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1 Summary

A major breakthrough for the multiplication in extensions of �nite �elds
is the algorithm of Chudnovsky and Chudnovsky (1988), by evaluation-
interpolation on algebraic curves. Indeed its complexity is linear in the size
of the extension.

� Our �rst contribution, Theorem A, generalizes the formulas providing
the best known asymptotic bounds for the bilinear complexity of multiplica-
tion. It improves the state of the art, and also corrects gaps in several results
in the litterature.

We then target the most important parameter, i.e. the choice of the curve.
Indeed Cascudo, Cramer, Xing et Yang showed in 2012 that the following
folklore "Conjecture Y" would enable to cut by half the bilinear complexity
in extensions of small characteristic p :

For p prime and t′ = 2t even, does there exist a family of curves (Xi)i
over the extension of degree 2t of Fp, such that :
(i) the genera gi tend to in�nity, with consecutive ratios tending to one

(density condition)
(ii) the family (Xi)i has an optimal ratio of points of degree one (bound of

Drinfeld-Vladuts)
(iii) the curves descend over Fp ?
Firstly we give counterexamples in V.5.6 that invalidate a recent pub-

lished proof of the conjecture. The issue is the �eld of de�nition of Shimura
curves (that are moduli spaces of abelian varieties).

� Our second contribution, Theorem B, provides an explicit solution to
the conjecture in the particular case (p = 3 and 2t = 6). The construction,
done in VI, consists in intertwinning towers of Shimura curves then to descend
their �eld of de�nition. The same techniques also provide a new curve with
a record number of points (VI.4).

Theorems A and B enable to cut down the best known asymptotic bounds
in small characteristic, nearly by half (in Table I.2.2).

We �nally optimize in VII the e�ective construction of algorithms on a
given curve: �rstly in small algebras, then in extensions of cryptographic
size.
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Chapter I

Summary and Main results

1 Introduction

1.1 Motivation: the bilinear complexity of multiplica-
tion in �nite �elds

Let K be a �eld and A a �nite-dimensional (associative, commutative and
unitary) K-algebra. The multiplication law in A, mA, is seen as a K-bilinear
map:

(1.1) mA : A×A // A
(X, Y ) � // X · Y

De�nition 1.1. Let n be an integer, a (possibly asymmetric) multiplication
algorithm of length n in A is the data of 2n linear forms (φi)i=1,...n, (φ′i)i=1,...n

on A, along with n elements (w1, . . . , wn) of A, such that mA is equal to

(1.2) mA : (x, y) 7−→
n∑
i=1

φi(x) · φ′i(y) · wi .

The algorithm is furthermore symmetric if and only if φi = φ′i for all i.
The bilinear complexity of the multiplication mA in A, denoted µ(A/K),

is the lowest integer n, such that there exists a (possibly asymmetric) multi-
plication algorithm of length n. The symmetric bilinear complexity µsym(A/K)
is de�ned likewise.

8
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De�nition 1.2. Let q be a prime power and n a positive integer. Let
Fqn [y]/yl be the polynomial algebra over Fqn modulo yl.

The symmetric bilinear complexity of multiplication in the algebra Fqn [y]/yl

over Fq is denoted µsym
q (n, l), and µq(n, l) stands for the bilinear complexity.

In particular,
µsym
q (n) = µsym

q (n, 1)

is the symmetric bilinear complexity of the multiplication in the extension of
�nite �elds Fqn/Fq, and µq(n) stands for the bilinear complexity.

De�nition 1.3. If q is a prime power, we let

mq = lim inf
n→∞

1

n
µq(n)

Mq = lim sup
n→∞

1

n
µq(n)

and their symmetric counterparts msym
q and M sym

q are de�ned likewise.

Other complexity measures are possible, especially over the �eld F2. For
example, one could count both the bitwise additions and multiplications.
Or even take into account the possibility to perform computer-elementary
operations on groups of 32 or 64-bits.

1.2 The interpolation method of Chudnovsky and Chud-
novsky

The interpolation method of [Ch2] provides algorithms that have today's
lowest known bilinear complexities for extensions of �nite �elds of degree
approximately greater than 20.

In the symmetric framework, the construction can be summarized as fol-
lows. It will be formalized more precisely in �1.1. Suppose that we want to
compute the multiplication in Fqm over Fq. Start with an algebraic curve X
over Fq, equipped with a point Q of degree m, and convenient divisors D
and G. For instance, let G be a collection of points of degree one P1 . . . Pn.

Assuming the injectivity and surjectivity of the maps as represented in
the diagram below, the multiplication of any x and y in Fqm can be performed
with the following �ve steps:

1O lift x and y to some functions fx and fy, in the space of global sections
L(D), so that fx(Q) = x and fy(Q) = y.
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2O evaluate fx and fy, separately, on each point Pi of the divisor G.

3O compute, for each Pi, the product of the two evaluations : ai = fx(Pi).fy(Pi).
This is the critical step : here we perform degG two-variables multi-
plications. We obtain the vector of values (a1, · · · , an).

4O interpolate this vector to the unique function g ∈ L(D + D) having
values ai at the Pi;

5O evaluate g at Q to �nd the product of x and y.

(1.3)

L(D +D)
_�

evG

�� evQ
5O

00

L(D)

evQ

�� ��

evG

��

, L(D)

evQ

����

evG

2O

}}∏n
i=1 Fq(Pi)

3O mult.⊗deg(G)

??

4O

s

EE

Fq(Q)

1O

r

PP

1O

r

NN

2 Main results and further conjectures

2.1 Theorem A for asymptotic upper bounds

Since we are mainly interested by the upper-limit complexity Mq, it is nec-
essary to use su�ciently many di�erent curves so as to deal with the worst
cases. So let us give a name to the following requirement, formalized in [STV,
Claim p163]:

De�nition 2.1. Let Xs/k be a family of curves over a �eld k with genera
gs. We say that the family (Xs)s is dense i� the genera gs tend to in�nity
and the ratio of two successive genera gs+1/gs tends to 1.

On the contrary, approaching the lower-limit mq doesn't require dense
families of curves (see II.3.3).

The asymptotic ratios βr of the number of places of degree r divided by
the genus, are quantities investigated in number �elds (see [Leb] and [LZ] for
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recent progress). Analogously, multiplication algorithms by interpolation on
algebraic curves often require many points of higher degree r ≥ 2. Hence the
following de�nition for the best possible asymptotic ratio βr.

De�nition 2.2. Let r ≥ 1 be an integer and q a prime power. For X a curve
over Fq, let Br(X) denote the number of closed points of degree r. De�ne
Ar(q) and Ãr(q) as the sup of real numbers βr and β̃r such that there exists a
family (respectively a dense family) of curves Xs over Fq, of genera gs going
to in�nity, that satis�es:

lim
s→∞

Br(Xs)

gs
= βr (respectively β̃r)

Example 2.3. To start with, A1(q) = A(q) is the Ihara constant. See table
II.2.2 and Theorem II.2.5 for recent results for non-square values of q.

More generally, Cascudo�Cramer�Xing�Yang showed that the generalized
bound of Drinfeld�Vladuts implies the majoration (see Theorem 2.1):

Ãr(q) ≤ Ar(q) ≤
√
qr − 1

r

Examples 2.4. The towers of Garcia�Stichtenoth being actually de�ned over
their prime �eld Fp, they provide an example of towers reaching the previous
bound (see II.2.2):

(2.1) Ar(q) =

√
qr − 1

r
as long as qr is a square.

For all the values of q that will be needed, Shimura curves provide dense
families over �nite �elds Fq with many points in the quadratic extension
Fq2 : see II.2.3. The same holds for Drinfeld modular curves: see [Gek, 8-9]
(and [Gek2, Th. 2.16] for the supersingular argument needed when q is even).
Their ratio matches the bound of Drinfeld�Vladuts over Fq2 , which reads:

(2.2) Ã1(q2) = q − 1

But actually one can say more. As will be re-stated in Corollary II.2.6, taking
into consideration that the curves above are de�ned over Fq �and not only
Fq2�, and by the consequence of the generalized bound of Drinfeld�Vladuts
above, this implies :

(2.3) Ã2(q) =
q − 1

2
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Note that the dense families of classical modular curves over prime �elds Fp

are a particular case of Shimura curves.

Our following omnibus theorem generalizes essentially all the known for-
mulas providing the current best upper-limit asymptotic bounds.

Theorem A. Let q a prime power and r ≥ 1, l ≥ 1 be two positive integers.
Then, as long as the respective denominators are positive, one has

(a)

Mq ≤
2µq(r, l)

rl

(
1 +

1

rlÃr(q)− 1

)
.

(a') Moreover under any of the following two cases :

(i) r = 1 and q is such that Ã1(q) > 5 ;

(ii) let p be a prime number such that Conjecture Z holds for p. In
addition one requires:

{
q = p and r = 2

}
or
{
q = p2 and r = 1

}
;

then the above bound is actually symmetric :

M sym
q ≤

2µsym
q (r, l)

rl

(
1 +

1

rlÃr(q)− 1

)
.

(b)

M sym
q ≤

2µsym
q (r, l)

rl

(
1 +

2

rlÃr(q)− 2

)
.

(c) if 2|q

M sym
q ≤

2µsym
q (r, l)

rl

(
1 +

1 + logq(2)

rlÃr(q)− 1− logq(2)

)
.

(c') if 2 - q

M sym
q ≤

2µsym
q (r, l)

rl

(
1 +

1 + 2 logq(2)

rlÃr(q)− 1− 2 logq(2)

)
.

Remarks 2.5. In comparison to the known results :
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� (c) and (c') allow from now on evaluation on points of odd degree r in
Theorem 5.18 of [CCX2]. All the arguments are actually available in
the proof of the original theorem;

� (b) allows evaluation on points of arbitrary degree compared to [BCP,
Proposition 11];

� �nally, derived evaluations are now considered in all the results. These
additional tools were actually known since [Ar], [CO1] and [Ran1].

2.2 Theorem B and dense families with many points of
higher degree

A record curve with many points

The family of our main Theorem B below, arises from recursive towers of
Shimura curves. Studying another tower, this time over the �eld Q(

√
3) of

narrow class number two, also leads to the good surprise described in �VI.4.
Indeed the fourth step of this tower, of genus �ve, has a greater number of
points in F54 : 871 than the previous value of 868 recorded in the tables of
manypoints.org1at the time it was found. As a bonus we obtained explicit
equations for the curve, that are furthermore de�ned over F5.

Conjecture Y and its recent history

The following folklore conjecture asks for dense families de�ned over their
prime �eld, and matching the (optimal) Ihara constant for their number of
points after a given even �eld extension. It is stated as in [CCXY, Lemma
IV.4], under a form essentially equivalent to the following:

Conjecture Y. Let p be a prime number and 2t ≥ 2 an even integer2. Does
this equality hold:

(2.4) Ã2t(p) =
pt − 1

2t
?

1S.E. Fischer simultaneously submitted a record curve with an even simpler equation.
2Notice that the cases where 2t = 2 are actually statis�ed with classical modular curves

: see [Mo] �5.6 for a demonstration. Whereas the cases for 2t = 6 are dealt with the (new)
theorem B below, and Conjecture X.

manypoints.org
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Equivalently (by Theorem 2.1): does there exist a family (Xs/Fp2t)s≥1
of

curves with genera gs tending to in�nity, such that:

(i) Xs is, actually, de�ned over the prime �eld Fp;

(ii) gs+1/gs −−−→
s→∞

1 ( "density" of (Xs)s)

(iii) |Xs(Fp2t)| /gs −−−→
s→∞

pt − 1 ( Ihara constant over Fp2t) ?

The �rst contributions towards the conjecture were to make Garcia�
Stichtenoth towers more dense. It started with [Bal2], then [BR] also dealt
with the �eld of de�nition issue, and �nally [BBR] proved a descent theo-
rem. This last one uses the full power of Proposition A.1.2 (rediscovered by
Randriam).

A previous attempt was [CCXY, Lemma IV.4], which proposes to solve
it by using Shimura curves de�ned on the rationals. The problem is that
the curves considered curves proposed do not necessarily descend over the
rationals. This issue was �rst noticed by S. Ballet when he reviewed [CCXY],
in a preliminary version. The paper was then accepted with another proof,
and the result later used as a theorem, in: [CCX2, Lemma 5.17] and [PR,
Lemma 5.2].

Several people independently noticed that the �nal proof still contained
the issue of Shimura curves that do not necessarily descend over the rationals.
More nastily, even canonical models with �eld of moduli equal to Q sometimes
don't descend over Q. Three such counterexamples are described in �V.5.6.
They were initially brought up in our joint work [BPRS, �3], out of the curves
studied in [Sij1]. In particular H. Randriam and J. Voight should be thanked
for their contribution.

Anyway, the proposition of [CCXY] to use Shimura curves turned out
to be the good idea. Indeed we could provide an explicit solution to the
conjecture for the case (p = 3 and 2t = 6), (and possibly p = 5): Theorem
B in the next paragraph.

The conjecture has just been given an existential proof in early July 2017.
Bassa�Beelen proved that Drinfeld modular curves modulo T over Fq with
levels in Fp[T ], descend to Fp. From Gekeler's genus formulae, Randriam
deduces the density of such curves (we further densi�ed the families to match
the growth rate of intertwinned towers of Shimura curves).
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Our particular solution

Theorem B. We have:

(2.5) Ã6(3) =
33 − 1

6
.

Said otherwise : there exists a family Xs of curves over F3 with (increasing)
genera gs tending to in�nity such that

gs+1

gs
−−−→
s→∞

1 (density condition)(i)

|Xs(F36)|
gs

−−−→
s→∞

33 − 1 (optimal number of points of degree 6)(ii)

We also explicit a solution in the case (p = 5 and 2t = 6): intertwin the
tower of equations VI.(6.10), with the reduction of the tower of Theorem VI
of VI.6. But our veri�cation of the next level did not terminate yet.

The key insight is due to N.D. Elkies, that one can intertwin two recursive
modular towers into a dense family, see VI.5.3. A lookup in the table [Voi4]
of Shimura curves with small genera, �ltered with the conditions on B, p and
N from the Theorem V.5.4 brought up by V. Ducet's thesis, ends up with
the following promising candidates.

Proof Consider the Riemann surfaces X0(pi2p
j
7) described in IV.2.5, where

their genera are shown to be dense.
By the general theory (Theorem V.5.4), these curves have canonical mod-

els over the �eld F = Q(cos(2π/3)) that have good reduction modulo the
inert (3). These reductions take place over F33 and have many points in the
quadratic extension F36 .

But to show that they descend over F3 requires to construct explicitly
these canonical models.

The two towers X0(pi2) and X0(pj7) being recursive by �VI.3, their deter-
mination relies essentially on the knowledge of the two canonical Belyi maps
of genus one X0(p2

7) → X0(p7) and X0(p2
2) → X0(p7) of degrees 7 and 8.

Their monodromy are computed in Examples V.3.4 and 3.6. By the second
statement of our Theorem V.5.14, these Belyi maps are characterized by their
sole topological monodromy above X(1). The previous arguments are given
a detailed Leitfaden in VI.1.



16 Chapter I. Summary and Main results

The Belyi maps are computed in VI.5 and summarized in Theorem C of VI.6.

The reduction of these covers are then descended over F3.

As a sanity check we could �nally compute the next steps of each tower, X0(p3
7)

and X0(p3
2), of genera �ve and seven. And compare their number of points in F33

and F36 �28; 1000 for X0(p3
7) and 24; 1760 for X0(p3

2)�with those predicted from

the traces of Hecke operators (Theorem V.5.5).

Remark 2.6. the canonical model X0(pi2) of genus one has no rational point
(cf. Remark VI.5.2). So we computed the cover over a quadratic exten-
sion Q(

√
−7), where it acquires a rational rami�cation point. So, even if

the reductions of our covers do descend to F3, they are only proven to be
isomorphic to the canonical models after a quadratic extension by

√
−7. For-

tunately, since we are interested by the number of points after a quadratic
extension, this doesn't impeed the validity of the result.

