equals to the addition of the point @ = (2: 7z : 1), maps the pointed
cover to its conjugate and satisfies the Weil cocycle condition ¢.¢ = 1.
However there doesn’t exist any F(y/—7)-endomorphism of the elliptic
curve Xo(p3) (/=7 that maps the pair (Pr, Py) to a pair of conjugate points.
So the pointed map doesn’t descent to a pointed map from the elliptic
curve Jac (Xo(pg)p) to PL. So the canonical model is not an elliptic curve.

Reduction and descent over F;

Reducing the cover modulo® F32 = F3(2? = —1) | the descent begins. First,
apply a translation to the elliptic curve Xg(p$)1:32, in order to move the
elliptic points P; and P, into conjugate points. Then, as suggested in [SVg,
A.1], apply a homography to P%‘“;ﬂ so that (i) the branch points 0, 1 below P;
and P are mapped to the conjugate points z and —z (ii) and oo is unchanged
(indeed, we notice a Fz-rational point over 0o, so we want to preserve this).

This provides a model over F3. But being computed by composition by
an elliptic-curve translation morphism, the size of the fraction defining the
cover explodes. So we recompute a simpler equation over F3 for the whole
cover again, taking advantage of the knowledge of conjugate coordinates for
P; and P} (and also of the rational point above oo) determined just above.

5Which could also be directly computed in this finite field. But Hensel lifting was
problematic from here.
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This results in:

1+ 2?4+ 2%+ a2t + (v + 22%)y

5.7 =

( ) f2($7y) 2+.T2+.T3+.T4+.T2y

(5.8) Xo(pg)]_:3 syt =2t 2t 42

(5.9) wy s Xo(p3)ps 2 P — (1:2:1) =P
(5.10) wyt€PE, Dt — —t

Where wy is the involution on Xy(p3)g, that swaps the elliptic points P; and
Pr.

Computation of the cover f,: Xo(p2) — Xo(p7)

The same hints leave us this time with two candidates for Jac (Xg(pg)p): the
rational curves 49.a2 and 49.a4 of the LMFDB (which are both isogenous
and twists). But attempts to compute the cover with one and the other
candidate, singles out 49.a4 as the right one. It has the following model over
the rationals:

(5.11) Xo(p2)p:y +ay =2 -2 — 22— 1

We could furthermore perform pointed descent of the cover fy over Q,
thanks to the method of [SVy, A.2] using the ramified point (7) = {oo} of
order seven above the rational point Q7 = {oc}. This descended global cover
f2 has also good reduction modulo 2 as a bonus. Here are the equations:

( ) fo(z,y) =2z + 5a% — 32 + (=3 +3x+ x2)y branched over
(5.13) Qs,Q3 = £V —=3;

( ) Ws XO(p%)Q 9P—> (27_171)_P

(5.15) wytePg 3t — —1—t

Remark 5.3. Notice that we removed the Jac in equation (5.11). Indeed we
obtain here an equation of the cover f5 defined over the field F' of definition
of the curve Xo(p2)r (over the rationals, actually). Thus the ramified point
(7) = {oo} of order seven above the rational point Q7 = {oo} is rational. So
the canonical model Xo(p2)r is an elliptic curve.
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Additional monodromy computations for Xy(p})

The cover foq : Xo(p2) — Xo(pr) given in (5.12) being defined over Q, it
is possible to use Maple’s algorithm to compute the monodromy. We check
that it is indeed given by one of the triples 07,7 (depending on the base laces
chosen).

But recall that the cover f, has no automorphisms, as one checks directly
by verifying that the triples o; and ol have trivial centralizers. Thus by
Theorem V.4.12 (ii), the fa q given in (5.12) coincides with the unique descent
of the canonical cover f; p over Q (up to Q-isomorphism).

The next remark explains the ambiguity about the choice of base laces
(and thus of triple o7/7/). The two choices are deduced from one other by
the involution of Atkin—Lehner. Thus, as our goal is to compute the fiber
product of the cover with its twist by Atkin—Lehner, the choice is harmless.

Remark 5.4. Firstly, we computed the monodromy of the map (5.12) twisted
by Atkin-Lehner (basically: compose it with a switch of the conjugate branch
points Q3 and @%). We obtained the two triples o7 and o7, that correspond
to the monodromies of the canonical cover and of its Atkin—Lehner twist.

Remark 5.5. This remark is not mandatory. Fix a representative of the
isomorphism class of the cover f;. Then one could further ask which one
as the two candidates fo and f}, gives the correct composed cover fi o f; :
Xo(p?) — Xo(1).

Firstly, the triple of the genus zero Belyi map f; happens to have a trivial
centralizer. So it can be determined straight from its ramification data, with
the help of [Bir]. We get e.g.:

1 (2® +232/3x + 3403/36) (2* + 3/4)
26,32 (r —13/6)7

S

Then, a computation of the monodromy of the compound cover f; o f,
(of degree 56 !), shows that, with this choice of fi, then the f5 given in (5.12)
provides the correct canonical composed cover f; o f.

On the contrary, we could unfortunately not perform monodromy com-
putations with the cover f, (/=7 : Xo(p3) = Xo(p2), because our equations
are only defined over Q(v/—7). So this leaves open the possibility that the
equation in characteristic zero for the covers f, p( /= and f, p( =7 that we
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obtained in equation (5.4), might actually describe covers with wrong ram-
ification triples. Indeed, J. Sijsling’s algorithm Belyilnit in [Sijs] provides
another pair of conjugacy classes of triples that have the same ramification
data (i.e. cycle lengths) as the pair oy and of:

(5.16)  o2wrong = [(1,2)(3,4)(5,6)(7,8),(1,3,4,5,7,6,8),(1,7,6,8,5,3,2)]
(517) Ué,wrong = [(17 2) (37 4) (57 6)(77 8)7 (17 5? 67 87 37 27 4)7 (17 37 77 87 57 27 4)]

Their monodromy group is of cardinality 1344 (instead of 56). There
exists a fifth triple with this ramification data but it is discarded (since it
cannot account for the pair of nonisomorphic covers f; p(/=z) and fy p/=
that we obtained).

Thus, this ambiguity motivates the tedious proof done in section 6 (based
on exhaustive Hensel liftings). We hope to resort soon to numerical methods
to check the monodromy representation anyway. Beforehand, we describe
sanity checks.

5.3 Computing the next steps of the towers

As an additional check for both towers, we computed the fibred products
defining Xo(p3)p, and Xo(p3)r, as in (3.2). More precisely, we could deter-
mine their function fields as follows:

Let A, be the affine plane with variables z,Y, 2, T. Call E,y(p) and
E.r(p) the polynomials defining the plane models of the elliptic curves
Xo(p?) determined above (p equals p, or p7). Using addition and inver-
sion formulas on an elliptic curve, one determines a rational formula for the
involution wy(z,T'), which is correct except at one point.