Remark 2.7. chapter V takes a long time to prove the �rst statement of
Theorem V.5.14, about descent of canonical covers over Q. This general
statement is not stricly necessary in the proof of Theorem B but gives very
helpful hints for the computations of VI.5. It uses the general theory of
descent of arithmetic covers, and builds on the results of Doi�Naganuma,

As a conclusion, for all primes di�erent from p = 2 and 7, and inert in
the �eld Q(cos π/7) of the canonical models, the curves considered X0(pi2p

j
7)

have also potential good over Fp3 and many points in Fp6 . So of course, a
general argument that would conclude for good reduction over any of these
primes p (as we did explicitly for p = 3) would be highly welcome.

The remaining Conjectures X ≤ Y and Z

To deal with the remaining case p = 2, one needs another tower X0(pk) over
the same base X0(1) as in Theorem B, descends over F2. Indeed one could
then intertwin this tower X0(pk)F2 with the smooth tower X0(pj7)F2 found in
Theorem B (see VI.(5.12)). And thus produce a dense family.

A good candidate is the tower X0(pi3), where p3 is the prime (3). By
the general theory it has a good reduction modulo the inert (2): X0(pi3)F23

,
that has many points in F26 . But we don't know if this reduction descends
to F2. By recursivity of the tower, this would be implied by the following
conjecture.
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Conjecture X. Let B the quaternion algebra over the number �eld F =
Q
(
cos(2π/7)

)
, which is rami�ed exactly at two of the three real places and

no �nite place. Let p3 be the ideal above the inert prime (3), and X0(p2
3) the

Shimura curve over F de�ned by the group Γ0(p2
3) of norm one units of the

Eichler order of level p2
3.

Then the following morphisms descend to F2:

� the canonical branched cover X0(p2
3)F23

→ X0(p3)F23
,

� and the Atkin�Lehner involution on X0(p2
3)F23

.

Although this is part of an ongoing work, we describe the computations
leading to the Atkin�Lehner quotient X0(p2

3)∗ of genus two in II.4. Indeed
they illustrate the general theory and some recent algorithms.

The last conjecture, as proposed in [Ran0, Conjecture A] plus the density
condition, could close the gap between symmetric and asymmetric bounds
for larger prime values of q, in the cases where modular curves are used (see
Theorem A, case (a')(ii)).

Conjecture Z. Let p > 2 be an odd prime. Does there exist a sequence
of numbers (Ns)s, with Ns+1/Ns −−−→

s→∞
1 (density condition), such that the

Hecke operator Tp(Ns) acting on the space of weight 2 cusp forms S2(Γ0(Ns)),
has an odd determinant ?

The following consequence was singled out in [Ran0]. Let p be a prime,
N a positive integer prime to p and X0(N) the classical modular curve over
the rationals with the Hecke operator Tp acting on the space of weight 2 cusp
forms S0(Γ0(N)). Then the congruence relation of Eichler�Shimura implies
(see II.5 for a proof) :

(2.6) |J0(N)(Fp2)| = det(p2 + 1− Tp(N)2)

In particular, considering the rational subgroup of 2-torsion points gives :

dimJ0(N)(Fp2)[2] ≤ ord2

(
det(p2 + 1− Tp(N)2)

)
where ord2 is the 2-adic valuation. The prime p being odd, the left-hand side
determinant has the same parity as det(Tp(N)). Thus, the conjecture would
have as a consequence the following weaker conjecture:
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Conjecture 2.8. Does there exist a dense family of curves (X0(Ns)/Fp)s
such that:

(J0(N)(Fp2)) [2] = {0} for all Ns?

Remarks 2.9. Notice that our density condition says that Ns+1/Ns −−−→
s→∞

1,

which does not imply that the set of numbers {Ns}s has a positive Dirichlet
density (take (N2

s )s). The opposite implication is also false (introduce very
sparse gaps in the harmonic series).

Removing this additional density requirement would only bene�t to lower-
limit symmetric bounds:

� for the values of q in table 2.3: the only e�ect of Conjecture Z would
then be to close the gap between the symmetric and asymmetric bounds
for q = 25. Indeed, in the three other cases where the asymmetric
bounds are better than their symmetric counterparts, the families used
are not modular curves.

� for larger values of q: Conjecture Z would only bene�t to values for
which the condition (a').(i) of Theorem A (Ã1(q) > 5) is not known
to be satis�ed. So only large primes q would be concerned, because
interpolation on points of degree two of classical modular curves would
be needed.

2.3 New bounds for bilinear multiplication

Symmetric multiplication in small binary algebras

The generalized interpolation method of Chudnovsky and Chudnovsky han-
dles pointwise evaluations that live in small algebras (see the beginning of
�1.1). It is thus useful to improve the bilinear algorithms in those algebras.

In Table 2.1 below are recapitulated the best known upper and lower
bounds for the symmetric bilinear complexities µsym

2 (m, l) of the multiplica-
tion in the small F2-algebras F2m [x]/xl. Each pair of lower�upper bound is
given as "L�U". When the upper bound U is in fact optimal (so L=U), then
one single value is displayed.

The three new upper bounds are displayed in bold. Whereas the two new
lower bounds (for µsym

2 (2, 2) and µsym
2 (2, 3), in addition to the exact value of

µsym
2 (3, 2)) are just emphasized in Table II.3.1.
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The values of the upper-bounds are justi�ed in Table II.3.1 of II.3.1, and
the new formulas in the annex A.2. The methods employed are described in
�VII.2.

However most of the lower bounds are not given further justi�cation. In
particular the three new ones mentionned above arize from the exhaustivity
of the search method described below Observation VII.2.2. The other unjus-
ti�ed lower bounds are merely deduced from the general [Ran1, Lemma 1.9],
or from the lower bound of a subalgebra.

Table 2.1: Lower�Upper bounds on the complexities µsym
2 (m, l)

l
∖
m 1 2 3 4 5 6 7 8 9 10

1 1 3 6 9 13 15 16− 22 16− 24 17− 30 19− 33

2 3 9 16 16− 24 . . . . . .

3 5 15 16− 30 . . . . . . .

4 8 8− 21 . . . . . . . .

5 11 11− 30 . . . . . . . .

6 14 . . . . . . . . .

7 16− 18 . . . . . . . . .

8 16− 22 . . . . . . . . .

9 16− 27 . . . . . . . . .

10 16− 31 . . . . . . . . .

Asymptotic upper-limit bounds in �nite �elds extensions

The values appearing in Table 2.2 below are justi�ed in Table II.3.2. The �rst
line accounts for the state of the art, the second one adding the contribution
of Theorem A, the third one adds the new values of the Ãr(q) allowed by
Theorem B. The fourth and last one add gradually the values of the Ãr(q)
implied by Conjectures X and the more general Conjecture Y. Conversely,
the line assuming Conjecture Z needs not assuming any of the previous new
values (neither Theorem B nor the two previous conjectures)

Remark 2.10. Notice that we did not state some bounds appearing in the
litterature in the lines "(Repaired) published bounds" part of table 2.2. The
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Table 2.2: (new)-Upper bounds for M sym
q and Mq

Results used \q 2 3 4 5 7

(Repaired)
Bounds

Sym 15, 2 [BP2] 7, 73 [BP2] 6.00 5, 61 4, 20

Asym 8.59 6, 00 4, 50 4, 00 3, 60

Using Th. A
and Tab. 2.1

Sym 10, 0 7, 50 5, 33 5, 21 4, 08

Asym 7, 00 � � � �

Adding
Th. B

Sym � 5, 42 � 4,74 �

Asym � 5, 20 � � �

Conj. X
Sym 7 � 4.24 � �

Asym 5, 83 � 3, 89 � �

Conj. Y
Sym 6, 92 5, 39 � 4, 34 3.63

Asym � 5, 14 � � 3, 57

Conj. Z Sym � � � 4 , 00 3, 60

Results used \q 8 9 11 52

(Repaired)
published
bounds

Sym 3.71 3.77 3.56 3

Asym 3,50 3,43 3,33 2,67

Using Th. A
and Tab. 2.1

Sym � � � �

Asym � � � �

Adding
Th. B

Sym � 3.56 � �

Asym � � � �

Conj. X
Sym � � � �

Asym � � � �

Conj. Y
Sym 3.58 � 3.55 �

Asym � � � �

Conj. Z Sym � � 3, 33 2, 67
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reason being that they actually cannot be considered as proven. They appear
in [CCXY, Theorem IV.6, Theorem IV.7, Corollary IV.8], [CCX2, Theorem
5.18, Corollary 5.19] and [PR, Theorem 5.3, Corollary 5.4, Corollary 5.5].

Indeed they rely on Conjecture Y, which would imply many values of
Ãr(q).

Nevertheless we have already tried to take into account the theoretical
improvements made by these articles in the lines "published bounds", which
explains the adjective "repaired". So we re-used as much as possible the
proven statements in the aforementionned articles3. And applied these state-
ments with the parameters allowed by4 (2.2) and (2.3).

Remark 2.11. There seems to be room for immediate improvement of the
bound M sym

2 ≤ 10, 0. Indeed if the following conjectural upper-bound did
hold : µ2(2, 6) ≤ 39 (instead of 42), then the criterion (b) of Theorem A
applied to (r, l) = (2, 6) would imply M2 ≤ 9, 75. Our reason to believe
the above conjectural bound to be accessible, is the fact that it could be
deduced from a conjectural µ4(1, 6) ≤ 13 (instead of 14), which is in the
range of exhaustive-search methods. Moreover the value 14 is also an upper
bound for the harder complexities µ2(1, 6) and µ4(6, 1). So the conjectural
upper-bound seems credible.

Remark 2.12. The additional column for q = 52 emphasizes the record of
longevity of the published symmetric bound (which still holds). Indeed,
although it had never been stated numerically, the bound can be directly
deduced from a formula of Ballet�Pieltant, which is based on an argument
as old as 1999. This exception will be discussed in remark II.3.2.

Asymptotic lower-limit bounds in �nite �elds extensions

The following table gathers both (i) the best known upper bounds for the
lower-limit symmetric complexities msym

q , for small values of q (see [CCX2],
V, table II), and (ii) in certain cases, proposes slightly better asymmetric
counterparts (in bold)5:

3but without the additional generalities enabled by Theorem A in the cases the results
were not stated as such

4Arising from the well-known dense families of Shimura curves recalled in II.2.3. Which
include the classical modular curves over prime �elds as a special case

5Use the towers of Theorem II.2.5 for q = 27 and q = 32, and Shimura curves for
q = 16.
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Table 2.3: (new)-Upper bounds for mq and msym
q

q 2 3 4 5 8

msym
q 5, 834 5, 143 3, 889 3, 903 3, 500

mq 5, 834 5, 143 3, 889 3, 903 3, 500

q 9 16 25 27 32

msym
q 3, 429 3, 026 2, 779 3, 120 2, 667

mq 3, 429 3, 000 2, 667 2, 909 2, 625

The fact that the symmetric bounds are close to the asymmetric ones, is
due to the versatility of the lower-limit measure (or, said otherwise, its low
accuracy), that enables it to be computed on fewer (and more advantageous
values) : see II.3.3. However there is still room for improvement :

Remark 2.13. Suppose that one could bring down to 17 (or 18) the upper
bound for µ2(7, 1) (the bilinear complexity of multiplication in F27), which is
so far known to be somewhere between 17 and 22. Then the upper bound for
the asymmetric complexity m2 would be brought down to 5, 426 (or, resp.,
5, 745). This would follow from the use of the Bassa & al. [BBGS] tower
over F27 (using the trick of Lemma II.3.4).

2.4 E�ective aspects

Consider a �xed extension of �nite �elds with a small prime �eld, e.g. F2m/F2

�with m not too small�and a �xed curve X of genus g. Then the equation
(1.11) (in the �1.3 below) implies that there exists a multiplication algorithm
by interpolation on the curve X, that uses 2m+ 2g + 3 interpolation points
(with degrees and multiplicities).

In practice one can expect that fewer points are needed �and thus to
get a smaller algorithm�for the same degree m. To start with, Proposition
VII.3.4 states that one cannot expect an algorithm with fewer interpolation
points than 2m+ g − 1.

Then the search algorithm of Proposition VII.3.6 enables to construct
such an optimal multiplication algorithm, whenever it exists.

And it does exist in practice, at least always on the examples that we dealt
with. The following Table 2.4 compare the previous bounds of [BBT] for the
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bilinear multiplication in the binary extensions of [NIST], with our bounds
obtained with the classical modular curves. The data is a compression of
Tables VII.4.1 and VII.4.1.

Table 2.4: New e�ective upper bounds in the NIST extensions F2m/F2

m 163 233 283 409 571

before 906 1340 1668 2495 3566

after 900 1335 1654 2486 3555

As pointed in the �nal paragraph of VII.4.2, these computations date
back from 2014. They could be improved today by using quotients of Atkin�
Lehner and also one of our Shimura curves from Theorem B.



Chapter II

Proofs of Theorem A and

numerical bounds, more on

Conjectures X and Z

1 Proof of Theorem A

1.1 Reminder of the general multiplication algorithm

Framework

Let us formalize the objects involved in the description of �1.2. A curve X
will always be assumed projective, smooth and geometrically irreducible over
Fq (here often Fp with p prime). Given a divisor D on X, let O(D) be the
sheaf of sections of D. Let l(D) and i(D) (the index of specialty of D) be
the dimensions of the Fq-vector spaces, of global sections H0(X,O(D)), and
of H1(X,O(D)). So that the theorem of Riemann�Roch states itself as :
l(D)− i(D) = degD + 1− g, where g is the genus of X.

More particularly, given P a closed point of X of degree n, D a divisor
and l a positive integer, we will need the following map : the evaluation of
a global section of the line bundle O(D) at the thickened point P [l], which
takes values in Fqn [y]/yl. Let tP be a local parameter at P : multiplication
by tvP (D)

P provides a local trivialization of O(D) at P , and thus an evaluation

24
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map1:

evQ : L(D) −→OX,P/(tlP )

f −→tvP (D)
P fP mod (tlP )

(1.1)

The target space maps itself isomorphically to the Fq-algebra Fqn [y]/yl.

The general algorithm

The following theorem states su�cient conditions for the algorithm of �1.2
to hold, and draws the consequences on the symmetric bilinear complexity
of multiplication in �nite �elds.

Theorem 1.1 ([Ran1], Theorem 3.5). Let X be a curve of genus g over Fq,
and let m, l ≥ 1 be two integers. Suppose that X admits a closed point Q of
degree degQ = m. Let G be an e�ective divisor on X, and write

G = u1P1 + · · ·+ unPn

where the Pi are pairwise distinct closed points, of degree degPi = di. Suppose
that there exist two divisors D1, D2 on X such that:

(i) The natural evaluation map

L(D1 +D2) −→
n∏
i=1

OX(D1 +D2)|
P

[ui]
i

is injective.

(ii) The natural evaluation maps

L(D1) −→ OX(D1)|Q[l] L(D2) −→ OX(D2)|Q[l]

are surjective.

Then

(1.2) µq(m, l) ≤
n∑
i=1

µq(di, ui).

1This map was �rst built, at least for the purpose, in its full generality in [Ran1, remarks

3.4-3.6]. We just corrected the signs of t
−vP (D)
P in the reference.
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In fact we also have µq(m, l) ≤ µ(
∏n

i=1Aq(di, ui)/Fq). Moreover, if D1 = D2,
all these inequalities also hold for the symmetric bilinear complexity µsym.