The locus of the fiber products Xo(p?) in the square of the plane model
Xo(p?) x Xo(p?), is defined by the vanishing of the numerator N, of w; o
fo(z,Y) — foows(z,T). We get (up to points where it is badly defined):

N,, = 222Y 2% + 207V 2% + 20°Y 2 + 227V + 2?2t + 2%2° + 2?2 + 2%+
tattaltrz+a+ 22T+ 22+ 242
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and
Ny, = 2225 4+ 22427 + 228257 + 220 + 20 2°T + 22%2° + 227277 + 22*

+ 22423 + 2242 + 20122 T + 2122 + 22T + 22 + 22T + 224
+ 2328 4+ 22327 4+ 20325 + 0328 + 203 2°T + 2032° + 22324
+ 2320 4 203237 4 22323 + 22327 + 2322 + 2327 + 232 + 22°T
+ 223 + 222V 27 + 222V 25T 4 222Y 2% + 222V 25T + 22Y 2P
+ 222V 2T + 22%Y 24 4 222Y 23T + %Y 23 + 222Y 2°T
+22%Y 2% + 2?Y 2T + 20°Y 2 + 22°Y T + 2°Y + 222° 4 22°27
+ 222287 + 2225 + 22225 + 22225 + 22224 + 2221 + 2222°T
+ 20223 4+ 202 22T + 2222 + 22T + 222 + 22°T + 222
+20Y 22 4 2V 2% + 20V 20 4 aY 2t + 20V + aY R+ aY e
+22Y + 27 + 25T + 28 + 2T + 22° + 2T + 24 + 2°T
4283 + AT+ 22+ 22T+ 2+ T +2

Summing up, one considers the scheme:
E={(x,Y,2,T) € Ay, E,y(p) = E.x(p) = N(z,Y,2,T) = 0},

Which has one irreducible component X of genus five (respectively seven).
These are happily the genera predicted by Corollary TV.2.12 for the curves
Xo(p?) and Xo(p3).

Remark 5.6. In addition, £ has one (respectively two) other irreducible com-
ponents of degree one. They probably occur as Xo(p?) x {0}, because of the
points where f; o wy(z,T) are badly defined.

Our two-variable equations for the function fields of the component X
~which is expected to be the one of Xo(p3) (respectively Xo(p3))- are one
page-long. This is mainly due to our computations of fs 0w, as compositions
with the translation by a point on an elliptic curve: this raises the size of the
fraction expressing f.

Computing it directly as a cover solves this problem (and also suppress
the parasitic components): this is done in the final section 6.3.

Next, one enlarges the constant field of X to Fss and computes the places
of degree one and two of X,,. This enables to recover the number of points
over Fy: and F3s of the smooth model of Xg,. Which gives: 28 and 1000
points for Xo(p2), and 24 and 1760 points for Xo(p3). These numbers happily
coincide with those predicted by Theorem V.5.5 (the traces being evaluated
with Hilbert modular forms).
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6 Wrap-up of VI.5.2 and complements on canon-
ical covers

6.1 Wrap-up statement of VI.5.2

Let us first recall the definition of the towers considered in VI.5. Let F =
Q(cos(27/7)) be the totally real number field of degree three and narrow
class number one. Fix once and for all a real embedding ¢ : ' — R. Let B
be the quaternion algebra over F' which is ramified exactly at: the two other
infinite places than ¢, and no finite place.

One remark about the choice of «: actually all the levels 1 considered in
the thesis for this algebra B are Galois-invariant. Also, the finite discriminant
of B is Galois invariant because it is trivial. Thus Remark 5.7 above, about
conjugate quaternion algebras, implies that one would get the same Shimura
curves if having fixed another infinite split place ¢ o o for B.

B acts on the upper-half plane through through the split real place ¢ :
B — Ms(R). Consider the prime ideals ps and p; of F' above the inert
prime (2) and the ramified (7). Define the corresponding nested families of

congruence subgroups of PSLy(R): To(p3) and Ty(p}) (see II1.5.1). Forming
the quotients of the upper-half plane, inclusions of nested subgroups give rize
to the two towers of canonical covers (see Theorem V.5.1) over F:

B X8 D Xo(p2) B Xo(pr) L5 X0 (1)
B X8 D Xo(p2) B Xo(pe) L5 X0 (1)

Theorem C. (i) The canonical cover for : Xo(p2)r — Xo(pr)r descends
over Q. Its equation, and that of the Atkin—Lehner involutions, are given by

Equations VI.(5.11) and VI.(5.12)—(5.15):

(6.1) Xo(pp:y +ay=a -2 — 22— 1

(6.2)  foq(r,y) =2z +52* — 32° + (=3 + 3z + 2°)y , branched over
(6.3) Qs, Qs = £V=3;

(6.4) wy : Xo(p2)g > P — (2,-1,1) =P

(6.5) wy i tePgdt— —1—t
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(it) The quadratic base field extension to F'(y/—7) of the canonical model
Xo(p3)r is given by VI.(5.2):

Xo(P2) py=r) : 42 = 2 + 2% — 114z — 127

(ii’) The quadratic base field extension to F(v/—7) of the canonical cover
Xo(p2)r — Xo(p2)r = P, is given by VL(5.4):

1
o= = L(91z + 169) {12544

1
—z 4+ 1)z + —— (=272 — 151)2®
(—z+11)z +12544( Tz 51)x

1 1 1
+— (712 — 109)2” + === (4912 + 4231)x + ﬁ(—8411z — 14971)

3136 3136
|
—13z — 49)23 2 49) 22
+y<614656( 32 = 49)a” + {rarey (2062 + 49)x
1
(31724 1519 9613 5831) .
T 7gaan (AR H DL 4 qpae (726182 4 5831) 1

(17i) The equations for the reduction over Fse of the canonical cover after

the quadratic extension to F(v/=7): fo 1 Xo(p3)py=r) — Xo(P2)p(y—7) =
P},(ﬁ), and likewise for the Atkin—Lehner involutions, are given by Equa-

tions VI.(5.7) to (5.10). Luckily for us, they descend over Fs:

14+ 2% + 23 + 2% + (v + 222)y
f2(l‘,y>: 2 1 g2 3 4 2
v+ a0+ at + vy
Xo(p3)r, 1 y° =2 + 22 +2
wy : Xo(p3)w, 2 P — (1,2,1) = P
wy it €Py, >t — —t

Proof (i) Recall that the verifications done in the paragraph "Additional
monodromy computations "f; " prove that the equation of fyq given in
(6.1) (i.e. (5.12)) coincides with the unique descent of the canonical cover
far over Q (up to Q-isomorphism).

(ii) Consider the ramification diagram of Xy (p5) in §5.1. Here, "rational"
means "rational over F'", the field of definition of the canonical covers. The
rational point R; has two preimages that are ramified of order one by the
rational map f1 p: Q7 and Q. So they are quadratic conjugate over F'. The
formula in equation (5.3) even shows that they have coordinates in F'(v/=7).
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Each of these points have a unique preimage by f; r that is ramified of
order one: P; and Pi. So P; is defined over F(y/—T7): this shows that the
base field extension of the canonical model : Xo(pg)F(ﬁ) is an elliptic curve.
So it is equal to its Jacobian over F(v/=7).

By arguments with the conductor and the j-invariant, we could determine

its equation in the paragraph "Theoretical predictions for the canonical mod-
els": VI.(5.2), recalled in (ii).

(ii’) Firstly, the whole purpose of (ii’) is to give an equation for f; /=
with smaller coefficients than the output of the algorithm of [KVMSV].

But there certainly exists more clever methods than our whole recompu-
tation.

From now on, our goal is to certify that the map f, (/=) given in (ii’)
has the same monodromy as that of the canonical cover: oy or d5. Because
then, by the same unicity argument as in (i), they will coincide.

Unfortunately as pointed at the end of "Additional monodromy compu-
tations", we were not able to do the same numerical verification as in (i).
Hence this time the map f, p(,/=%) is not defined over Q and Maple had trou-
ble with the input given in floating complex numbers. There exists plenty of
(privately implemented) numerical methods to overcome this.

But for now in this case, we got along with a cheaper method. At the
cost of the following lengthy argumentation:

e Firstly, we know from (ii) the reduction of Xy(p2%) over F3(v/—7), and
also that of Xo(p2)p, /=7 = P;3(ﬁ);

e Then, an exhaustive computation shows that there exist only two iso-
morphism classes of covers over F3(v/=7): call them f,p, /= and

Jopy(v=7) that have the same ramification pattern than the canonical
cover fa .

(Unicity) Thirdly, an exhaustive search for Hensel liftings shows that there exists
only two isomorphism classes of covers over F(v/=7): f, p /=7 and
f2,p(y=7) with this ramification pattern: the first one is given in (ii’).
(We ensured exhaustivity very recently).

(Existence) But, remember that the algorithm of [KVMSV] certifies that there
exists two isomorphism classes of covers: Xo(p3)p=7) — Xo(p2)r =
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Pl with this ramification pattern, and whose monodromies are given
by oy or o (this is how we found that Xo(p3)p(,/—7 was the canonical
model).

e thus by unicity, the covers f, p(/=7) and f; p(,/=7) are equal to the latter
and thus their monodromies are given by o, and ¢5. One of them is the
canonical one, and the other is isomorphic to the Atkin-Lehner twist.
Since we are going to take the fiber product of the two, the ordering is
not important.

that we started from, are indeed the reduction of the canonical covers! [

(iii) The proof of (ii’) shows that the two covers f, g, (/=7 and fop, /=7

6.2 On the form of a rational function on an elliptic
curve, by H. Randriam

Proposition 6.1. Let E be an elliptic curve and f a rational function of
degree d. Let Og be the point at infinity. Denote div(f) = Z — D with avec
Z, D prime to one another and effective of degree d. Then

e cither the points of D with multiplicities sum to zero (and thus Z also),
then f can be expressed as a rational fraction u/v of degree d;

e or D does not sum to zero. Then f can be expressed as a rational
fraction u/v of degree d + 1

Proof One first looks for u in L(dOg) such that v = fu in L(dOg), which is
equivalent to ask for div(u) = D — dOg, possible if and only if D sums to
Og.

If it is not the case, then one chooses u in L((d+1)Og) such that div(u)
D + (—=P) — (d+ 1)O. Then one concludes likewise with v = fu in L((d
1)Og).

I

6.3 Simpler equations for the twisted covers, including
over Fj

As mentionned in Remark 5.6, the Atkin—Lehner twists of the covers f; could
have shorter equations if they were computed directly from their ramification
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data. This is what we did, with the help of the previous argument on rational
functions (a cover of P! is a rational function).

- For fo,q @ Xo(p?)q — Xo(pr)q:
(6.6) fo.q(z,y) = 22 + 52 — 32° + (=3 + 3z + 2°)y branched over

(67) wloszowg:m(x4+4w3+4x2+3+y(x2—|—3x+2))

which

- For the reduction fo g, (/=) @ Xo(03)r,, — Xo(P2)r,, = P;g,
descends over Fs:

2x4—|—2x2+x+2+y($3+x2+2)
2 +y(a® +z+2)

2x4+2m2+x+2—|—y(2x3+2x2+1)
202 + y(2? + z + 2)

(6.8) fowg(,y) =

(69) wi © f2,F3 O Wy =

- Likewise, the cover fyp, (/=7 @ Xo(03)r., — Xo(P2)r,; = Ppe and its
’ 5
Atkin—Lehner twist luckily descend over F:

3aut 4 dx? + dr + 1+ y(22° + x + 4)
(6.10) for, = - -
203 + 302 + 4 +y(2? + x + 2)
20" + 2% 4 327 + 22 + 2 + y(22% + 2)
ot 4 2% + a2 4+ x4 3+ y(22?)

(611) w1 © f2,F5 O Wy =

But our computations to verify the next step Xo(pg)]_:52 did not end yet.
So we wait a bit before claiming that Theorem B also holds over F; with
Shimura curves. This would then prove that the figure 4,74 in Table 2.2 can
indeed be reached with Shimura curves.
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Explicit symmetric multiplication
algorithms

1 Roadmap

As a motivation, consider the inequality (1.2) of Theorem I.1.1 and fix the
degree of the divisor G. 1t is equal to deg G = >, u;.d;, where d; is the degree
deg P;. Then —as one sees from table [.2.1- the upper bound on p£¥™(m) given
by the RHS of the inequality will be all the more large that the degrees of
the points P; and their multiplicities u; are big.

We are going to discuss this issue in the symmetric case, because the
bound of Corollary 1.2 leaves more room for improvement than the assym-
metric bound of Proposition 1.5.

So let us set D = D; = D,, and remind recall that the three divisors
(G, D, Q) must simultaneously respect the conditions of Theorem [.1.1. Call
such an admissible triple (G, D, Q) an interpolation system.

Thus, to minimise the symmetric bilinear complexity of the multiplication
in Fym, one is lead to:

1 Collect (and improve) the best bounds for the p2™(m,[);
2 Find curves with many points P; of low degree;

3 For such a curve X, fix a (small) degree degG of G such that one
hopes the existence of an admissible interpolation system (G, D, Q) on
X (as precised in next section). For this candidate value of degG,

138
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find a combination (u;, P;); of points and multiplicities that, numeri-
cally, minimises the upper bound of Theorem I.1.1 under the constraint
deg G > ). u;. deg P;

4 For this fixed candidate value deg GG, given such a numerically optimal
G = ), u; P;, check the existence of an interpolation system (G, D, Q).

1 is the motivation for [.2.3. The methods to find the new bounds are de-
scribed in the next section. 2 is the motivation for the last section. 3 is an
integer programme and will be illustrated in §3.2. 4 will be discussed in the
next section.

2 (Improved) search for optimal multiplication
algorithms in Fon[y]/y/

2.1 The algorithm

To obtain the new upper and lower bounds, we built on the exhaustive search
method introduced in [Oce], then in [BDEZ]|. We would like first to share
our techniques of implementation and search that contributed to these re-
sults. And last, regarding the new lower bounds, we give the arguments that
make our computational proofs valid and reproducible, especially when new
shortcuts are involved.

Let K be a field, A = K? a K-vector space of dimension p and B a
(symmetric) K bilinear map, taking here values in A, seen as a tensor in A*®
A* ® A. Then, evaluation on the last component A defines a "coordinate"
map':

A= A" A,

whose image is a K-vector subspace noted T'. Let G be the set of (symmetric)
bilinear forms of rank one in A* ® A*. Thus from k generators of T in G,
one deduces explicit decompositions of B of rank k. Then the (partially
symmetric) tensor-rank of B is equal to the least number k, of elements of
G, necessary to generate 7.