Su�cient numerical criteria for the hypotheses above to hold can be given
as follows. A su�cient condition for the existence of Q of degree m on X is
that 2g + 1 ≤ q(m−1)/2(q1/2 − 1), while su�cient conditions for (i) and (ii)
are:

(i') The divisor D1 +D2 −G is zero-dimensional:

l(D1 +D2 −G) = 0.

(ii') The divisors D1 − lQ and D2 − lQ are non-special:

i(D1 − lQ) = i(D2 − lQ) = 0.

More precisely, (i) and (i') are equivalent, while (ii') only implies (ii) a priori.

Interesting particular situations

The �rst corollary is straightforward :

Corollary 1.2 ([Ran1, Proposition 5.1]). Let X be a curve of genus g over
Fq, and let m ≥ 1 an integer.

Suppose that X admits a closed point Q of degree degQ = m (a su�cient
condition for this is 2g + 1 ≤ q(m−1)/2(q1/2 − 1)).

Suppose also that X admits a non-special divisor S, of degree g+e−1, for
an integer e as small as possible (hence e ≤ g by the Riemann-Roch theorem).

Consider now a collection of integers nd,u ≥ 0 (for d, u ≥ 1), such that
almost all of them are zero, and that for any d,

nd =
∑
u

nd,u ≤ Bd(X/Fq).

Then, provided ∑
d,u

nd,udu ≥ 2m+ 2e+ 2g − 1

we have
µq(m) ≤

∑
d,u

nd,uµq(d, u)

and likewise
µsym
q (m) ≤

∑
d,u

nd,uµ
sym
q (d, u).
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The next criterion is both sharper, and the proof actually provides an
explicit construction of such a symmetric multiplication algorithm.

Theorem 1.3 ([Ran1, Proposition 5.2 c)]). Let X be a curve of genus g over
Fq, and let m ≥ 1 an integer.

Suppose that X admits a closed point Q of degree degQ = m (a su�cient
condition for this is 2g + 1 ≤ q(m−1)/2(q1/2 − 1)).

Consider now a collection of integers nd,u ≥ 0 (for d, u ≥ 1), such that
almost all of them are zero, and that for any d,

nd =
∑
u

nd,u ≤ Bd(X/Fq).

Suppose also ∑
d,u

nd,udu ≥ 2m+ g − 1.

Then: if |X(Fq)| > 5g, we have

µsym
q (m) ≤

∑
d,u

nd,uµ
sym
q (d, u).

Moreover, suppose X and Q are given explicitly, that 5g + 1 points of degree
1 on X are given explicitly, and, for any d, that nd points of degree d on
X are given explicitly. Suppose also that for each d, u such that nd,u > 0,
we are given explicitly a symmetric multiplication algorithm of length ld,u for
Aq(d, u). Then, after at most 5g2 computations of Riemann-Roch spaces on
X, we can construct explicitly a symmetric multiplication algorithm of length∑

d,u nd,uld,u for Aq(m).

Remark 1.4. Although the previous criterion requires many points of degree
one , it seems in practice that only one or two points of degree one are
needed to build the divisor D (see the example in �VII.4.2). So it would be
interesting to quantify the fact that the "favorable cases form a dense subset
of points".

The following criterion states the existence of an asymmetric algorithm
on every given curve X, such that this bilinear algorithm is essentially the
best that one could expect from this given curve X, by Proposition VII.3.4.
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Theorem 1.5 ([Ran1, Proposition 5.7]). Let X be a curve of genus g ≥ 2
over Fq, where q ≥ 2 is any prime power, and let m, l ≥ 1 be two integers.

Suppose that X admits a closed point Q of degree degQ = m (a su�cient
condition for this is 2g + 1 ≤ q(m−1)/2(q1/2 − 1)).

(Fix eq = 2 in the original statement, for simplicity).
Consider now a collection of integers nd,u ≥ 0 (for d, u ≥ 1), such that

almost all of them are zero, and that for any d,

nd =
∑
u

nd,u ≤ Bd(X/Fq).

Then, provided ∑
d,u

nd,udu ≥ 2m+ g + 5,

we have
µq(m) ≤

∑
d,u

nd,uµq(d, u).

1.2 Generalizing in Theorem A the existential crite-
rions of Shparlinsky�Tsfasman�Vladuts�Ballet and
Cascudo�Cramer�Xing

The next two consequences state the existence of a symmetric algorithm, by
an existential argument for divisors D satisfying (i') and (ii') of Theorem
1.1. See the introduction of [Ran2] and [CCX, �4 Theorem 6] for a general
discussion on such systems of divisorial equations.

The �rst one was stated by [STV, Claim p159-160], and later [Bal1, Prop
2.1] gave an elementary proof as (but with the additional assumption that
q ≥ 7). However, as �rst noticed in Cascudo's PhD thesis, both arguments
actually require that the divisor group has no 2-torsion (in order for the map
D → 2D to be injective).

Theorem 1.6. Let q a prime power and m > 1 an integer. Suppose we are
given a curve X of genus g ≥ 2 over Fq, with Jacobian J =̂ Cl0(X), such
that the rational class group J(Fq) contains no rational divisor of 2-torsion.

Consider now a collection of integers nd,u ≥ 0 (for d, u ≥ 1), such that
almost all of them are zero, and that for any d,

nd =
∑
u

nd,u ≤ Bd(X).
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Then, provided ∑
d,u

nd,udu ≥ 2m+ g − 1,

we have
µq(m) ≤

∑
d,u

nd,uµq(d, u).

We skip the proof, because it can be seen as a particular case of the
proof of the next theorem [set (Cl0X)(Fq)[2] to zero and (instead of using
Proposition 1.8(iii) for degree i = g − 1 as in [Bal1] Prop 2.1) remove the
logq(2) term in R, to be able to conclude even when q < 7].

The following theorem does control for 2-torsion in the worst case. It is
a straight generalization of [CCX2, Theorem 5.18]. The parameters will be
speci�ed in the next paragraph to derive criterions for asymptotic bounds,
then further speci�ed in �3.2 2.

Theorem 1.7. Let X be a curve of genus g over Fq, where q ≥ 2 is any
prime power, and let m ≥ 1 be an integer.

Suppose that X admits a closed point Q of degree degQ = m (a su�cient
condition for this is 2g + 1 ≤ q(m−1)/2(q1/2 − 1)).

Consider now a collection of integers nd,u ≥ 0 (for d, u ≥ 1), such that
almost all of them are zero, and that for any d,

nd =
∑
u

nd,u ≤ Bd(X).

Let R the smallest integer such that

R ≥ g(1 + logq(2)) + 2m+ 3logq

(
3qg

(
√
q − 1)2

)
+ 2 (if 2|q)(1.3)

R ≥ g(1 + 2 logq(2)) + 2m+ 3logq

(
3qg

(
√
q − 1)2

)
+ 2 (otherwise).(1.4)

Then, provided

(1.5)
∑
d,u

nd,udu ≥ R

2This presentation also avoids the choice of parameters used in the original theorem
because they are not always proven to be valid (see the comments after Conjecture Y)
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we have
µq(m) ≤

∑
d,u

nd,uµq(d, u).

The following proposition gathers the upper-bounding made in the proof.
The �rst two follow from [M, p. 39 (or p. 64)]. Whereas the third one is
borrowed from [CCX2, Proposition 3.4].

Proposition 1.8. Let Fq be a �nite �eld and X a curve over Fq of genus
g ≥ 1. Let J be the Jacobian of X and J(Fq) the rational class group.

(i) If q is odd, then J(Fq)[2] ≤ 22g

(ii) If q is even, then J(Fq)[2] ≤ 2g

(iii) Let h be the class number of X and, for any integer i with 0 ≤ i ≤ g−1,
Ai the number of Fq-rational e�ective divisors of degree r. Then

Ai
h
≤ g

qg−i−1(
√
q − 1)2

Let us now follow the original proof of the theorem [only in the case q
even, the odd case being identic modulo using upper-bound (i) instead of

(ii)]. Adding the terms − logq

(
3qg

(
√
q−1)2

)
and 2g(1− logq(2)) to both sides of

the inequality (1.3) reads :

2g + 2m+ 2 logq

(
3qg

(
√
q − 1)2

)
≤ g(1− logq(2)) +R− logq

(
3qg

√
q − 1)2

)
− 2

Thus there exists an even integer 2d between the two sides of the previous in-
equality. Raising q to the inequalities LHS ≤ 2d and 2d ≤ RHS respectively
gives:

g

qg−(2g−d+m)−1(
√
q − 1)2

≤ 1

3
(1.6)

g2g

qg−(2d−R)−1(
√
q − 1)2

≤ 1

3
(1.7)

Using the upper-bound (ii) in the previous proposition, and combining the
two inequalities (1.6) and (1.7) above with the upper-bound (iii), yields

(1.8) h >
2

3
h ≥ A2g−d+m + J(Fq)[2]A2d−R
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Now let us choose a collection of pairwise distinct thickened points {P} on
the curve X such that, for each (d, u), there are exactly nd,u points among
them of degree d and multiplicity u (this is possible by assumption). Let G
be their divisorial sum and Q a closed point of degreem as in the assumption.
G being of degree greater than R by assumption (1.5), the general criterion
of [CCX, �4 Theorem 6] along with the inequality (1.8) imply the existence of
a divisor D = X of degree d that satis�es the following system of Riemann-
Roch spaces vanishing conditions (with K being the canonical divisor of X):

l(K −X +Q) = 0(1.9)

l(2X −G) = 0(1.10)

Thus criterions (i') and (ii') of Theorem 1.1 are satis�ed with the divisors G
and D.

1.3 Generalizing the bounds of Ballet: (a')(ii)�Pieltant:
(b), Randriam: (a) - (a')(i) and Cascudo�Cramer�
Xing: (c) - (c')

Let (Xs)s be a dense sequence of curves over Fq with genera gs growing to
in�nity, and a ratio of points of degree r matching Ãr(q). Noting Ãr = Ãr(q),
this reads :

gs −−−→
s→∞

∞(d1)

Br(Xs) = Ãrgs + o(gs)(d2)

gs = gs−1 + o(gs)(d3)

Let us prove �rst the bound (b), which generalizes [BCP, Proposition 11],
but whose arguments were already introduced in [BP, Theorem 3.2]. Given
an integer n, let s(n) be the smallest integer such that

(1.11) rlBr(Xs(n))− 2gs(n) ≥ 2n+ 3.

(d2) makes clear (or anyway it will be in the following equivalences), that
such an integer s(n) exists as soon as the denominator in the criterion (b) of
Theorem A is strictly positive.
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Moreover g being large enough, [BRR, Proposition 4.3 and Remark 4.4]
state in general the existence of a zero-dimensional divisor of degree g− 5 on
Xs(n). Thus the existence of a non-special divisor R of degree (lower than)
g + 3.

Therefore, Corollary 1.2 applies to (1.11). Taking all nd,u null except nr,l
equal to Br(Xs(n)), this reads :

(1.12) µsym
q (n) ≤ µsym

q (r, l)Br(Xs(n)).

Let us now tie the asymptotics behaviors of gs(n) and Br(Xs(n)). The
minimality of s(n) satisfying (1.11) implies :

rlBr(Xs(n))− 2gs(n) ≥ 2n+ 3 > rlBr(Xs(n)−1)− 2gs(n)−1

Dividing the two inequalities by gs(n)−1, and applying the asymptotic equiv-
alences (d2) and (d3) (and (d1)) yields :

rlÃr − 2 + o(n) ≥ 2n

gs(n)

+ o(1) > rlÃr − 2 + o(n)

hence the asymptotic equivalence :

2n+ o(n) = (rlÃr − 2)gs(n) + o(gs(n))

(which implies in particular that o(n) = o(gs(n))). One can now divide both
sides of the upper-bound (1.12) by the previous equality :

µsym
q (n)

n
≤ µsym

q (r, l).2

(
Ãrgs(n) + o(n)

(rlÃr − 2)gs(n) + o(n)

)

Multiplying and dividing the RHS parenthesis by rl, then subtracting and
adding 2gs(n) to the numerator of the RHS, gives the result by letting n tend
to in�nity.

The asymmetric (a), and symmetric bounds : (a'), (c) & (c') are derived
similarly from the other generalized criterions stated above. Indeed, given
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an integer n, consider s(n) be the smallest integer such that, respectively :

rlBr(Xs(n))− gs(n) ≥ 2n+ 5 for (a)

(1.13)

rlBr(Xs(n))− gs(n) ≥ 2n+ 1 under either condition (a').(i) or (a').(ii)
(1.14)

rlBr(Xs(n))− (1 + logq 2)gs(n) ≥ 2n+ 3logq

(
3qgs(n)

(
√
q − 1)2

)
+ 3 if 2|q for (c)

(1.15)

rlBr(Xs(n))− (1 + 2 logq 2)gs(n) ≥ 2n+ 3logq

(
3qgs(n)

(
√
q − 1)2

)
+ 3 otherwise for (c')

(1.16)

Similarly, such integers s(n) exist as soon as the respective denominators
in equations (a), (a'), (c) and (c') are strictly positive. Then apply the
following criterions with all the nd,u null excepted nr,l = Br(Xs(n)):

Th. 1.5 for upper-bound (1.13), Th. 1.3 for upper-bound (1.14)(i), Th.
1.6 for (1.14)(ii), and Th. 1.7 for both (1.15) and (1.16).

2 Known asymptotic ratios of closed points

2.1 Many Fqr-points means many points of degree r

The following fact is possibly well-known. The proof given here reproduces
the arguments of [CCXY].

Theorem 2.1. Let (Xs/Fq) be a family of curves over a �nite �eld Fq, with
genera gs tending to in�nity. Let r ≥ 1 be an integer, and Br(Xs) the number
of closed points of degree r. Then the following assertions are equivalent :

|Xs(Fqr)|
gs

−−−→
s→∞

√
qr − 1(i)

Br(Xs)

gs
−−−→
s→∞

√
qr − 1

r
(ii)

The demonstration is based on the following lemma, which itself is a
consequence of the generalization by Tsfasman of the bound of Drinfeld�
Vladuts.
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Lemma 2.2 ([CCXY, Lemma IV.3]). Let (Xs/Fq)s be a family of curves
over a �nite �eld Fq, with genera gs tending to in�nity. If for some m ≥ 1,
one has

(2.1) lim
s→∞

1

gs

m∑
i=1

iBi(Xs)

qm/2 − 1
≥ 1

then

(2.2) lim
s→∞

mBm(Xs)

gs
= qm/2 − 1

Now, let (Xs)s a family satisfying the hypotheses of the theorem. By the
identity Xs(Fqr) =

∑
i|r iBi(Xs), one gets

(2.3) lim
s→∞

1

gs

r∑
i=1

iBi(Xs)

qr/2 − 1
≥ lim

s→∞

1

gs

∑
i|r

iBi(Xs)

qr/2 − 1
= lim

gs→∞

Xs(Fqr)

gs(qr/2 − 1)
= 1

Thus, the inequality (2.1) of the previous lemma is satis�ed, so the conclusion
of the theorem follows.

2.2 Non-necessarily dense families

Being de�ned with equations in the prime �eld, the tower of Garcia-Stichtenoth
naturally descends :

Theorem 2.3 (Garcia-Stichtenoth [GS], descended over the prime �eld). Let
q = pr be a prime power and F1 = Fp(x1) be the rational function �eld over
Fp. For n ≥ 1, we set

Fn+1 = Fn(zn+1)

where zn+1 satis�es the equation

(2.4) zqn+1 + zn+1 = xq+1
n

with
xn := zn/xn−1 ∈ Fn (for n ≥ 2 )

Then (Fn) is a sequence of function �elds such that when n tends to in�nity,

|Fn(Fp2r)| /g(Fn) −→ pr − 1
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Proof Let K be the �eld Fq2 and (K.Fn) the tower of �elds with constant
�eld K de�ned by equation (2.4). These are the �elds considered in [GS]
(de�nition 0.1), whose asymptotic ratio of K-points equal to pr−1 (corollary
3.2).

What remains to be checked is that for each n, the extension degrees
|Fn+1/Fn| are preserved after constant �eld extension by K. But the rec-
curence argument of loc. cit. done in Lemma 2.1 and Prop 1.1 (and con-
cluded in Lemma 2.2), shows in particular that for each n, the polynomial
of equation (2.4) : zqn+1 + zn+1 − xq+1

n is irreducible over K.Fn. Thus is also
irreducible over Fn.

By Lemma 2.2, the previous theorem implies that

Corollary 2.4. For all prime power q and r an integer such that qr is a
square, one has

Ar(q) =

√
qr − 1

r

When qr is not a square, the values of Ar(q) as still unknown. But lower-
bounds bene�ted from recent progress: on the one hand for prime �elds q = p
and points of degree one (see [HS] for a survey):

Table 2.1: Lower bounds for A1(p)

p 2 [DM] 3 [DM] 5 [AM] 7 [HS] 11 [HS] 13 [LM]

A1(p) 0, 317 0, 493 0, 727 0, 923 1, 14 1.33

On the other hand for any odd prime power q = p2m+1 such that m ≥ 1,
Bassa�Beelen�Garcia�Stichtenoth produced an explicit tower that sets a new
lower bound for the number of points of degree one :

Theorem 2.5 ([BBGS]).

(2.5) A1(p2m+1) ≥ 2
pm+1 − 1

p+ 1 + ε
with ε =

p− 1

pm − 1

Notice that the case q = p3 had been �rstly announced by Zink [Zi].
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2.3 Dense families

[Iha2] showed that Shimura curves do provide, for any �nite �eld, dense
families of curves with many points over a quadratic extension. For our
purpose, the explicit work [Duc] provides at least all the equalities Ã2(q) =
(q − 1)/2 needed in Tables 2.2:

Theorem 2.6. For any prime power q such that : { there exists a number
�eld F and a principal prime ideal p in F above p, generated by a totally
positive element, of norm q = N(p) }. Then

Ã2(q) =
q − 1

2

Proof The existence of a family over Fq, with an asymptotic ratio of Fq2-
points equal to q − 1, will be stated in theorem V.5.4. Theorem 2.1 thus
implies that the ratio of points of degree two is (q − 1)/2.

The density of the family will be stated in Corollary IV.2.2 (avoiding here
the negligible set of disciminants and levels divided by p).

3 About the new numerical bounds

3.1 For small binary algebras, in Table 2.1 of �2.3

In the following Table 3.1, we attempt to give references or explanations for
some bounds of Table 2.1 in �2.3. We do not claim to always giving credit
to the �rst discoverer, nor to the most e�cient method. In particular, the
inequality µsym

q (m, l) ≤ µsym
qd

(e, l)µq(d) (see e.g. [Ran1, Lemma 4.6]) is often
used. For the upper and lower bounds that are new, up to our knowledge,
we provide more details about how they were established in VII.2.

The exact formulas for the three new upper bounds used here are given
in the annex A.2 : for µ2(3, 2), µ4(1, 4) and µ4(1, 5).

Remark 3.1. We would like to point here an error in our article [Ra, Table 1]
in which these bounds were �rst published. The best known upper-bound for
µsym

2 (1, 10) is actually still 31 as in [CO2, Table 2], not 30 as claimed. The
new bound being actually µsym

2 (2, 5) ≤ µsym
4 (1, 5)µ2(2, 1)sym = 10.3 = 30,

with our contribution being the exact value µsym
4 (1, 5) = 10. This value was

already claimed in [Ra, Table 2] at entry (1,10), although the upper-bounding
in which it was used was then grossly false.
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Table 3.1: Origins of the bounds for µ2(m, l) in Table 2.1

µsym
2 (m, l) Upper bound

Lower
bound

(5, 1) [Mon]
[BDEZ]

(6, 1)
≤ µsym

4 (3)µsym
2 (2) (�rst factor : by interpolation

over P 1
F4
) [BDEZ]

(7, 1) [Mon]
[BDEZ]

(8, 1)
≤ µsym

4 (4)µsym
2 (2) (�rst factor: [CO0] but unknown

original contributor)
.

(9, 1) [CO0] .

(10, 1)
≤ µsym

4 (5)µsym
2 (2) (�rst factor: [CO0] but unknown

original contributor)
.

(1, 5) [Oce]
[BDEZ]

(1, 6) [Oce]
[BDEZ]

(1, 7) [Oce] (proved valid over a general ring, in [CO2]) [BDEZ]

(1, 8) [CO2] [BDEZ]

(1, 9) [CO2] [BDEZ]

(1, 10)
≤ µsym

4 (1, 5)µsym
2 (2), the �rst factor being equal

to 10: c.f. A.2
.

(2, 2) ≤ µsym
4 (1, 2)µsym

2 (2) new

(2, 3) ≤ µsym
4 (1, 3)µsym

2 (2) new

(3, 2) new new

(2, 4)
≤ µsym

4 (1, 4)µsym
2 (2), the �rst factor being equal

to 7: c.f. A.2
.

(4, 2) [Ran1], inequality (94) .

(3, 3) µsym
8 (1, 3)µ2(3) .
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3.2 The upper limit bounds Mq in Table 2.2 of I.2.3

The table 3.2 below justi�es the upper bounds for theMq stated in table 2.2.
The explanation consists in the criterion of Theorem A used, along with the
parameters (r, l) chosen. These parameters are chosen:

� within the previously known values for dense families (see section �2.3)
in the lines "published bounds" and "Theorem A";

� whereas more parameters are allowed in the lines below (the new values
stated by Theorem B, then by Conjecture X and �nally under the more
general Conjecture Y);

� The line assuming Conjecture Z needs not assuming any of the previous
new values (neither Theorem B nor the two previous conjectures).

Remark 3.2. On the face of it, the symmetric bound for q = 52 directly
results from the formula of the proposition 10 in [BCP]. Although the authors
themselves did not compute it numerically. It seems that they thought that
it would be beaten by the bounds of [CCX2] (see the discussion of the authors
following theorem 14, where they only mention the cases q > 5).

But actually, the proposition 10 actually relies on results from 1999
([Bal1]: lem 2.2=>1.1=>cor 2.1). They are based on a coding-theoretic
argument. It consists in removing points from the interpolation divisor G,
while still preserving injectivity of the evaluation map L(2D)→ L(2D−G).
So this trick only works for points of degree 1 and multiplicity 1, and does
not seem cheaply generalizable.

Finally this upper-bound runs between the drops of every further im-
provements. First because the value of 25 = p2 is below the threshold of
p2 ≥ 49 of Theorem A (a'), that would ensure an even lower complexity.
Last because q is odd [so the 2-torsion rank of the Jacobian is only upper-
bounded by q2g in A (c')]3. Nevertheless, solving conjecture Z for p = 5 could
remove the problem of 2-torsion and enable to improve the bound.

3.3 The lower-limit bounds mq in Table 2.3 of �2.3

Remark 3.3. The morals of this part is that the lower-limit measure mostly
ignores both the issues of two-torsion, and of the �eld of de�nition of the

3To illustrate this point, observe that if 25 were even, then the torsion upper-bounding
qg would provide the slightly better bound 2, 87 for M25
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Table 3.2: Origins of the bounds for Mq in table 2.2

Results used \q 2 3 4 5

(Repaired)
Bounds

Sym [BP2] [BP2] (c) (2,1) (c') (2,1)

Asym [PR] Prop
5.1

[PR] Prop
5.1

(a) (2,1) (a) (2,1)

Th. A and
Tab. 2.1

Sym (b) (2,5) (b) (2,3) (c) (2,2) (c') (2,2)

Asym (a) (2,4) � � �

Adding Th. B
Sym � (b) (6,1) � (c') (6,1)

Asym � (a) (6,1) � �

Conjecture X
Sym (b) (6,1) � (c) (3,1) �

Asym (b) (6,1) � (a) (3,1) �

Conjecture Y
Sym (b) (8,1) (b) (8,1) � (c') (4,1)

Asym � (a) (4,1) � �

Conjecture Z Sym � � (a') (2,1)

Results used \q 7 8 9 11 52

(Repaired)
Bounds

(c') (2,1) (c) (2,1) (c') (2,1) (c') (2,1) [BP2, Prop.
10] (1,1)

(a) (2,1) (a) (2,1) (a) (2,1) (a) (2,1) (a) (1,1)

Th. A and
Tab. 2.1

(c') (2,2) � � � �

� � � � �

Adding Th. B
� � (c') (3,1) � �

� � � � �

Conjecture X
� � � � �

� � � � �

Conjecture Y
(c') (4,1) (c) (4,1) � (c') (4,1) �

(a) (4,1) � � � �

Conjecture Z (a') (2,1) � � (a') (2,1) (a') (2,1)
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curves. Indeed, suppose that we have painfully found a family of curves
de�ned over a small �eld Fq, with controled two-torsion, and having many
points of degree r. Then the lower-limit can actually equally be computed:

� using the closed points of degree (say r) on these curves;

� or, after a base-�eld extension of degree r, using the closed points of
degree 1. And moreover, [Ran1, Theorem 6.3]) then allows to ignore
the two-torsion.

The explanation lies in the following property for mq [explained by the fact
that the lim inf can be evaluated on fewer �so more advantageous� values].

Lemma 3.4 ([STV] Corollary 1.3). For any positive integer r, and prime
power q,

msym
q ≤

µsym
q (r)

r
msym
qr(3.1)

M sym
q ≤ µsym

q (r).M sym
qr ,(3.2)

The asymmetric counterparts also hold (removing all the symbols sym above).

Using the previous lemma, the criterions (a) and (a')(i) (relaxing the
density condition) can then be respectively be applied to qr. Which implies
the following (apparent) generalization :

Theorem 3.5. Let q be a prime power and r ≥ 1 a positive integer. If
A1(qr) > 1, then

mq ≤
µq(r)

r

(
1 +

1

A1(qr)− 1

)
.

Moreover, if A1(qr) > 5, then also msym
q ≤ µsymq (r)

r

(
1 + 1

A1(qr)−1

)
.

The last statement is used by [CCX2], V, table II to provide most of the
symmetric bounds in table 2.3. Whereas for the asymmetric bounds, the �rst
statement is enough.
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4 About Conjecture X

Consider F = Q(cos(2π/7)) and "the" quaternion algebra rami�ed exactly
at two of the three real places (the three possible choices lead to isomorphic
models). Recall the canonical models over F :

� X0(1) is uniformized by the (2,3,7) triangle group,

� X0(p3) was computed in [Elk06] and is the elliptic curve 147.c1 ([LMFDB]
labels).

� X0(p2
3) is of genus 10 and still unknown. By the �rst statement of

Theorem V.5.14 it descends over Q.

Among the dimension 10 vector space of Hilbert modular forms associated
toX0(p2

3), the Atkin�Lehner stable are of dimension 2 and can be decomposed
into

� the old form of level p3, associated to the elliptic curve X0(p3) : 147.c1

� a new form of level p2
3, associated to the isogeny class of the elliptic

curve 441.d2

Now, it is possible to compute the Atkin�Lehner quotient X0(p2
3)∗, of

genus 2, with the algorithm of Klug�Voight�Willis for modular forms arising
from Fuchsian groups. It has equation:

y2 = x6+84∗x5+4876∗x4+163296x3+8726544/7x2−20500672x+10355021120/49

which is isomorphic over Q to:

y2 + (x3 + x2 + x+ 1)y = x6 + 6x5 + 11x4 + 9x3 + 11x2 + 6x+ 1

We check with the algorithm of [CMSV]�[BSSVY] that the Jacobian of
this curve is, as expected, Q-isogenous to the product of

� 147.c2, itself Q-isogenous to 147.c1,

� and 441.d2.
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5 About conjecture Z

Here is a sketch of proof of equation (2.6) (we follow the arguments of [Sh3,
�7.5], see also [Duc, Prop IV 2.6] for the general case with Shimura curves).

Proof Let p be a prime, N a positive integer prime to p, X0(N) the classical
modular curve over the rationals, endowed with the Hecke correspondence
Tp on divisors. Then Igusa's theorem states that there exists a good re-

duction X̃0(N) over Fp, compatible with the moduli interpretations. The
relation of Eichler�Shimura [DS, �8.7 and exercice 8.7.2] states that the cor-

respondence Tp reduces to a divisorial correspondence T̃p on X̃0(N), which
can be expressed as follows. Let σp be the geometric Frobenius divisorial

correspondence X̃0(N) and σ∗p its transpose. Then

T̃p = σp + σ∗p.

Let us remind some general curve-theoretic results:
(i) by the construction of the Jacobian, the correspondence σp induces the

geometric Frobenius endomorphism σJ,p on J̃ = ˜Jac(X0(N)). Similarly, the
transposed correspondence σ∗p induces the Rosati-dual of the previous σ

†
J,p.

(ii) the composition σ†J,p ◦σJ,p equals the endomorphism [p] of multiplica-
tion by p.

(iii) the cardinality of
∣∣∣J̃(Fp2)

∣∣∣ is equal to the degree of the endomorphism
Id − σ2

J,p (see the proof of [MilAV, II Th. 1.1]). Letting l 6= p be any prime

distinct from p, T̃l be the Tate (2g-dimensional Zl-) module of J̃ and σl,p the
induced morphism on T̃l, then by the general relation [M, �19 th. 4], the
degree considered above is equal to the determinant det(Id− σ2

l,p|T̃l). So :∣∣∣J̃(Fp2)
∣∣∣ = det(Id− σ2

l,p|T̃l).

(iv) The following modular forms-theoretic result will be used. Let Tn,H
be the complex endomorphism of the homology H1(X0(N),C) induced by
the Hecke correspondence Tn. And Tn,0 the induced endomorphism acting
on the �twice smaller� space of level 2 cuspforms S0(Γ0(N),C). Then it is
possible to choose a basis of S0(Γ0(N),C) (made of cusp forms with rational
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coe�cients) such that the matrix of Tn,0 has rational coe�cients [Ste, Lem.
3.25].

(v) Noting Tn,J the endomorphism induced by the correspondence Tn on
the Jacobian J = Jac(X0(N)), then the Zl-linear endomorphism Tn,l induced
on the Tate module Tl(J) actually coincides with the rational representation
of Tn,J . In particular up to a base change, its matrix is equal to the direct
sum of the matrix of Tn,J and its conjugate. Both summands are equal, when
choosing a rational basis as in (iv). Moreover the Zl-linear endomorphism
T̃n,l, induced on the Tate module T̃l by the reduced endomorphism T̃n,J , is
actually equal to Tn,l by [Sh4, �11 Prop 14].

We can now prove (2.6). Let αi be the 2g eigenvalues of σl,p. Let Tl,p be
the morphism induced by Tp on the Tate module Tl(X0(N)) (an unfortunate
notation), and its counterpart for the reduced Jacobian : T̃l,p the morphism
induced by T̃p on T̃l. By (5), it su�ces to prove the equality :

det
(
p2 − Tp + 1|S0(Γ0(N))

)
= det

(
1− σ2

l,p|T̃l
)
.

Firstly, the relation (5), the identi�cation (i), formula (ii) and property
(iii) immediatly imply :

det(1− σ2
l,p)det(1− (σ†l,p)

2) = det(1 + p2 − T̃l,p
2
|T̃l)

But (a) the caracteristic polynomials of σl,p and of its Rosati-dual σ∗p,l
being equal, and (b) the Zl-adic endomorphism T̃l,p actually being equal to
the direct sum of the rational morphism Tp,0 (on the space S0(Γ0(N),C))
with itself [by (iv) and (v)], one obtains the square of equation (5) :

det(1− σ2
l,p)

2 = det
(
1 + p2 − T 2

p,0|S0(Γ0(N),C)
)2
.