Going in the other direction, the incomplete basis theorem implies that:
a subspace W of dimension k of A* ® A*, which both (i) is generated by

! This could be seen as a "tensor-flattening map", but we ignore how far this helps.
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elements of G and (ii) contains T, can be generated by a basis of T' completed
with elements of G

E.g. in the case where B is the multiplication in a K-algebra A, then one
need to complete exactly with k — n elements. Because the subspace T is of
dimension n as soon as A has a unit.

These arguments validate the following algorithm (|[BDEZ]), which both:
given an integer k, determine if B is of rank strictly greater than k£ and, if
not, find all the decompositions of length k of B.

Algorithm 2.1. Start with the subspace W =T of A* ® A*, of dimension
n. Then, for each element g of G independent from W, complete W by g,
to obtain W' = W @ g of dimension n + 1. Iterate until the dimension
reaches k. Test if the subspace obtained is generated by elements of G. If it is
not the case for all the subspaces produced, it thus implies that the (partially
symmetric) rank of B is strictly greater than k.

In practise, the algorithm first produces, by recursion on the dimension,
all subspaces W of dimension k in A* ® A*, that can be generated from
T completed with elements of G. Then, for each subspace, tests if it is
generated by elements of G (the production and testing stages are actually
simultaneous, in order to cut nodes of the recursion on the fly).

2.2 Improvements

We describe now three implementation techniques that saved us significant
computation time.

(1) When looking for a symmetric decomposition of a symmetric bilinear
form B, the entire research can be implemented in the subspace of
symmetric bilinear forms;

(2) As pointed by F. Courbier, the final step of the algorithm can be sped
up. Instead of systematically computing the rank of G N W, one can
check beforehand if its cardinality is lower than? dimW;

2This leads to noticing that, for algebras of dimension greater than 7, letting k be the
known upper bound for the tensor rank of multiplication, then a general subspace W of
dimension k in (A* ® A*)SY™ will a priori contain less than 0.01 rank-one tensor. Thus, it
would be interesting to know how to restrain the search to subspaces with a higher density
of rank-one tensors.
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(3) To avoid testing several times the same subspace, one can fix once for

all an ordering on G = (g1, ..., gnm). Then, at each step of the recursion,
complete W =T®Kg;, &... Kg;, by only the vectors g in G numbered
after g;,.

Finally, we put apart an observation that, either, helps finding quicklier
a decomposition of given length k (and thus an upper bound), or, when none

exists, gives a theoretical shortcut to establish this nonexistence3.

Observation 2.2. Suppose that a group H of linear transformations of £ =
A" @ A* :

(i) preserves the set G of symmetric rank-one bilinear forms;

(11) preserves the subspace T spanned by the components of the bilinear map

B.

Then, given an element g € G, there exists a subspace W of dimension k
solution of the problem (i.e. (a) generated by rank one bilinear forms and (b)
containing T ), if and only if, for each element h(g) in the orbit of g under H,
there exists a subspace W' of dimension k which is a solution of the problem

The observation has the following consequence. Suppose that one wants
to perform a recursive search (say for rank k, so a recursion of depth k —n).
Then it is enough to fix one element ~; € G per orbit O; = H.7; (the orbit
representatives). And to perform the recursion with the first element g;,
equal to one of the representatives «;. So this greatly narrows the choice of
the first element.

Note that the work [Svy| has, since, generalized this observation. Among
other improvements, it computes on the fly the stabilizer of the subspace
obtained at every step of the recursion.

Here are two examples. In the case of a finite field extension A = Fym /F,
there is one single big orbit in the set G of symmetric bilinear forms, under the
action of the group of invertible elements H = Fq defined by composition
with two-side multiplication :

(2.1) beFym:A(-,-) — A(b-,b)
Consider now the algebra
A=Fnlyl/y' = Fo{(2'y)izo.

i .
7=0..

o).

-1
-1

3This method might be an elementary case of tensor decomposition methods. It origi-
nated thanks to an apparently innocuous lecture of G. Cohen on cyclic codes.
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The dual is A* = F m[y*]/y*!, where y*7 is the linear form that sends 2%y’
to one and the other standard basis elements to zero. The group of invertible
elements H = A’ is equal to the polynomials of valuation zero in y. Consider
the action of H on the symmetric tensors of rank one G C A* ® A*, defined
the same way as previously.

Then there are [ orbits {O, ..., 0;_1}. The orbit O; = H.(y*)®? consists
in the symmetric bilinear forms of rank-one expressible ¢®2?, where ¢ is a
polynomial of degree exactly 7 in y*. In particular the largest orbit is O;_;
and consists of elements ¢®? such that, said otherwise, ¢ is not zero on at
least one element in A of degree [ — 1 in y.

Regarding this last example, notice in addition that any minimal (sym-
metric) multiplication algorithm will involve at least one element of the great-
est orbit O;_;. So this narrows the search for subspaces containing the ten-
sor’s space of components 7.

2.3 Perspectives

These computations were performed with the C library [M4rie| dedicated
to fast linear algebra in characteristic two. But far less computer resources
were used than in [BDEZ]. So we hope that these refinements of the method
—and more certainly the further improvements of [Svy|- will help find more
bilinear formulas. E.g. find if p4(1,6) < 13 7, as proposed in remark 1.2.11,
or find if p(7,1) < 18 7, as proposed in remark [.2.13.

3 Best expectable complexity using a given curve

3.1 Best expectable interpolation systems

We introduce new results and tools that help finding optimal interpolation
systems on a given curve.

Let X be a curve of genus g over F,. An optimal symmetric interpolation
system on X with respect to multiplication in a finite field extension Fym, is a
triple (G, D, Q) that provides a symmetric multiplication algorithm in F m,
reaching a lower bound for the complexity of the Chudnovsky-Chudnovsky
interpolation method on X. This will be precised in Definition 3.5.

The first two key-observations were brought to us by H. Randriam.
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Observation 3.1. When H'(X,O(D)) = 0, the sufficient condition (i) in
Theorem 1.1.1 is in fact equivalent to (ii). Moreover, it is remarkable that
this situation happens, for instance, when deg D > 2g — 2, by the Riemann-
Roch theorem.

Indeed, one then has the shortened exact sequence :

(3.1) 0— H'(X,0(D - Q)) = H°(X,0(D)) =% Oxo/(tg) = ...
. HYX,0(D-Q)) =0

Observation 3.2. Let X be a curve of genus g over Fy, m an integer and Q)
a closed point of degree m. Suppose that there exists an interpolation system
(G,D,Q) on X, with Q of degree m, which furthermore satisfies the sufficient
condition (ii’) of Theorem 1.1.1. Then, degG >2m+g—1 .

Proof Let (G, D, Q) be the interpolation system of the hypothesis, and n
(reps. d) the degree of G (resp. D). By condition (i) of Theorem I.1.1,
[(2D — G) = 0. Thus, the theorem of Riemann-Roch applied to 2D — G
yields:

(3.2) 2d—n<g-—-1

In addition, by condition (ii’) of Theorem I.1.1, which is satisfied here by
assumption, i(D — Q) = 0. Thus, the theorem of Riemann-Roch applied to
D — @ yields d — m > g — 1. Multiplication by —2 of this inequality yields:

(3:3) —2(d—m) < =2(g— 1)
Summing (3.2) with (3.3), leads to 2m —n < —g + 1. O O

Lemma 3.3. Let X be a curve of genus g, m an integer and ) a closed
point of degree m. Suppose furthermore that m > g. Then, any divisor
D belonging to an interpolation system (G,D,Q) on X satisfies deg D >
m-4+qg—1.