Chapter III

Conditions for friendly quaternion

algebras and Shimura curves

1 Goals and conventions

1.1 Goals

Although this chapter contains essentially well-known facts on quaternion
algebras, its purpose is to clarify some points:

- The two connected Shimura curves X+
0 (N) and X0(N) coincide only

when the narrow class number of F is one (Proposition 3.2). Only the
former is known to have a canonical model with many points (see VI.4
for an interesting example where they do not coincide). Whereas the
latter, although being more computational-friendly as a complex curve,
has in general several possible canonical models (see [Sij1, below Prop
3.2.4]).

- The group of Atkin�Lehner is de�ned by equation (4.4). The issue of
�III.4.2 is that in the setting of this thesis, the group boils down to
equation (4.3).

On the contrary in the general case (without the narrow class number
one assumption), the group of Atkin�Lehner can be strictly bigger.
This is described in the references given in Footnote 3 in Proposition
4.1. This extra-complexity can happen even if the Eichler order is of
level a power of a prime ideal;

- Corollary 2.5 gives a su�cient criterion for all Eichler levels of given

44
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level to be conjugate (see [Sij1, Proposition 2.6.2] for a thinner classi�-
cation). This allows the descent data of Theorem V.5.11.

- The purpose of this last section, about �III.5. is threefold:

- to explain how the PSL2(R) of a �nite localdef:narrow ring R acts
on the set P1(R): Lemma 5.2. This is the key to the monodromy
computations of �V.3.2;

- to provide the index-counting results Propositions 5.4 and Corol-
lary 5.6. Notice that the latter could actually be obtained imme-
diatly from strong approximation;

- and to stress that the congruence subgroup that has a Galoisian
meaning: Γ′(N), can be strictly bigger than the classical principal
congruence subgroup Γ(N). This happens when the norm of N is
even.

Stressing this fact is the sole purpose of Proposition III.5.7, which
is not used anywhere else in the thesis.

1.2 Conventions

De�nitions are done with the de�ned object on the left-hand side of the
equality de�ning it. A superscript dot to an algebra A, e.g. A

.
, stands for

the subgroup of invertible elements for the multiplication. The cardinality
of a set X is noted |X|.

Let F be a number �eld with ring of integers ZF and PF the set of �nite
places of F . The norm of an

Let B be a quaternion algebra with center F . Every element x ∈ B
has a trace t(x) and a norm n(x), the former being additive and the latter
multiplicative.

For example in the interesting case for this work where B is a (non-
commutative) �eld, every element x ∈ B lies in a quadratic sub�eld F ⊂ L ⊂
B, so has a minimal polynomial over F , such that the standard involution
x → x swaps its roots. The trace and norm in L/F coincide with the
previous.

Let Bv be the completion of B at a place v of F . Let D be the �nite
discriminant of B, i.e. the product of the �nite places p which ramify B,
i.e. for which Bp is a �eld. Recall that the total number of rami�ed places is
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even, by the reciprocity law for the Hilbert symbol ([Vig, Propriété II p75]
or [Voi5, Theorem 14.6.1]).

An ideal is a ZF -lattice of B. A (ZF -) order O is an ideal which is a ring
or, equivalently, an ideal integral over ZF (see also [Voi1, Lemma 10.3.7]).

An ideal I is invertible if and only if the completions Ip at each �nite place
p are locally principal, generated by an invertible element αp (see [Voi5, Main
Theorem 16.6.1]). An ideal I is two-sided if and only if it has the same left
and right order O. An Eichler order is the intersection of two maximal
orders. The completion Op of an Eichler order O at p|D being equal to the
unique maximal order of Bp, the level N of O is automatically prime to D.

De�nition 1.1. Let∞R be the set of in�nite real places of F ,∞B the subset
of real places which ramify B and O an order. De�ne:

- the totally positive subgroups F+ ⊂ F
.
and ZF,+ ⊂ Z

.
F , and the larger

groups FB and ZF,B, which are the invertible elements which are totally
positive at ∞R, respectively at ∞B;

- the narrow class groups Cl(∞R) and Cl(∞B) of ideals modulo the
principal ideals generated by elements in F+, respectively in FB;

- the narrow class number h+ = |Cl(∞R)|;
- the narrow class �eld F∞ = F (∞R), which is the corresponding abelian
extension;

- the totally positive subgroups B+ and O+, of invertible elements, re-
spectively units, of norm in F+;

- the narrow classes of ideals Cl+(O) and Cl+R(O), as quotients of: invert-
ible two sided O-ideals, respectively invertible right O-ideals, modulo
principal ideals generated by elements in B+;

- the subgroups of norm one B1 and O1.

It is assumed that B has at least one split in�nite place v.

2 Classes of Eichler orders and of ideals

2.1 Global adelic dictionnary

The split in�nite place condition is not necessary here.
Let O be any ZF -order and de�ne:

Ô =
∏
p∈PF

Op ,
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This is an additive subgroup of the following: let F̂ be the ring of �nite adèles
of F , then the ring of �nite adèles of B:

B̂ = B ⊗F F̂

is in fact equal to the restricted product of the locally compact groups Bp

with respect to the compact subgroups Op ([Vig, 3) p60]).

The lattices in B over ZF are determined by their completions at the
�nite places of F :

Lemma 2.1 ([Vig, Proposition III.5.1]). Let X be any �xed ZF -lattice of B.
Then one has the following bijection of sets:

ZF -lattices Y of B
(
Yp
)
p∈PF

, Yp lattices of Bp such that

Yp = Xp for almost every p

Y � //
(
Yp
)
p

Y = {y ∈ B, y ∈ Yp for all p} (Yp)p
�oo







Fixing an order O, the properties of being an ideal or a two-sided ideal
for O are local, so the bijection also restricts to ideals and two-sided ideals.

Finally, let O be an order in a (possibly local) quaternion algebra B, and
NB
.(O) be the normalizer of O in B

.
. Then the principal two sided O-ideals

PIdl(O), and likewise the principal O-ideals on the right PIdlR(O), are seen
to be given by the following exact sequences ([Voi1, 18.5.2]):

(2.1) 1 // O. // NB
.(O) // PIdl(O) // 1

α � // αO = Oα = OαO
1 // O. // B

. // PIdlR(O) // 1

α � // αO

This enables to give an idelic description of invertible ideals and of their
classes:

Lemma 2.2. Let O be a �xed order. Then one has the following bijections
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of sets:

{Invertible right O-ideals} B̂
.

/Ô.

I such that Ip = αpOp (αp)p
�oo

Cl+R(O) B+\B̂.

/Ô.

{Invertible two-sided O-ideals} NB̂
.(Ô.

)/Ô.

I such that Ip = αpOp = Opαp = OpαpOp (αp)p
�oo

Cl+(O) NB+(O.

)\NB̂
.(Ô.

)/Ô.

Likewise, the property of being integral over ZF is local so the bijection
of Lemma 2.1 restricts to orders. Furthermore Lemma 2.1 also shows that
the property of being a maximal order is local, so the bijection also restricts
to Eichler orders. In addition, all the Eichler orders of given level in local
quaternion algebras being conjugate, one can describe the bijection in terms
of local conjugates of a �xed Eichler order:

Lemma 2.3. Let O(N) be any �xed Eichler order of level N and N(Ô(N))

the normalizer of Ô(N) in B̂
.

. Then one has the following bijections of sets:

{Eichler orders of level N} B̂
.

/N(Ô(N))

O′ such that O′p = y−1
p O(N)pyp (yv)v ∈ B̂

.�oo

Conjugacy classes of

Eichler orders of level N B
.\B̂.

/N(Ô(N))




2.2 The norm isomorphisms

The cardinality of the previous double quotients can themselves be computed
as class numbers of F :

Proposition 2.4. Let N be an ideal of F , let O be an Eichler order of level
N. Let F

.

B be the group of elements of F which are of positive norms at ∞B.
Then the norm induces the bijections:

n : Cl+R(O) = B+\B̂.

/Ô. −→ F+\F̂ .

/n(Ô.

)(2.2)

n : B
.\B̂.

/N(Ô) −→ F
.

B\F̂
.

/n
(
N(Ô)

)
(2.3)
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Proof We deal with the second statement, the �rst one being analogous (done
in [Voi5, Corollary 28.4.24]).

Firstly, the norm map remains well de�ned after quotienting on the left
because by the easy way of the norm theorem, n(B) ⊂ FB.

The surjectivity at any �nite place p follows from the image of the central
term: n(B

.
p ) = F

.
p . Let us prove this:

� if p splits B it is immediate;

� if Bp is a division algebra, it su�ces to show that it contains a rami�ed
quadratic extension K/Fp. Indeed the norm n of Bp extends that of
K, so this implies that:

n(B
.
p ) ⊃ n(K

.
) = F

.
p .

The existence of K ⊂ Bp rami�ed comes from the fact that Bp con-
tains at least two quadratic sub�elds, and that Fp has only one unique
quadratic unrami�ed extension by [Se0, III.�5 th 2].

For the injectivity , notice that we are dealing with a mere map of sets.

Suppose that n(α̂) = f.n(β̂)n(h), with f ∈ FB and h ∈ N(Ô). The (hard
way of the) norm theorem [Vig, III.4.1] states that there exists b ∈ B

.
of

norm f . So up to multiplying x on the left by b, and on the right by h, one
can assume that n(α̂) = n(β̂).

Following [Voi5, Lemma 28.3.6], let us conclude that there exists z ∈ B.

such that α̂Ô. = zβ̂Ô.. Which will be enough, Ô. being itself included in
the normalizer N(Ô).

Claim: There exists z ∈ B. and µ̂ ∈ Ô. such that α̂β̂−1O′ = z(β̂µ̂β̂−1).
End of the proof: thus α̂Ô = zβ̂µ̂Ô = zβ̂Ô.
Proof of the claim: consider the Eichler order O′ = B ∩ β̂Ôβ̂−1, B̂1 the

group of idèles of norm one, and B1 seen in B̂1 by the diagonal embedding.
The subgroup Ô′. being (compact) open in the group of idèles B̂

.
(see [Vig,

Dé�nition p59 2)]), the strong approximation theorem ([Vig, III.4.3]) states
that B1 is dense in B̂1. One thus has the open cover:

B1Ô′. ⊃ B̂1 .

The element α̂β̂−1 being of norm one, the inclusion above implies the
existence of z ∈ B1 and of µ̂′ ∈ Ô′. such that α̂β̂−1 = zµ̂′. Conclude with
µ̂ = β̂−1µ̂′β̂.
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Corollary 2.5 ([Vig, exercice III.5.5] or [Sij1, 2.6.1]). Under the same as-
sumptions, if h+ is odd, then there is only one conjugacy class of Eichler
orders of level N in B.

Firstly, the RHS of the isomorphism (2.3) is a quotient of Cl(∞B), itself
quotient of Cl(∞R). Thus its cardinality divides h+. Finally we claim that
the cardinality of the RHS is a power of two, which implies the conclusion.
The claim comes from the fact that F̂

. ⊂ N(Ô), hence F̂
.2 ⊂ n(N(Ô)).

3 Totally positive units

If O is an Eichler order, then its local description implies that n(Ô) = ẐF .
The leap from local to global then results from the two key theorems of
quaternions algebras, Eichler's norm theorem and the strong approximation
theorem:

Theorem 3.1 ([Voi5, Corollaries 28.4.20 & 31.1.11]1). Let O be an Eichler
order, and ZF,B the integers of F that are positive at the rami�ed places of
B. Then

n(O) = ZF,B.

Let O be an Eichler order and O+ (respectively Z+
F ) the subgroups of

units of totally positive norm. Let PB = B
.
/F
.
and PO+ = F

.O+/F
.
,

(respectively PO1 = F
.O1/F

.
) be the images in PB of the groups O+ and

O1.

Proposition 3.2 ([Sij1, Prop 3.2.1 modi�ed]). The reduced norm induces an
isomorphism of quotient groups∣∣∣∣PO+

PO1

∣∣∣∣ ∼−−→ Z+
F

Z
.2
F

If furthermore F is a totally real �eld, then the cardinality of this quotient
group is equal to the narrow class number h+.

Proof Let recall that if G is a group, K C G a normal subgroup and H ⊂ G
any subgroup, then the inclusion H ↪→ HK induces the isomorphism of
quotient groups H/H ∩K ∼−→ HK/K.

1See also [Vig, III.5.9]. But beware that the choice of zu ∈ O, in the proof of III.5.8,
is not obvious unless all Eichler orders are conjugate.
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One considers the subgroups H = O+ (respectively O1) of G = B
.
. Their

elements are integral over ZF ⊂ F , so the intersection of these subgroups with
the normal subgroup K = F

.
is equal to O+ ∩ Z

.
F (respectively O1 ∩ Z

.
F ).

One deduces the isomorphisms of quotient groups:

PO+ =
F
.O+

F
. ∼=

O+

O+ ∩ Z
.
F

∼=
O+Z

.
F

Z
.
F

PO1 =
F
.O1

F
. ∼=

O1

O1 ∩ Z
.
F

∼=
O1Z

.
F

Z
.
F

that enable to express the LHS with the isomorphism:

(3.1)
PO+

PO1

∼−−→ O
+Z
.
F

O1Z
.
F

Let O(2) be the group of units whose norm is in Z
.2
F .

Claim: the natural surjection:

O+Z
.
F �

O+Z
.
F

O1Z
.
F

has kernel O(2)Z
.
F . Proof :

� let x = o.r ∈ O+Z
.
F be an element of the kernel, with o ∈ O1 and

r ∈ Z
.
F . Then its norm is in Z

.2
F ;

� conversely if n(x) = z2 is a square in Z
.
F , then the element x.1/z is both

integral over ZF (z being invertible in ZF ) and of norm one. Thus the
class of x in O+Z

.
F/Z

.
F is in O1Z

.
F/Z

.
F .

From the claim and the previous lemma, the norm induces the isomorphism:

(‡) O+Z
.
F

O(2)Z
.
F

∼−−→
n

Z+
F

Z
.2
F

,

which proves the �rst statement.
For the last statement , let us show the equality of cardinalities:∣∣∣∣Z+

F

Z
.2
F

∣∣∣∣= h+ = |Ker
(
Cl(∞)→ Cl(1)

)
|
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Firstly, the kernel of the projection Cl(∞)→ Cl(1), is equal to the set of the
classes in Cl(∞) of nonzero scalars (F

.
). Letting r1 be the number of real

embeddings of F , a set of representative of these classes consists in a set of
elements (bi)i of F

.
, whose r1-uples of signs ((−−+ · · ·+−)) run over all the

possible combinations. But the real places of F induce nonequivalent norms.
Thus by the weak approximation theorem, the (−1)r1 possible combinations
of signs are all reachable. Hence the kernel map:

ϕ : {±1}r1 → Cl(∞),

that sends an r1-uple (−−+ · · ·+−) on the class (bi) of the representative
bi that takes these signs.

Consider now the surjection

f :
Z
.
F

Z
.2
F

� Kerϕ ∈ {±1}r1

in the previous kernel, that sends a unit on the r1-uple of its signs. The
kernel of f is equal to the generators of ideals with trivial class. I.e. to the
(classes modulo Z

.2
F of) totally positive units. Hence the exact sequence:

1→ Z+
F

Z
.2
F

f−→ Z
.
F

Z
.2
F

→ {±1}r1 → Ker (Cl(∞)→ Cl(1))→ 1

One can conclude noticing that the two central terms of the sequence have
the same cardinality2 . Indeed by Dirichlet's units theorem:

Z
.
F/Z

.
F,tors

∼= Zr1−1,

the additional factor two needed coming from the equality
|Z.F,tors/Z

.2
F | = 2.