Proof Note d the degree of D.

First case : suppose 2g —2 < d < m+ g — 1 (which is not an empty case
as soon as ¢ is strictly lower than m —1). Then, for degree reasons, i(D) = 0.
Thus the Riemann-Roch theorem implies I(D) = d+1—g < m = dimF ,(Q).
Therefore, the evaluation map (ii) of Theorem I.1.1 cannot be surjective, for
dimension reasons.
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Last case : suppose d < 2g—2 < m+g—1. Then, K being the canonical
divisor of X, the Riemann-Roch theorem and Serre duality imply that I(D) =
I(K—D)+d+1—g. But K — D being of non-negative degree, we also have
the bounding I[(K — D) <2g —2—d+ 1. Thus, [(D) < g < m = dimF,(Q),
thus the same contradiction as previously. O O

The following consequence was known to H. Randriam before it was pub-
lished in our paper [Ra, Table 1].

Proposition 3.4 (Properties of optimal interpolation systems). Let X be a
curve of genus g, m an integer and Q) a closed point of degree m. Suppose
furthermore, as previously, that m > g. Then :

1. The degree of an interpolation divisor G, belonging to an interpolation
system (G, D, Q), cannot be lower than 2m + g — 1;

2. For such an interpolation system, i.e. with deg G attaining the lower
bound 2m+ g —1, then the degree of D s necessarily equal to m—+g—1.

Proof Let (G, D, Q) be an interpolation system with @ of degree m. Note d
the degree of D. Firstly, d being strictly greater than 2g — 2, observation 3.1
applies. Hence, the interpolation system satisfies (ii’). Thus, observation 3.2
applies : G cannot be of degree lower than 2m + g — 1.

For the second part, let (G, D,Q) be an interpolation system as in the
assumption, that is with ) of degree m and deg G attaining the lower bound
2m + g — 1. Then, recall that by inequality (3.2), 2d — deg G < g — 1. Thus
here, d < m + g — 1. But by the previous lemma, we also have the opposite
inequality : d > m+g— 1. [ O]

Definition 3.5. Let X be a curve of genus g over F,, and m an integer.
Suppose furthermore, as previously, that m > g. An optimal interpolation
system on X in degree m is a triple (G,Q, D), with @ of degree m, that
satisfies the three following conditions :

1. Satisfies the conditions (i’) and (ii’) of Theorem I.1.1;
2. deg G reaches the lower bound 2m + g — 1 of proposition 3.4;

3. G is numerically optimal, that is : write G = w1 P, + - - - u, P,, then,
this combination of points P; and multiplicities u; minimizes the upper

bound on pg¥™(m) given by Theorem 1.1.1.
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Proposition 3.6 (Effective construction). Let X be a curve of genus g,
such that there exists an optimal interpolation system (G, D, Q), with Q) of
degree m. Note C1°(X) the zero-class group of X. Then, it is possible to build
(G, D, Q) with at most twice #C1°(X) emptiness-checkings of Riemann—Roch
spaces®.

Indeed, first notice that, (G, D, () being optimal by assumption, the
degree of D is m + g — 1 by proposition 3.4. In particular by Observation
3.1, the sufficient condition (ii’) of Theorem I.1.1 is actually equivalent to
(ii). Thus, one does not miss any optimal interpolation system (G, D, Q) by
checking conditions (i’) and (ii’) instead of (i) and (ii). Secondly, notice that
conditions (i’) and (ii’) depend only on the class of D — @ (resp. 2D — G) in
CI°(X).

Step 1 : Look for a numerically optimal G, of degree 2m + g — 1, whose
class has not been already produced in the previous runs® of Step 1, then
proceed to Step 2.

e Step 2: look for a divisor D, of degree m+g—1, such that ((2D—G) = 0,
and such that the class of D has not been considered yet in the previous
runs® of Step 2. If such a D exists, proceed to Step 3.

— Step 3 : find every possible closed point ) of degree m, such that
the class of D — @Q in Cl# '(X) has not been tested yet in the
previous runs of Step 3, and then test if i(D — Q) = 07. If so,
return (G, D, Q).

% Actually, both computations for (i) ("Step 1") and (ii’) ("Step 2") will here occur in
the group C19!, so one can remove the factor 2, as soon as one keeps in memory all the
classes of divisors already tested

SEnumerating the (classes of) numerically optimal divisors on X is performed in two
steps : (1) enumerate each collections of integers (ng.)d. (where ng, stands for the
number of points of degree d involved with multiplicity » in G), that (a) minimise the
upper bound of Theorem L.1.1: 37,  ngupg™(d, ), under the constraints that (b) the
total degree >, , nqudu (is greater or) equal to the above lower bound 2m + g — 1, and
(c) for each d, >, na,, is lower or equal to the number of points of degree d in X. (2) for
each collection (n4,y)d,4, enumerate the divisors involving exactly ngq,, points of degree d
with multiplicity w

6This involves at most |C1°(X)| emptyness checks of Riemann—Roch spaces in C19~! (X))
(minus those already performed in the previous runs).

"This involves at most |C1°(X)| emptyness checkings of Riemann-Roch spaces in C197!.
(D—Q@ being here of degree g—1, the theorem of Riemann—Roch implies that this condition
is equivalent to (D — Q) = 0)
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— If we are here, this means that the last run of Step 3 did not return
any solution. Assuming that an optimal interpolation system does
exist, this implies that there remain classes (C ...C5) in C1"™(X),
which have not been tested yet in the previous runs of Step 3.
Thus, return to Step 2.

e If we are here, it means that no divisors D were found in Step 2. Then,
the assumption for the existence of an interpolation system implies
that: there exists another numerically optimal divisor G”, and another
D" such that there exist classes (C,---,C,) in ClY"*(X), that have
not been tested in Step 3 and are of the form (D" — Q;);c;. Thus,
return to Step 1.

Remark 3.7. Under the additional assumption where points @) of degree m
would exist in every single class C1™(X), then the first run of Step 3 always
returns a solution as soon as an optimal interpolation system exists. Thus, if
no solution is returned, this is a proof that no optimal interpolation system
of degree m does exist on X.

It is to be noted that, even if the case of elliptic curves can be dealt with
directly, a proof of the additional assumption in this case does exist. Indeed
[Sho, Th. 27| states that, for ¢ > 7 (and presumably > 4 for m sufficiently
large), for m < 2%0%  there exists a prime divisor of degree m in every class®.
Any analogous proof in higher genus would be of interest.

3.2 The example of elliptic curves, over F,

Lowest expectable value for the degree of ¢

We first recall the known sufficient conditions to build interpolation algo-
rithms on elliptic curves over a general F, (|[Ran;, Prop. 4.3]) :

Proposition 3.8. The notations being as in Theorem 1.1.1, let X be an
elliptic curve over F, and Py the neutral element of the group of points of
X(F,). Let m be an integer. Suppose that X admits a closed point Q of
degree m. Let G be an effective divisor on X, written as:

(3.4) G=uP +...+u,P,,

8 There is actually a mistake in Lemma 19 of loc. cit.: in the first line of (2), u is
actually meant to be n/v,.. Thus, in the last but one line, ;1 can actually be equal to 1
when n has no square factors. Anyway this is compensated when, e.g., m is greater than
6! = 720.
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where the P; are pairwise distinct closed points of degrees deg P, = d;, so

degG =>""  dyu;. Then,
T (m) <™ (dy, i)
i=1

provided one of the following conditions is satisfied :
(i) deg G = 2ml and | X (F,)| > 2 and C1°(X) is not entirely of 2-torsion.
(11) | X (F,)| > 2 and deg G > 2ml + 1.
Furthermore if the additional criterion on G is satisfied:

the divisor G — deg G. P4 is not equivalent to 0

then deg G can even be taken equal to 2ml.
(11i) deg G > 2ml + 3.

Taking the example of Fy, the five equivalence classes of elliptic curves
over this base field are given by the following equations.

3.5) vV 4+y+at+r+1=0
3.6) V4+ay+at+22+1=0
3.7a) v +y+at=0
3.7b) V+y+ai+r=0
3.7¢) v 4oy +a2t+1=0

AN TN N TN TN

In Table 3.1 below, we classify these curves along the previous conditions.
For each curve X we give: the number B; of integral points, the structure
of the group of points C1°(X) and, thus, the smallest degree of G satisfying
the previous sufficient conditions: we call this value "upper-bound". In ad-
dition, we also bound below the degree deg G of an interpolation divisor on
X (distinguishing whether or not the additional criterion on G is satisfied).
Regarding the 2-torsion case, we finally explain why it is in fact nearly always
possible to find a divisor G satisfying the additional condition. Before giving
proofs, we can notice that all the lower bounds were actually reached by the
previously known upper-bounds®.

9The proofs and results for this column are the same on a general base field F,. And
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Table 3.1: Lower-upper bounds for the degree of the best interpolation divisor
G

Additional Lower Upper Is the additional
Curve By | CI° | criterion on | bound bound criterion on GG
G on degG | on deg G satisfiable ?
(3.5) 1 0 . 2ml+3 | 2mi+3
(3.6) 5 when false : | 2ml+1 | 2ml+1 | yes, for nearly
' Z/2 all m < 24096
when true : 2ml 2ml
37| 2 |z
2ml 2ml
am) | ° |z
7o) | |z

Demonstrations Curves (3.7a), (3.7b), (3.7c) and [(3.6) when criterion
on G true] : the lower-bounds settled at 2ml are a direct consequence of
Prop. 3.4,(1.)%.

Curve (3.6) - when criterion on G false : if deg G were 2m, then by
Prop. 3.4,2 the degree of D would by m, thus 2D — G would be in the zero-
class, thus {(2D — G) would be one, which contradicts (i) by Riemann-Roch.

Curve (3.5) : Firstly, it is not possible to build a degree 2m interpolation
divisor G. We reuse the arguments of [Ran,| 4.7. The evaluation map evg :
L(D) — Ox,o/(to) fits in the long exact sequence

(3.8) 0— H(X,0(D —Q)) — H(X,0(D)) =% Ox0/(tg) — ...
.= HY(X,0(D-Q)) =0

But, D being of degree m by proposition 3.4, the Riemann-Roch theorem

regarding the discussion on the divisor G for the full 2-torsion curve (3.6), such cases of
curves arise in finite number (indeed, it is a basic fact that the 2-torsion group of an elliptic
curve is included in Z/2Z x Z/2Z, and on the other hand, curves have enough points for
q sufficiently large). Furthermore, the classification provided by [BBT] shows that this
number is small.

19And were probably known since Shokrollahi 1992
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implies that (D) = m. Also, the divisor D — @ having degree 0 and (iii)
having trivial class group, D — @ is then equivalent to zero, thus (D — Q)
is equal to 1. As a result, dimension-counting implies that the evaluation
map evg has image of dimension lower or equal to m — 1, thus cannot be
surjective.

Secondly, deg G cannot be equal to 2m + 1. Indeed, the previous ar-
guments shows that, in order to have the surjectivity of the evaluation
at (Q map, one must have d = degD > m. Write d = m + ¢. Then,
deg(2D — G) = 2i — 1 > 0. Thus, i(2D — G) = 0 for degree reasons. So,
by the Riemann-Roch theorem, (2D — G) = 2i — g = 2i — 1 > 0. So the
condition (ii’) is false. But recall that, by observation 3.1, the degree of D
being greater than 2g — 2, condition (ii) of Theorem I.1.1 is also not satisfied.

Finally, deg G cannot be equal to 2m + 2. For that, writing again d =
m + 1 > m, two cases are possible:

e Either i > 1, thus deg(2D — G) = 2i — 2 > 0 so by the same argument
as above, condition (ii) of Theorem I.1.1 is not satisfied;

e Or, i = 1. But then deg(2D — G) = 0, thus linearly equivalent to zero,
by triviality of the zero-class group of curve (iii). Thus (2D — G) =1,
contradicting condition (i) of Theorem I.1.1.

Curve (3.6) - satisfiability of the condition on G : . for
each degree m < 2409 there exists a point P of degree m such that P —mPs,
does not lie in the zero class.

Proof of the claim: one adapts the estimations in [Sho| that lead to
his Theorem 16 (1) (paying attention to a small mistake in the proof: see
Footnote 8), replacing ¢ and the p;-torsion by their values, taking m great
enough to compensate the new positive terms, and computationally check
the values of m below this threshold.

End of the proof: for nearly all m, given a numerically optimal divisor
G of degree 2m on Curve (3.6) (furthermore assumed not built using points
of degree greater than 2199°) it is possible to deduce a numerically optimal
G’ that does not lie in the zero-class (by swapping a couple of points and/or
multiplicities)'’. O

Indeed, the possible degrees deg G = m; for which this swapping is not possible, lie
among those for which all the points P; of X —up to a certain degree n;— occur in G with
equal multiplicities.
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Table 3.2: Today’s best possible upper bounds for p3™(m) using elliptic
curves

better bounds - best bounds -

m former upper with existing using improved
bound ([BBET]) ingredients ingredients

163 906 905 905
233 1340 1339 1339
283 1668 1661 1661
409 2495 2494 2492
571 3566 3563 3562

New bounds for the NIST-size extensions of F,

Five extensions of Fy are recommended by the NIST in [NIST| to perform
elliptic-curve based cryptography, of degrees from m = 163 to 571. The
best known bounds for the symmetric complexities of the multiplication in
these extensions have been set in [BBT|. To achieve this, the authors used
interpolation divisors G of the smallest degree given by the previous sufficient
conditions 3.8. But we have just shown, in the previous paragraph, that these
conditions on deg GG could not be sharpened. Nevertheless, it is still possible
to improve these five bounds.

Firstly, the authors seem to have used the value 15 as upper-bound on
ps™(1,6), although a better value, 14, is known (c¢f. Table 1.2.1). Using this
value, and interpolating on the curve of equation (3.7b) instead of (3.7a),
already provides better bounds for all the five extensions considered. This
is shown below in the third column of Table 3.2. Secondly, plugging in the
three new bounds given in Table 1.2.1, leads to further improved bounds for
the two last extension degrees, as shown below in the last column of Table
3.2.
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4 Further improvements, with classical modu-
lar curves

We are grateful to H. Randriam for guiding this first research work.