2In the case of a general number �eld F , letting Z
.
F,R be the totally real units, one still

has
∣∣Z.F,R/Z.2F,R∣∣ = 2r1 . Indeed let i be the (logarithmic) embedding of Z

.
F /Z

.
F,tors onto

a lattice in Rr1+r2−1 (the vector subspace of elements whose sum of coordinates is zero).
Let HR be the vector subspace Rr1+r2−1 of dimension r1 − 1 of elements whose complex
coordinates are zero. Then Z

.
F,R/Z

.
F,tors is equal to the preimage of the following lattice

of H: i(Z
.
F /Z

.
F,tors) ∩H. In conclusion, the only roots of unity in Z

.
F,R being {±1}, the

cardinality of the quotient Z
.
F,R/Z

.2
F,R is equal to 2r1
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4 Atkin�Lehner

4.1 The group of two-sided ideals

Let O be a ZF -order, one deduces from equation (2.1) that

(4.1) NB
.(O)/(F

.O.) ∼−−→ PIdl(O)/PIdl(R) .

Let us now describe the group of invertible two-sided ideals Idl when O is
an Eichler order of level N. Let p be a �nite place, π an uniformizer of
the discrete valuation of ZF,p and Op the completion at p. Recall that all
two-sided invertible Op-ideals are principal. They are as follows:

� If p - N then one has the bijection ([Voi1, (23.3.20)]):

{Prime two-sided invertible Op-ideals} {Prime ideals of ZF}
P � // P ∩ ZF

� if p - D: then P = pOp ;

� if p|D: then one has the two-sided prime ideal P with P 2 = pOp

("pOp rami�es").

� For pe||N (see [Voi5, Proposition 23.4.11]), one has Op = M2(ZF,p).

Consider then ωe =

(
0 1

πep 0

)
: the group Idl(Op) is abelian, generated

by the �non obvious� two-sided ideal J = Opω = ωOp and pOp. With
the single relation J2 = peOp.

In particular, the previous classi�cation and Lemma 2.1 imply the following
exact sequence of abelian groups for the global Eichler order O :

(4.2) 0→ Idl(ZF )→ Idl(O)→
∏
p|DN

Z/2Z

4.2 The groups of Atkin�Lehner involutions

Let again O be an Eichler order of level N. The following group is studied
in [Rot, �4.1] (where it is shown to provide nearly all the automorphisms of
the Shimura curve X0(N)):

(4.3) W 1 = NB+(O)/(F
.O1)
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Proposition 4.1. Assume that the narrow class number is one3. Then

(4.4) W 1 ∼=
∏
p|DN

Z/2Z

Proof Proposition 2.4.(2.2) implies in particular that every two-sided ideal
is generated by a totally positive element. So the LHS of bijection (4.1)
restricts to :

(4.5) NB+(O)/(F
.O+)
∼−−→ PIdl(O)/PIdl(R) .

Next, O+ being equal to O1 by Proposition 3.2, the LHS is equal to W 1.
Finally, every two-sided ideal being principal, the RHS is described by (4.2).

5 Indices of congruence subgroups

5.1 De�nitions

It is assumed for the commodity of the exposition that the (possibly non
unique) split in�nite place of B is real .

We �x in this section O a maximal order of B and N =
∏

i p
ei
i any ideal

of F , prime to the �nite discriminant D of B, along with its decomposition
in primes. For each prime p = pi dividing N, choose ιp an embedding of B
into its p-adic completion Bp = M2(Fp). The completion Op of O is an order
conjugate to the integral matrices M2(ZF,p). One then de�nes the standard
Eichler order O(N) ⊂ O of level N, equal to the elements x ∈ O such that
their image in M2(Fpi) is upper-triangular modulo pei for all i.

Let ιv : F ↪→ Fv = R be the corresponding embedding. Choose ιB,v :
B ↪→ M2(R) an extension of ιv to B.

The groups O(N)1 of units of norm one, and O(N)+ of units of totally
positive norm, are sent isomorphically by ιB,v onto subgroups of SL2(R) and
GL+

2 (R).
Let ι : B+ → PGL2(R) be the embedding ιB,v followed by the quotient

modulo scalar multiplications. De�ne the following subgroups of PSL2(R) :

3In the general case, the normalizer groupW = NB.(O)/(F
.O.) is described correctly

[Voi5, Corollary 28.7.21]. The error in [Vig, Exercice III.5.4] was �rstly �xed by [LV,
Proposition 1.17], also described in detail in [Duc, Proposition III.3.14].
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- the congruence subgroups of level N:

Γ0(N) = ιB,v
(
O1(N)

)
(5.1)

Γ+
0 (N) = ιB,v

(
O+(N)

)
;(5.2)

- the principal congruence groups �which pairwise coincide with the pre-
vious groups when N = 1:

Γ(N) = ιB,v{γ ∈ O1, γ − 1 ∈ NO1}(5.3)

Γ+(N) = ιB,v{γ ∈ O+, γ − 1 ∈ NO+} ;(5.4)

- the kernel of the natural map (see also (5.6) below):

(5.5) Γ′(N) = Ker
{

Γ(1) −→ PSL2(ZF/NZF )
}

- and for every group Γ ∈ SL2(R), de�ne its image ([Miy, p 106]):

Γ ∼= PΓ = Γ/Z(Γ)

in PSL2(R) the group of direct holomorphic automorphisms of the up-
per half plane.

In conclusion one has the inclusions:

Γ(N)/Γ′(N)/Γ0(N) ⊂ Γ0(1),

the two LHS groups being normal in everything because they are kernels (of
the natural morphisms in SL2(N) and in PSL2(N)). One of the purpose of
this section is that, unlike for the classical modular groups, Γ′(N) can be
strictly bigger than Γ(N): see Proposition 5.7.

5.2 Reduction and some cardinalities

Prop-Def 5.1 ([Be]). Let R be a �nite local ring and p its single maximal
ideal. De�ne the set

P1(R) = {(u, v), uR + vR = (1)} / ∼

Where ∼ is the equivalence relation of simultaneous multiplication by an
invertible λ ∈ R..

Then in each couple, either u or v is invertible. Thus P1(R) is the disjunct
union of the two following subsets of classes :
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(i) {(1, β), β ∈ R}
(ii) {(α, 1), α ∈ R\R. = p}

Proof Claim: in every couple (u, v), either u or v is invertible. Proof: if not,
then they both would be in the maximal ideal p so the ideal generated by u
and v would be contained in p. The classi�cation follows.

Lemma 5.2. The group PSL2(R) acts transitively on P1(R).

The �xator subgroup of
( 1

0

)
is

{(
a b

0 d

)
∈ PSL2(R).

}
.

The following subgroup acts transitively on the following subset (ii) :

Γ0(p) =

{(
a b

c d

)
∈ PSL2(R), c ∈ p.

}
Lemma 5.3. Let R be a Dedekind domain and p a maximal ideal of norm
q = N(p) = |R/p|. Let k be a strictly positive integer, consider the �nite local
ring R = R/pk, its maximal ideal p = p/pk is nilpotent of order k. Then:

(i)
∣∣p∣∣ = qk−1 and

∣∣R∣∣ = qk

(ii)
∣∣GLn(R)

∣∣ = qn
2(k−1)(qn − 1) . . . (qn − qn−1)

(iii)
∣∣SLn(R)

∣∣ =
∣∣GLn(R)

∣∣/(qk − qk−1)

(iv) SLn(R/N) ∼=
∏

p SLn(R/pep) where N =
∏

p p
ep

(v)
∣∣PSL2(R)

∣∣ = if p - (2) :
∣∣SL2(R)

∣∣/2, if p|(2) and k = 2 :
∣∣SL2(R)

∣∣/q.
Proof [(i)] The existence of a p-adic valuation yields an isomorphism R/p

∼−→
pi/pi+1 for all i. Thus the nested quotients pi/pi+1 are all of cardinality q.
Composing their indices gives the two assertions.

[(ii)] For all i ≤ k − 1, the reduction map GLn(R/pi+1) → GLn(R/pi)
is surjective. The kernel is equal to the subset of matrices congruent to the
identity modulo pi = pi/pi+1. E.g. for n = 2:{(

1 + pi pi

pi 1 + pi

)}
⊂ GL2(R/pi+1),

where all the ideals pi are of cardinality q as seen in (i). At last the cardinality
of the linear group over the �eld R/p with q elements is classical.
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[(iii)] The determinant map GLn(R) → R
∗
is surjective with kernel the

subgroup SLn(R). But
∣∣R∗∣∣ =

∣∣R∣∣−∣∣p∣∣
[(iv)] Follows from the Chinese remainder (Sun Tsu) theorem argument

of [Miy, Lemma 4.2.3]
[(v)] If p - (2) , then the polynomial f = X2 − 1 has exactly two dis-

tinct roots (1 and −1) and a nonzero derivative in R/p. Thus by successive
Hensel liftings, it has also exactly two distinct zeros in R = R/pk. Now if
p|(2) and k = 2 , then let λ be an element of R such that (1 +λ)2 = 1. This

implies that λ2 = −2λ, which belongs to the maximal ideal p. p being prime,
λ itself belongs to p. But then λ2 = −2λ ∈ p2 = 0. Conclusion: any λ ∈ p
suits, this set being of cardinality q.

The link with congruence subgroups is �rst seen from the natural mor-
phism of rings:

(5.6) O/NO ∼−−→ M2(ZF/N)

of reduction modulo N. Let us de�ne it and verify in the same time that
it is an isomorphism (although we won't need this actually). Indeed by the
Chinese remainder (Sun Tsu) theorem, it su�ces to prove it for N = pk a
prime power. Then, recall that completion at p commutes with quotienting
by pk. Finally:

Op/p
kOp = M2(ZF,p/p

k) = M2(ZF/p
k) .

Now, the following (hard) result shows that congruence (sub)groups sur-
ject onto their PSL2(ZF/N) counterparts:

Proposition 5.4. Let N be an ideal prime to the discriminant D, then

(5.7) Γ(1)/Γ′(N)
∼−−→ SL2(ZF/N) ;

Proof Let us restrict the isomorphism (5.6) to the units of norm one to show
(5.7). ZF being a Dedekind domain, [Voi5, Proposition 28.2.5] states the
surjection:

SL2(ZF ) −� SL2(ZF/N)

So considering γ̃ ∈ SL2(ZF/N) and γ a lifting, the strong approximation
states that there exists b1 ∈ B1 such that:

- at p - N: |b1 − 1| ∈ p, so b1 is integral in Op;
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- at p, pep||N: |b1 − γ|p ∈ pep+1, so b1 ≡ γ mod pep and b1 is integral in
Op.

Thus b1 ∈ O1 and reduces to γ̃ modulo N.

This result enables one the recover in particular the local indices of in-
clusion of the units of norm one of Eichler orders, computed with Lemmas
5.2 and 5.3.(i):

(5.8) [PO1
p : PO(pk)1

p] =
∣∣P1(ZF/p

k)
∣∣ = |ZF/pk|+ |p/pk| = qk−1(q + 1).

5.3 Indices

Passing to the global indices requires the classical combination of Eichler's
norms theorem (Theorem 3.1) and of the strong approximation theorem for
quaternion algebras with a split real place:4

Proposition 5.5 ([Sij1, Prop 2.5.3 (i)]). Let K ′ ⊆ K be two compact open

subgroups of B̂
.

, K1
B = K ∩B1 and likewise K+

B = K ∩B+. Then:

[K1
B : K

′1
B ] =

[K : K ′]

[n(K) : n(K ′)]
(5.9)

[K+
B : K

′+
B ] =

h[K : K ′]

[n(K) : n(K ′)]
,(5.10)

Where

h =

∣∣∣∣n(K) ∩ ZF,+
n(K ′)

∣∣∣∣
And fortunately in the case of congruence groups from Eichler orders, the

following corollary implies that the local and global indices coincide. Set the
following functions [Duc, top of page 52], de�ned on the ideals of ZF (noted
here N and D) and taking integer values :

Φ(D) = |(ZF/D)
.| = N(D)

∏
p|D

(
1− 1

N(p)

)
(5.11)

Ψ(N) = N(N)
∏
p|N

(
1 +

1

N(p)

)
(5.12)

4Is this additional argument really needed ? Indeed one can quotient everything by
Γ′(N) and, thanks to Proposition 5.4, work with congruence subgroups of PSL2(ZF /N)
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Corollary 5.6 ([Sij1, Corollary 2.5.4]). Let p be a prime ideal of F of norm
q, N an ideal prime to the discriminant D and k ≥ 1, then:

[Γ(1) : Γ0(pk)] = [Γ+(1) : Γ+
0 (pk)] = qk−1(q + 1) ;(5.13)

[Γ(1) : Γ0(N)] = [Γ+(1) : Γ+
0 (N)] = Ψ(N)(5.14)

Proof For both the indices [Γ(1) : Γ0(pk)] and [Γ+(1) : Γ+
0 (pk)], consider

the compact open subgroups K = Ô. and K ′ = Ô(pk)
.
. The numerators

of formulas (5.9) and (5.10) contain the index [K : K ′]. It is equal to the
product of the local indices [Kp : K ′p]. They are all equal to one except at p,
where it is qk−1(q + 1) by (5.8).

Then the denominator [n(K) : n(K ′)] equals one, by the local description
of Eichler orders.

Finally the factor h equals one because it is a subgroup of the one-element
group [n(K) : n(K ′)].

In conclusion, [O1 : O(pk)1] = [O+ : O(pk)+] = qk−1(q + 1). Finally,
observe that by Theorem 3.1, the two groups appearing in each index have the
same center: Z1

F (respectively Z+
F ). So the projective indices [Γ(1) : Γ0(pk)]

and [Γ+(1) : Γ+
0 (pk)] are equal to the previous global indices.

Equation (5.14) results from the same argument, considering all the primes
dividing N.

Proposition 5.7. Let p be a prime ideal prime to the discriminant D. Then:

[Γ′(pk) : Γ(pk)] = if p - (2) : 1(5.15)

if k = 2, p|(2) and p2 - (2) : N(p)/2(5.16)

if k = 2, p|(2) and p2|(2) : N(p)(5.17)

Proof Firstly, if p - (2), then Γ(N) = Γ′(N) by the �rst case of the proof of
Lemma 5.3 (v). So the projectivized groups also coincide.

Then if p|(2) and k = 2, the last case of the proof of Lemma 5.3 (v) shows
that:

(5.18) Γ′(p2) ⊂
{
M ∈ SL2(p2), M ≡

(
1 + λ 0

0 1 + λ

)
mod p2, λ ∈ p

}
,

so [Γ′(p2) : Γ(p2)]. The �rst subcase is when p2|(2), so that Γ(p2) also contains
−Id. In which case the projectivized indices are preserved. The other subcase
is when this does not hold, so only Γ′(p2) contains −Id.



Chapter IV

A dense family of Riemann

surfaces

The conventions are those laid in �III.1.2, and in �III.5.1 for the congruence
subgroups. In particular O is a maximal order.

In addition it is assumed that the quaternion algebra B is a �eld and
that the split real place v is unique.

1 Arithmetic groups

Theorem 1.1 ([Vig, IV 1.1 (1)]). The image ιB,v
(
Γ(N)

)
is a discrete sub-

group of SL2(R). It is cocompact if and only if B is a division algebra1.

De�nition 1.2 ([Vig, IV.1 5]). A subgroup of SL2(R) which is commensu-
rable to such a group ιB,v

(
Γ(N)

)
is called an arithmetic group.

1The reference states a second property in the case where B would have at least two
in�nite places. But the proof depends on the following general claim which I am not sure
of. The second property would imply this very strong statement: suppose there are exactly
two split in�nite places (say v and w). Then the image ιB,v(O1) (a priori a discrete group
!) is dense in SL2(R).