4.1 Method

The classical modular curves Xo(N)g, of computable size are also candidates
to build interpolation systems. Indeed they are numerous and have many
points of degree two (although degrees four or six are preferable, as shown
by Table 1.3.1).

Similarly to the point-counting on the jacobian described in §1.5, the num-
ber of Fy=-points of Xo(/N)g, can be computed from the value of the trace of
the Hecke operators 7). Precisely, their action on the space of holomorphic
differential forms (equivalently of cusp forms), which is of dimension g the
genus of Xo(N):

Sy = H*(Qxy(n), C).

An explicit formula is provided in [Mo, Cor. 5.10.1]. As a result, this enables
to count closed points in the modular curves Xo(N)g, with analytic tools.

But computing with cusp-forms expansions cannot be performed in large
level N. Instead, the space S is preferably seen in the (twice) larger space
of complex differential forms on Xy(N)c. Indeed one can describe, in a
purely algebraic fashion, the action of the Hecke operators on the Poincaré
dual, H(Xo(N),C), using a preferred basis called "Manin symbols". This
action is implemented in Sage [Sa]. Then, to retrieve the trace of the Hecke
operators on the subspace, HO(wXO(N), C)*, the following proposition shows
that it suffices to divide by two the total trace:

Proposition 4.1. There exists a common basis of cusp forms such that the
matrices of the Hecke operators:

Tn ’52
have rational coefficients.

Demonstrations The neat reformulation of the following argument greatly
owes to H. Randriam. Define the Q-algebra of dimension g generated by the
Hecke operators acting on Sa:

A= (T,)|s, (noted T in [Ste, p54]),
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so that the complexified A ®q C (noted T in loc. cit.) is a subspace of
Endg(S;). Define

A" = Homgq(A, Q),
then [Ste, Proposition 3.24| states the isomorphism:

Sy = A @ C
w — { —>a1(°(w))}

: The natural rational action of .4 on A*, extended by ®qC coincides,
via this isomorphism, with the action of A on S5. Proof: exercice.
End of the proof: the matrices of both actions are thus equal. O

4.2 Results
Data gathering

Having computed the number of closed points of degrees up to 10 on the
Xo(N)g, for N up to 1300, we selected those which provide the best numer-
ically optimal divisors (G, for the same five extension of Fy as considered in
the previous section.

We mainly used the equations given in the tables of [Ga| and [Ya], some-
times helped by Q. Liu’s algorithm to find regular models of hyperelliptic
curves in characteristic two.

although we recomputed those of X((45) and X,(73) with the canonical
embedding method.

In addition, we used the plane integral model of the genus four hyperel-
liptic curve X((47)q provided in [Yal|, because this one had good reduction
over Fs.

However we could not find a model with good reduction modulo two for
the interesting curves X0(59) and X(73) of genus five (which explains the
empty fifth column of the following Table 4.1), nor for the interesting X(141)
of genus six.

It finally remains to check that these divisors G do belong to an optimal
interpolation system, using the construction described in 3.6. This can be
done in a timely manner, using a well-known proprietary software ([Mal),
which implements an algorithm of Hess for Riemann-Roch spaces computa-
tions.
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Outcome and one example

The following Table 4.1 gives the best bounds obtained, using curves up to
genus 6, for the Xo(N)p, which could actually be computed.

Table 4.1: Upper bounds on 3™ (m), sorted by the genera of the curves used

m\g || 1 ?ga;b' 2 3 4 5 6
163 | 905 | 903 | 901 | . .| 900
233 || 1339 | 1336 | . | 1335

283 || 1661 | 1660 | . | 1654

109 | 2492 | 2491 | . | 2486

571 || 3562 | 3561 | 3560 | 3555

Let us describe a reproducible run of algorithm 3.6, leading to the best
entry (in bold) 900, for the extension degree m = 163. It is performed
on the genus 6 curve X = Xy(71)g,. The lowest expectable degree for G is
2x1634+6—1 = 331 and, in this case, D should be of degree 1634+6—1 = 168.
Setting the random seed to 0 in Magma, we fix once for all an enumeration
of the points of X (up to degree 8). At this stage, it results from the bound
of Theorem [.1.1 that a numerically optimal G' would lead to 900.

Let us fix an isomorphism of the class group of X with Z/315Z & Z : the
first generator (of degree 1) being called D; and the second (of degree 0),
D,.

Step 1 : (using the notations of Footnote 5) (1) (a) fix an optimal collec-
tion of integers 15 = 17 nNie = 37 Noga = 37 n31 = 47 nNg1 = 6, ns1 = 4,
ne1 = 10, ng1 = 21, (b) which is of total degree 331 (c) and is compatible
with the number of points on X of respective degrees up to 8. (2) Build a
divisor GG from this collection. A first attempt is to use the points in the order
in which they were enumerated (so that, for the four points of degree one on
X, the first is given multiplicity 5 and the three remaining multiplicity 6).

e Step 2 Building the class of D as i.D; + 168.D,, with a varying coeffi-
cient ¢ for Dy, it happens that for i = 2, the condition /(2D — G) =0
is satisfied.
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— Step 3 : With various random seeds, we generate random points
Q of degree m in several classes'?. It happens that with seed
one, i(D — @) = 0, thus giving an optimal interpolation system

(G,D,Q).

Perspectives

These computations, that date back to 2014, could now be updated by:

(i) Atkin—Lehner quotients of modular curves. Indeed these quotients con-
tain as much supersingular points as the initial curve, but have a lower
genera. In particular, a recent preprint of P. Mercury enlarged the
tables of |Gal;

(ii) The curve of genus five over Fy with many points of degree siz Xo(p3)p,
computed in §VI.5.3.

12In practise this is achieved by splitting only the place at infinity, so we do not know
if this leads to every possible class for points of degree m.
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Annexes

1 Shorter proofs for other descent criterions

Lemma 1.1. Let

(1) 1 N G T 1

be a split exact sequence of groups. The section s induces an action of ', by
conjugacy, on the subgroups of G. Then one has the following bijection of
sets:
{H, TCHcCG} {H' C N with H stable under I'}
Hi d HAN
(H',T) J H'

Demonstrations La suite exacte étant scindée, elle est isomorphe 4 :

1 N N x, T I 1
(1,’)/) <8 4444444444 f)/

Avec cette description, un sous-groupe H de G contenant I' est égal a
{(h,7), h € NN H et v € I'}. Par conséquent le sous-groupe

f(Hy=HNON ={(h,v), he HNT}

est bien stable sous I'.

155
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Avec les expressions précédentes de H et de N N H, il reste a

montrer que le sous-groupe
(NNH,TY={(h,y), he NNHetyel}

est égal & H, ce qui est tautologique.

C’est le sens moins évident. Il s’agit de vérifier que si H' est

un sous-groupe de N stable sous I', alors le groupe engendré (H',T") est en
fait réduit a ’ensemble

(H,T)={(h,y), he NNHetyeTl}.
Pour le voir, il suffit de remarquer que le produit
(7, 1)-(hay ) = (hayihayy s M)
est encore dans (H,T') par hypothése. ]

The following proposition was communicated by H. Randriam:

Proposition 1.2. Let k be a field and k' a Galois extension with group
' = Gal(K'/k). Let K be an extension of k (for example k(T)) and F/K a
finite Galois extension of group G, such that the sequence V.(Seq/Split) has
a splitting s (for example under the hypotheses of Proposition V.2.6) :

1 N G T 1

with N = Gal(F/KE') being again the fizator subgroup of Kk'. Define F,
the sub-extension of F/K fized by I' = s(T):

r F N
m/// \:\KH

Then one has the following bijection between two subsets of sub-extensions of
FDK:

{subextensions LO,} sub-extensions L', Kk' C L' C F, such that

K C L C Fy the fizator subgroup H' C N is stable under r

LO : ‘ Lok?/
FCH) ¥ L = FH
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In particular if G is abelian, every subextension L', Kk' C L' C F, comes
from an extension L/K of the same degree.

Demonstrations On remarque d’abord que ¢ préserve le degré des extensions
(autrement dit que toute sous-extension de Fy/K est réguliére). Pour des
raisons de degré, il suffit de le montrer pour Fy/K. C’est a dire de montrer
que Fok! = F. Mais Fyk' est aussi une sous-extension de F'/Fp, qui est
galoisienne de groupe [. Donc pour conclure, il suffit de remarquer que
le sous-groupe de T fixateur de o(Fp)k, est réduit a {1}. C’est immeédiat
puisque I' agit sur &’ /k par I

On remarque ensuite que le premier ensemble correspond aux sous-extensions
de F/K dont le groupe H contient T.

Enfin pour montrer la proposition, en vertu du lemme, il suffit de montrer
que (FH) = FAON  On a déja inclusion | Fix(F? k') D H N N |car soit (x;);
une base de L sur K, alors 'élément général de FHE est y = >, \ia;, o les
coefficients \; sont dans Kk'. Mais par définition N fixe les \;, H fixe les z;
donc H N N fixe y.

On a ensuite 'égalité pour des raisons de degré : en effet F'/ L (respectively
F/F,) étant galoisienne, son degré est |H| (respectively |I'|). Donc le degré
de Fy/L est |H|/|T|. Qui est égal a |[H/T|, car H contient T par la deuxiéme
remarque. Donc par le lemme, I'intersection H N N s’identifie & {(h, 1), h €
HNN}. Done |H/T| = |HNNJ|. ]

The following corollary was singled out by Randriam:

Corollary 1.3. With the same hypotheses, let L/K be a finite extension,
then the Galois closure LK’ of LK'/ KK comes from an extension Ey/K of
the same degree. In particular if LK' /KK is finite Galois, then it comes from
an eztension Ey/K of the same degree.

Demonstrations Let us embed Lk in a finite extension F Galois on K, with
group G = Gal(F'/K). By the proposition, the subgroup H C G fixator of
LE'/K, is stabe under s(I'). But then the subgroup of G fixator of L/E’/K,
equal to the intersection of the conjugates of H : ﬂgec gHg™!, is also stable
under I'. O]

Ezample 1.4. Consider K = R(T"), Kk’ = C(T'), note Z = v/1T? +i and Z =
VT? — i, and fix a Galois closure F' = R(Z, Z’)/R(T) of the extension L =



158 Appendix A. Annexes

:C(T) — C(T
R(T)(Z)/R(T). Consider the complex conjugation m: C(T) (T)

)

1= —1
and ' =< 1,7 >. Then among the 8 automorphisms of F' = R(Z, Z’)/R(T),
) iz —7 T Z — =7’
4 extend 7 of which 2 are of order two : , , and ,
7 =7 7 = -7

Thus both define sections of the exact sequence V.(Seq/Split): s; and s,.
Hence two subextensions F; C F' and Fyo C F. The corollary thus pro-
vides two possible regular descents of LC = LC/C(T), which occur as the
subfield of Fy; (respectively Fyo) fixed by N =< 1,0 >, witho : Z/ — —Z".
In this case they actually coincide, because Ey = R(T)(v/T? + 1) (exercice).

F=R(T)(Z 2

s1(I') s2(T) N
2 2 2

Fo=R(I)(Z+2) Fu=R(T)(Z-2) L=R(T)(2Z)—=C(T)(Z)=LC

\ ‘
N

Ey = R(T)(VTZ + 1) 4 C(T)

Counterezamples 1.5. The previous example provides two cautions with re-
spect to the corollary :

e LE'/KFK finite Galois does not imply that L/K itself Galois. Consider
L/R(X)=R(T+1)/R(X) and LC = LC/C(T).

o El;’/Kk/ finite Galois does not imply that the regular extension Fy/K,
provided by the corollary, be Galois over K. Consider this time F' =
FC/C(T). Then neither of the two possible descents provided by the
corollary : Fyo R(Z + Z')/R(T), nor FyoR(Z — Z')/R(T), is Galois

(exercice).

The following theorem is traditionally credited to Coombes & Harbater.
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Here is a short demonstration due to Randriam!:

Proposition 1.6. Let k be a field and k' a Galois extension with group
[' = Gal(k'/k). Let K be an extension of k (for example k(T)) and F/K
a finite Galois extension containing Kk with groups G = Gal(F/K) and
N = Gal(F/KE'), such that the sequence V.(Seq/Split) has a splitting s (for
example under the hypotheses of Proposition V.2.6) :

Consider E/KE' o Galois extension (for example if N is abelian) such
that k is the field of moduli of E as mere extension of Kk'. Then L comes
from a regular Galois extension of K.

Demonstrations Consider F' a Galois closure of K containing £/ Kk’ and s a
section of V.(Seq/Split). Thanks to Proposition 1.2 (applied with L' = E), it
suffices to show that the fixing group H <N of Kk/ C E C F is stable under
s(T"). Let 7 be in T', then by the field of moduli assumption there exists z in
N such that

s(T)Hs(t)™' =xHa™"

which is equal to H because here H is distinguished in N. ]

2 Formulas

The notations are as in equation (1.2) of §1.1.1. For the sake of completeness,
we also gave in the tabulars below the matrix forms of the squares of the linear
forms ¢;:
G @ @i+ (w1, 22) — Pi(21).P5(22).

The algebra considered are Fyn[y]/y" (¢ equals 2 or 4). But in our formulas
of the two last sections where ¢ = 4 and m = 1, we allowed ourselves to use
the symbol y* for the linear form that takes a polynomial in y and returns
the coefficient in y* (with value in Fy).

The extension Fys /Fy is generated by ¢, of minimum polynomial X3+ X +1.
The algebra considered is

A/Fy = Fasly/y*.

LA similar statement can also be found in Vélklein th. 3.6 but with many more restric-
tions.
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We express the linear forms ¢; in terms of the ordered basis of A*/Fy:

€0,0, €0,15 €0,2,C1,0,C1,1,C1,2

where ¢; ; returns the coefficient in 3’ of an element of A (the coefficients
take values in Fy).
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22 p(1,4)

The extension Fy2 /F; is generated by a, of minimum polynomial X2+ X +1.
The algebra considered is

A/Fy=TFalyl/y".
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2.3 u(1,5)

The extension Fy/F, is generated by ¢, of minimum polynomial X2+ X +1.
The algebra considered is

A/Fy =Fuly]/y”.
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