[ Claim : Consider four topological subgroups of the ideles B1
A : (i) G′′ = B1

w = (SL2)w
(the idelic factor at w). (ii) U ′( =̂G′.C), with component 1 at w, (iii) O1 and (iv) B1

F .
Suppose that B1

A = B1
FU and B1

F ∩ U = O1 (so that B1
A/B

1
F = U/O1 ). The assumption

made is that ("D'après III.4.3 : (2).."): G′′O1 is dense in U = U ′G′′ . From this the
author deduces that (p105, "(2) l'image de..."): the projection of O1 is dense in U ′.
But actually I can only deduce that U ∩B1

FG
′′ is dense in U .]

60
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Counterexample 1.3. Consider the rational non-division quaternion algebra
M2(Q) (with discriminant 1). The unique class of maximal orders is O =
M2(Z), and the group of units O1 = SL2(Z) acts on H via PSL2(Z), which
is the -non compact- triangle group (2, 3,∞)

The following general theorems then imply that the previous groups have
a bounded fundamental domain, framed by a �nite number of arc of circles,
and without vertices on the real line :

Proposition 1.4. Let Γ be a subgroup of PSL2(R).

� Γ is discrete if and only if it acts discontinuously on the upper-half
plane H. Γ is then called a Fuchsian group.

� [Kat, 4.1.1 and proof of 4.5.1 & 4.5.2] Γ is of �nite covolume if and
only if: every Dirichlet fundamental domain has a �nite number of
sides and no side included in P1

R. Γ is then called a Fuchsian group of
the �rst kind.

� [Kat, Cor 4.2.7] Let Γ be a Fuchsian group of the �rst kind, one says
that Γ is cocompact if and only if Γ\H is compact. This is also equiv-
alent to the fact that (i) every Dirichlet domain is both of �nite area,
and (ii) Γ has no parabolic element.

De�nition 1.5 ([Kat, Formula (4.3.4)]). Let Γ be a Fuchsian group of the
�rst kind. The signature of Γ is the data (g; e1, . . . , er; s) of: the genus g of
the quotient Γ\H, the orders ei of the r inequivalent elliptic points and if
any, the number s of parabolic points.

Let us see how to determine the signature of Γ a cocompact Fuchsian
group of the �rst kind. An important case for this work is :

Prop-Def 1.6. Suppose that we are given a hyperbolic triangle ABC with
angles α, β, γ (so α + β + γ < 1, see [JS, 5.6.5-5.6.6, & p258]). Consider
the group of re�exions through the sides, and let Γ ⊂ PSL2(R) be the index
two subgroup of direct isometries. Namely, Γ is generated by the rotations
δa, δb, δc, of angles 2α, 2β, 2γ, around the vertices A,B,C.

Suppose furthermore that there exists positive integers a, b, c, such that
α = π/a, β = π/b, γ = π

c
. Then

� a fundamental domain F is made of the triangle ABC, joined with its
symmetric through a side (say AC);
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� Γ has the presentation :

(1.1)
〈
δa, δbδc, δ

a
a = δbb = δcc = 1 and δcδbδa = 1

〉
[Notice that, possibly modulo taking inverses of the generators, the
presentation of Γ given above still holds when reordering (a, b, c)].

� and the Riemann surface Γ\H has genus 0.

Such a Fuchsian group is called a cocompact triangle group2.

Proof The �rst statement follows from [Mag, II.5 Th. 2.8]. The di�culty
consists in showing that the images of ABC under side re�ections, �ll the
hyperbolic plane without gaps and overlappings.

The second is also stated in the result mentionned above. Or more gen-
erally follows from the proof of the theorem of Poincaré�Maskit (apply the
presentation of [Kat, p98] with g = 0).

For the last : consider B′ the symmetric of B through the side AC. Then
from the �rst statement, a fundamental domain of Γ is the quadrilateral
ABCB'. But the group Γ identi�es the vertices B and B′ (by the rotation
2α), and identi�es the pairs of sides : BC with CB', and AB with AB'.
This triangulation of F thus induces a triangulation of the Riemann surface
X = Γ\H into 3 vertices, 2 edges and 1 free side. Thus, by the formula of
Euler�Poincaré [JS, 4.16.2], the genus gX satis�es 2− 2gX = 3− 2 + 1. So is
zero.

Example 1.7. The list of all arithmetic triangle groups is stated in [Tak]. The
Proposition 1 states furthermore that two such groups are commensurable in
PSL2(R) i� they arise from the same quaternion algebra.

Example 1.8. Let ∆ be a cocompact triangle group with indices (a, b, c) and
Γ ⊂ ∆ a subgroup. Then the covering map of Riemann surfaces:

(1.2) f : X(Γ) = Γ\H → P1 = ∆\H

has degree d = |∆/Γ|. It is called a Belyi map and X a Belyi curve. Consider
(separately) two additional assumptions:

2We don't know if the following de�nition, given in [Sh1] (3.18.2), is equivalent : a
group of genus 0 with exactly three inequivalent elements. Namely, does a group with this
de�nition necessarily have its Dirichlet domains equal to a quadrilateral ?
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(a) Suppose that Γ has no elliptic point, then the genus g of X satis�es

(1.3) g(X(Γ)) = 1 +
d

2

(
1− 1

a
− 1

b
− 1

c

)
.

[Proof : notice that all points in the preimage of the �xed point of δa have
rami�cation index a by f , and so there are d

a
of them. Conclude by the

formula of Riemann�Hurwitz].
(b) Suppose now that Γ is normal in ∆. Then by [Wol, Lem 1 & proof

of Th. 6], there also exists another pair of groups Γ′/∆′ such that Γ′ has no
elliptic points and

X(Γ′) = X(Γ).

So in particular the assumptions of situation (a) are satis�ed with Γ′ /∆′.
(c) Actually it can be shown [Wol, Lem 8 & end of proof of Th. 6] that

if g(X) > 1, then X has many automorphisms if and only if X is a curve
X(∆) of the form described in (b). The automorphisms group of X are then
G = Γ′/∆′ for an auxiliary pair ∆′ / Γ′ chosen as in (b).

Counterexample 1.9. Let p ≥ 7 a prime number and X(p) the quotient of
the extended upper half plane H∗ = H ∪ cusps of Γ(p) under the action of
the principal congruence subgroup Γ(p). Then, although the projection map
X(p) → P1

C = X(1) is a Galois covering map between compact Riemann
surfaces, the triangle groups that de�ne it : Γ(p) /∆(2, 3,∞) are not cocom-
pact.

Indeed Γ(p) has cusps (of common rami�cation index p, see [DS, �3.9
table 3.3]).

So one is a priori not in the situation of the previous example. And
actually the conclusions of (c)⇔ (b) do not hold : X(p) does not have many
automorphisms. Indeed it can be shown ([Maz, Appendix of part I by J.P.
Serre]) that the automorphism group of X(p) is PSL2(Fp), which is (7− 42

7
)

times lower than the Hurwitz bound 84g(X(p)− 1).

More systematically, the genus is determined by the orders of the elliptic
cycles and the area of a fundamental domain :

De�nition 1.10. Endow the upper-half plane with the hyperbolic area nor-
malized as follows : 1/2π(dxdy/y2). The area of a Fuchsian group Γ, noted
µ(Γ\H), is the hyperbolic area µ(F ) of any fundamental domain F of Γ (all
these areas being equal by [Kat, Th. 3.1.1]).
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Property 1.11 ([JS, 5.10.3] or [Kat, Th 4.3.1]). Let Γ be a Fuchsian group
of the �rst kind with signature (g;m1, . . . ,mr). Then

(1.4) µ(Γ\H) = (2g − 2) +
r∑
i=1

(1− 1

mi

)

Where the area itself can be determined from:

(A.1) The shape of a Dirichlet domain F , by the formula of Gauss�
Bonnet:

Property 1.12 ([JS, Cor 5.5.6] or [Kat, exercice 4.6]). The area of a n-sided,
hyperbolically star-like, polygon F with angles αi is

(1.5) µ(F ) =
n− 2

2
−

n∑
i=1

αi
2π

Example 1.13. Consider a non empty hyperbolic triangle T with angles π
a
, π
b
, π
c
.

The genus being 0, the area µ(T ) thus equals

µ(T ) =
1

2

(
1−

(1

a
+

1

b
+

1

c

))
[which is the formula of Gauss�Bonnet]. The triples of integers which mini-
mizes this sum while keeping it strictly positive is (2, 3, 7).

Actually, a mere case enumeration using Property 1.11 (see [JS, 5.10.7])
shows that the (2, 3, 7) triangle group is the cocompact Fuchsian group with
the smallest hyperbolic area.

(A.2) A subgroup construction :

Property 1.14 ([JS] prop 5.10.9 ii). Let Γ be a cocompact Fuchsian group
of the �rst kind and ∆ a subgroup of index n. Then µ(∆\H) = nµ(Γ\H).

(A.3) The arithmeticity of Γ :

Property 1.15 (Shimizu's formula). Let us narrow the setting of Theorem
1.1: let F be a totally real �eld of degree n and discriminant dF , B a division
quaternion algebra of discriminant D with exactly one split real place, and
Γ be the arithmetic group arising from the units of norm one of a maximal
order. Then

(1.6) µ(Γ\H) =
4

(2π)2n
d

3/2
F ζF (2)Φ(D)
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Where we recall :

Φ(D) = |(ZF/D)
.| = N(D)

∏
p|D

(
1− 1

N(p)

)

For a shorter idelic proof see [Vig, IV.1.Exemples 5) & IV Corollaire 2.7],
and [Voi5, Main Theorem 39.1.8] for the higher-dimensional case.

The next section deals with the elliptic invariants mi in the arithmetic
case. Notice that, for every given artihmetic Fuchsian group, this information
can also be obtained by [Voi3, Algorithms 3.2 & 4.7]. Namely, given an exact
pseudo-basis of a quaternion order, it returns (i) a (numerical) Dirichlet
fundamental domain for the groups of units (either of norm one or totally
positive) with arbitrary center, and (ii) an exact presentation of Γ by elements
which pair the sides of the domain (the sides being possibly cut into two
halves).

2 Elliptic points and genera

2.1 Density of general genera

Let X0(N)C and X+
0 (N)C be the Riemann surfaces Γ0(N)\H and Γ+

0 (N)\H,
and Ψ, Φ the functions de�ned in equation III.(5.11).

Proposition 2.1 ([Duc, equations (III.5) and (IV.13)]). Fix F and let the
disciminant D and the level N take every possible values. Then the gen-
era gN,D and g+

N,D of X0(N)C and X+
0 (N)C take arbitrarily large values.

And there exists constants λF,max and λ+
F,max such that they satisfy g

(+)
N,D ≤

λ
(+)
F,maxΨ(Di)Φ(Ni).

Notice that the �rst statement (g(+)
N,D arbitrarily large) is not obvious.

Indeed one has to control for the number of elliptic points in [Duc, equation
III.5]. It will be shown in this section how to do it on an example.

Corollary 2.2. Allow the discriminants (Dj)j and the levels (Nk)k to vary
and take every possible values. Then the families (X0(Nk)C)j,k and (X+

0 (Nk)C)j,k
have dense genera in the sense of De�nition 2.1.
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2.2 General elliptic points counting

Let Γ ⊂ SL2(R) be an arithmetic Fuchsian group. Suppose that Γ =
ιB,v(O(N)1) is the image of the units of norm one of an Eichler order, so
that Γ contains −1. Let x be an element of B of minimal polynomial
f = X2 − trace(x)X + n(x) over F . One says that the conjugacy class
of x is a conjugacy class of minimal polynomial f .

Let q > 1 be an integer, and z a point of the upper half plane whose
�xator in Γ is of order q. One says that the orbit Γ(z) is an elliptic cycle of
order q, and its image z̄ ∈ X0(N)C an elliptic point of order q.

Lemma 2.3 ([Vig, IV.2.9]). The number of elliptic cycles of order q is equal
to the half of the number of conjugacy classes, in Γ, of elements with minimal
polynomial X2 − 2 cos(2π/(2q))X + 1.

Remark 2.4. A precision on the demonstration. The fact that g and g′ are
in the same cyclic group implies that they stabilize the same unique element
z ∈ H. The equality g′ = g”gg”−1 thus implies that the image g” ∈ PSL2(R)
is in the same cyclic group as g and g′. And so in particular g” commutes
with g′.

De�nition 2.5 ([Vig, p26]). Let R be a quadratic order over ZF , of fraction
�eld L, and O an order of B. One says that an embedding ι : K → B induces
an optimal (or maximal) embedding of R in O if and only if ι−1(O)∩L = R.

Proposition 2.6 ([Vig, Corollaire 5.14]). Let h be an element of B which is
strictly quadratic over F , and f = X2−tX+n its minimal polynomial. Then
the number of O(N)1-conjugacy classes in O(N) of elements with minimal
polynomial f , is equal to ∑

R

m1(R),

where R runs over the orders of F (h) containing h, and m1(R) is the number
of O(N)1-conjugacy classes of maximal embeddings of R in O(N).

Proposition 2.7 ([Vig, III.5.11 and III.5.13]). Suppose that there is only
one conjugacy class of Eichler orders in B. Let R be a quadratic order over
ZF , and for all p prime, mp(R) the number of classes of maximal embeddings
of Rp in O(N)p modulo (O(N)p)

.

. Then :

(2.1) m1(R) = [nrd(O(N)
.

) : nrd(R
.

)].h(R)
∏

p prime

mp(R),
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where h(R) is the number of classes of ideals of R (and nrd the reduced norm
on B).

We will be only interested in the cases where the completions Bp are
matrix algebras. So the values of mp will be computed only in these cases.
They are given by the following proposition.

Proposition 2.8 ([Vig, II.3.5]). Let (F, π) be a local �eld, B = M2(F ) the
matrix algebra over F and On an Eichler order of level πn. Let K = F (g)
be a quadratic extension, which is supposed generated by an integer g such
that the order R = ZF [g] be maximal. Let p(X) = X2− tX+m the minimal
polynomial of g, one de�nes the sets

E(n) =

{
x ∈ R

R.πn
, p(x) = 0.

}
Then the number of maximal embeddings of R in On modulo the conjugacy
by O.

n, is equal to :

� |E(n)| if On is maximal (n = 0), or if t2 − 4m is invertible;

� |E(n)|+ |Im(E(n+ 1)→ E(n))| otherwise.

So in particular whenever the order: O(N)p of the quaternion algebra
completed at p is maximal (so for almost all p), then the factor mp(R) in the
product of (2.1) is equal to one.

2.3 Case of the group (2,3,7)

Global embedding numbers

Let F = Q(cos(2π/7)) then [F : Q] = 3. Fix one real place ι, then let B be
the quaternion algebra over F which is rami�ed exactly at the two other real
places (and no �nite place)3Let N =

∏
i p

ei
i be an ideal of ZF along with its

decomposition in primes.

3Actually the geometry of the groups to be built doesn't depend on the choice of ι.
Indeed let σ be an automorphism of F and let Bσ be the quaternion algebra rami�ed
exactly at the two other places than ισ. Then, the �nite discriminant being trivially
Galois-invariant, we obtain that Bσ is the conjugate quaternion algebra of B in the sense
of Remark V.5.7. Which thus trivially leads to the same Shimura curves.
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Lemma 2.9. For each n, let ζn be a primitive n-th root of unity. Then the
set of numbers q, such that there exists a quadratic extension of F containing
ζ2q, is equal to {2, 3, 7}. In addition for these values of q, the orders ZF [ζ2q]
are maximal in the corresponding �elds F (ζ2q).

Proof The �rst one is a brutal enumeration.
For the second one I trust Magma.

The maximality condition of Proposition 2.8 is thus satis�ed for all the
local orders obtained by completion of these orders.

Furthermore the narrow class number of F , |Cl∞(F )|, being equal to one,
all the Eichler orders of level N are conjugate in B by Corollary III.2.5. Thus
the assumption of Proposition 2.7 holds.

Lemma 2.10. Under the same assumtions:

� h(ZF [ζ2q]) = 1 for q = 2, 3, 7.

� [nrd(O(N)
.

) : nrd(R
.

)] = 2 for R = ZF [ζ2q] and for all N.

Proof For the �rst, I trust Magma.
For the second, let use the equality nrd(O(N)

.
) = Z

.
F,B from Theorem

III.3.1, where Z
.
F,B are the units which are positive at the places that ramify

B. So if ι1 = ιB,v is the split real place, let these places be ι2 and ι3. To
obtain generators of this group, ask Magma for the signs of three generators
U1, U2, U3 of Z

.
F : [−,−,−][−,+,−], [+,+,−]. From these signs, one de-

duces generators of ZF,B: {U2
1 , U

2
2 , U2U3, U

2
3}. The index in Z

.
F can now be

computed in an elementary way.

Putting together Lemma 2.3, Proposition 2.7 and Lemma 2.10, the num-
ber of elliptic points of order q in X0(N)C, q ∈ 2, 3, 7, is equal to

(2.2) eq =
1

2

∑
R=ZF [ζ2q ]

2.1.
∏

p prime

mp(R) =
∏

p prime

mp(ZF [ζ2q]) .

In the rest of the section we will only consider levels N of the form pi2.p
j
7,

where p2 and p7 are (resp.) the unique prime ideals above (2) and (7).
It is thus su�cient to compute the factors mp2(ZF [ζ2q]) and mp7(ZF [ζ2q])

in (2.2). Indeed the others are equal to one so play no role in Proposition
2.7.

Notice similarly that the embedding number mp at p is one as soon as
p - N, because the local order Op is then maximal.
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Local embeddings of ZF [ζ4]

� at p7 : The minimal polynomial of ζ4 has no solution modulo p7. Thus
mp7 = 0 as soon as j ≥ 1 [and one otherwise].

� at p2 : The minimal polynomial of ζ4 has a unique solution modulo
p2 and no solution modulo p2

2. Thus mp2 = 1 if i ∈ {0, 1}, and 0
afterwards.

Local embeddings of ZF [ζ6]

The discriminant of the minimal polynomial of ζ6 is equal to (3), so is in-
versible modulo p2 and p7. Thus we are in the �rst case of Proposition 2.7.

So by Hensel's lemma, the roots modulo p2 (respectively p7) lift to a
unique solution modulo pi2 (respectively pj7) for all i ≥ 1 (respectively j) ≥ 1.

� at p7 : mp7 = 2 distinct roots as soon as j ≥ 1 [and 1 for j = 0].

� at p2 : mp2 = 0 root as soon as i ≥ 1 [and 1 for i = 0].

Local embeddings of ZF [ζ14]

� at p7 : The minimal polynomial of ζ14 has an unique solution (with
multiplicity two) modulo p7, then no solution modulo pi7 for j ≥ 2.
Thus mp7 = 1 if j ∈ {0, 1}, and 0 afterwards.

� at p2 : The minimal polynomial of ζ14 has its discriminant invertible
modulo p2. Thus we are in the �rst case of Proposition 2.7. Further-
more these roots all come from the two disctinct roots modulo p2 by
Hensel's lemma. So mp2 = 2 as soon as i ≥ 1 [and 1 for i = 0].

2.4 Outcome : elliptic points for N = pi2.p
j
7

Corollary 2.11. The elliptic points of the Riemann surfaces X0(pi2.p
j
7)C are:

� i=j=0 : [2, 3, 7];

� j=0 , i=1 : [2, 7, 7] then for i ≥ 2 : [7, 7];

� j=1 , i ≥ 1 : [7, 7];



70 Chapter IV. A dense family of Riemann surfaces

� i=0 , j=1 : [3, 3, 7] then for j ≥ 2 : [3, 3];

� for the rest ({i ≥ 1} ∩ {j ≥ 2}) : [∅].

2.5 Density of the genera in the family X0(p
i
2.p

j
7)C

Corollary 2.12. The genera of the Riemann surfaces X0(pi2.p
j
7)C are:

� i=j=0 : 0 ;

� j=0 , i=1 : 1 then for i ≥ 2 : 8i−2.6/7 + 1/7;

� j=1 , i ≥ 1 : 8i−1.6/7 + 1/7;

� i=0 , j=1 : 0 then for j ≥ 2 : 7j−2.2/3 + 1/3;

� for the rest ({i ≥ 1} ∩ {j ≥ 2}) : 7j−2 [8i−1.6/7 + 1/7].

Proof [2, 3, 7] is a triangle group, so of genus 0. The others are deduced by
Riemann�Hurwitz and by recurrence.

The following fact, which was pointed to us by N.D. Elkies, allows to
conclude that the ordered genera (gi,j)i,j of the family X0(pi2.p

j
7)C are dense

in the sense of De�nition I.2.1:

Proposition 2.13. Let p and q be to numbers relatively prime to one an-
other. Then for all ε > 0, there exists N such that, as soon as pi.qj > N ,

there exists i′, j′ such that pi
′
.qj
′
> pi.qj and

∣∣pi′ .qj′
pi.qj

− 1
∣∣ < ε.

The following proof was greatly contributed to by H. Randriam, and also
by J. Pieltant.

Lemma 2.14. Let ρ be an irrational number. Then for all ε > 0, there exists
N a positive integer such that the fractionnal part {N.ρ} < ε.

Proof Let M be large enough such that 1
M
< ε. Let us partition the interval

[0, 1[ in M intervals [i/M, (i + 1)/M [ of equal length. One considers the
sequence of the fractional parts ({n.ρ})n∈N. By the pigeonhole principle,
there exists two distinct values of this sequence: 0 ≤ {N1.ρ} < {N2.ρ} < 1
that lie in the same interval.
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� If N2 > N1, then the positive integer N2 −N1 suits.

� Else if N1 = N2 + k, with k a positive integer, let µ be the di�erence
µ = {N2.ρ} − {(N2 + k).ρ} < 1

M
. Hence the fractional part {k.ρ} is

equal to 1−µ. One can iterate and consider the sequence of fractional
parts: {N2.ρ}, {(N2 + k).ρ}, {(N2 + 2k).ρ} . . .. Its �rst values decrease
regularly, with steps equal to µ. But by hypothesis µ < 1

M
. Thus the

sequence eventually reaches a value (of the form {N2 +m.k}) contained
in the �rst interval [0, 1

M
< ε[. Finally, the positive integer N2 + m.k

suits.

Lemma 2.15. Let p and q be to numbers relatively prime to one another.
Then for all ε′ > 0, there exists integers a and b such that 0 < a log p +
b log q < ε′. Furthermore one can choose the sign of a.

Proof p and q being prime to one another, the quotient log p
log q

is irrational.

For a > 0, it su�ces to apply the previous lemma to α = log p
log q

and ε = ε′

log q
.

One then chooses a = N and b = −E(N log p
log q

).

For a < 0, one applies the previous lemma to α = log q
log p

.

Let us now prove the proposition.
Consider ε > 0. By the previous lemma there exists:

� a, b two positive integers such that
∣∣pa
qb
− 1
∣∣ < ε,

� and also c, d two positive integers such that
∣∣ qd
pc
− 1
∣∣ < ε.

One chooses N large enough such that:

pi.qj > N ⇒ (i > c or j > b).

Consider pi.qj > N . Then by this choice of N , at least one of the two
following inequalities is satis�ed:

j > b One chooses i′ = a + i > 0 and j′ = j − b > 0. Thus, pi
′
.qj
′

pi.qj
= pa

qb
is

strictly lower than 1 and satis�es
∣∣pi′ .qj′
pi.qj

− 1
∣∣ < ε.

i > c One chooses i′ = i−c > 0 et j′ = j+d > 0. Thus, p
i′ .qj

′

pi.qj
= qd

pc
is strictly

larger than 1 and satis�es
∣∣pi′ .qj′
pi.qj

− 1
∣∣ < ε.



Chapter V

Descent of canonical models

1 Leitfaden

The following three results:

(a) Theorem 4.12 (ii): a rami�ed cover with no automorphisms and �eld
of moduli Q descends to a cover over Q . (i): This descended cover is
furthermore unique, up to Q-isomorphisms of covers;

(b) Theorem 5.11 Let X0(1) be uniformized by a triangle group with dis-
tinct indices, arizing from a quaternion algebra with Galois-stable dis-
criminant. Let N be a Galois-stable ideal. Then the complex cover
X0(N) −→ X0(1) has �eld of moduli equal to Q;

(c) Proposition 5.12: the rami�ed covers X0(N) −→ X0(1) have no auto-
morphisms;

. . . imply the main result :

Theorem 5.14 : LetX0(1) be uniformized by a triangle group with distinct
indices, arizing from a quaternion algebra with Galois-stable discriminant.
Let N be a Galois-stable ideal. Then the complex cover X0(N) −→ X0(1)
descends to a cover over Q. This descended cover is furthermore unique, up
to Q-isomorphisms of covers.

72
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2 Field of de�nition and �eld of moduli of cov-

ers

The de�nitions and statements in this paragraph stick to covers of P1
k.

They correspond to regular extensions E/k(T ), with geometric counterpart
Eksep/ksep(T ).

One could have stated the results for a more general base Bk instead,
with function �eld K/k. And thus dealt with regular extensions E/K and
their geometric counterpart Eksep/Kksep. In this generality Prop 2.6 would
not always hold: see the counterexamples following [DE, Remark 5.5].

Another advantage is that if k′/k is a Galois extension, then τ ∈ Gal(k′/k)
has a straightforward prolongation to Kk′ = k′(T ): the one that �xes T .
We will adopt this one throughout. Changing this prolongation (i.e. the
k-structure of P1

k′ , as illustrated in footnote 1) would change the �eld of
moduli: see [DE, p45].

De�nition 2.1 (Rami�ed cover [DèbDo] �2.1). Let k be a �eld. A (branched)
algebraic cover of P1

k is the data of (i) X a proper (projective), geometrically
integral smooth curve over k, along with (ii) a �nite, non constant, generically
unrami�ed morphism π : X → P1

k.

The assumption geometrically irreducible is equivalent to the extension
of function �elds k(X)/k being regular . That is to say : [k̄(X) : k̄(T )] =
[k(X) : k(T )], which is itself equivalent to k being algebraically closed in
k(X).

The function �eld functor yields an equivalence of categories between the
categories: {birational classes of covers; subcover maps} and: {�nite regular
�eld extensions; �eld inclusion maps} [Dèb2, �3.3.3 & �3.3.4].

De�nition 2.2 ([Dèb2, 3.1.15]). Let k be a �eld and k′/k an extension and
E/k′(T ) a �nite extension. One says that :

� E is de�ned on k as mere extension of k′ (or as mere curve), if and
only if there exists a �nite regular extension E0/k(T ) such that E0k

′

and E are k′-isomorphic;

� E/k′(T ) is de�ned on k as mere extension of k′(T ) (or as mere cover)
if and only if there exists a �nite regular extension E0/k(T ) such that
E0k

′ and E are k′(T )-isomorphic;
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� [Cultural: suppose furthermore that E/k′(T ) is a Galois extension,
endowed with an isomorphism u : G → Gal(E/k′(T )). Such a pair
(E, u) is called a G-extension. Then it is de�ned on k as G-extension if
and only if there exists a �nite regular G-extension E0/k(T ) such that
E0k

′ and E are (G-equivariantly) k′(T )-isomorphic.]

One then says that k is a �eld of de�nition, and that E0/k(T ) is a k-model
(resp. as mere curve, mere cover and G-extension) of E/k′(T ).

Prop-Def 2.3 (Action of Gal(k′/k) [DèbDo, �2.3 & �2.6]). Let k′/k be
a Galois extension with Galois group Γ, and again E/k′(T ) a �nite (G-)
extension. Let F/k(T ) be a Galois closure containing E.

Let τ be an element in Γ, the extension τE/k′(T ) is de�ned as follows.
Let τ̃ be any arbitrary prolongation of τ to Gal(F/k(T )) that �xes T , then:

(2.1) k′(T ) ⊂incl τ̃(E) ⊂incl F

where all the ⊂incl stand for the set-theoretic inclusion in the �xed Galois
extension1 F .

[Cultural: for the G-extensions ([Dèb2, Prop 3.1.17]): τE is the τG =
τ̃Gτ̃−1-extension with action τu = τ̃uτ̃−1. ]

Furthermore for any such choice of prolongation τ̃ , τE/k′(T ) is k′(T )
isomorphic to the base-change by τ of the extension E/k′(T ). Thus τE/k′(T )
is in fact well de�ned up to a k′(T )-isomorphism of extension.

Finally if E/k′(T ) is de�ned over k (as a k′, k′(T ) or G-extension), then
it is (k′, k′(T ), respectively G)- isomorphic to its conjugates τE/k′(T ).

1 As discussed in [DE, p45], other choices of k- structures for Kk′ = k′(T ) may lead
to nonisomorphic conjugates, and hence di�erent �eld of moduli. This issue is analogous
to the case of varieties over �nite �elds, where di�erent k-structures lead to di�erent
geometric Frobeniuses over k′. For example here, the choice of a �xed Galois closure F
implicitly determined the k-structure :

(2.2)

{
k(T )⊗k k′ −→ k′(T )

x, y → incl(x).incl(y)

So this choice yields the (functorial in τ) collection of isomorphisms τ(k′(T )) → k′(T ),
which are simply the subset-identity in F . But composing (2.2) with a homography r
would lead to conjugate these isomorphisms by τ(r).
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Proof For the base-change claim, consider a commutative diagram:

L

τ(E)

ϕ◦τ̃−1

bb

E

ϕoo

τ̃oo

k′(T )

ψ

PP

incl

OO

k′(T )τoo

incl

OO

where ϕ : E → L and ϕ : k′(T ) → L coincide on the right-hand bottom
corner k′(T ). Then ϕ ◦ τ̃−1 factors both ϕ and ψ [indeed, going from the
left-hand bottom corner k′(T ) to L by the two exterior paths shows that
ψ=ϕ◦ incl◦τ−1]. So the universal property for the tensor product is satis�ed.

Let us prove the �nal assertion (in the k′(T )-extension setting). Let E0/K
be a regular extension such that E0⊗k(T )k

′(T ) ∼= E. Then the previous iden-
ti�cation with the tensor-product yields the following k′(T )-isomorphisms:

τE ∼= E ⊗τ k′(T ) = (E0 ⊗k(T ) k
′(T ))⊗τ k′(T ) ∼= E0 ⊗τ◦incl k

′(T )

Where incl is the inclusion k(T ) ⊂ k′(T ). Which is unchanged after compos-
ing by τ . So the latter is equal to E0 ⊗incl k

′(T ) ∼= E.

Example 2.4. C(
√
T + i)/C(T ) is de�ned on R as C-extension, but not

as a C(T )-extension. Indeed suppose that it were the case. Let τ be the

R(T )-linear morphism

{
C(T ) −→ C(T )

i→ −i
, and τ̃ the R(T )-linear prolonga-

tion

{
C(
√
T + i) −→ C(

√
T − i)

√
T + i→

√
T − i

. Then by assumption and by the previous

proposition, there exists a C(T )-isomorphism ϕ : C(
√
T + i)→ C(

√
T − i).

By C(T )-linearity one has T + i = ϕ(
√
T + i)2. So ϕ(

√
T + i) is either equal

to
√
T + i or to −

√
T + i, both being impossible.

Example 2.5. E = Q(ξd)(T
1/d)/Q(ξd)(T ) is de�ned over Q as Q(ξd)(T )-

extension. Indeed it arises from the extensionQ(T 1/d)/Q(T ), of same degree.
[Cultural: it is not de�ned as a G = (Z/dZ)

.
-extension. The most

straightforward proof is probably to check that E is not G-conjugate to its
twists2 . It will be done in counterexample 2.8.]

2Another proof for this, suggested by [Dèb2, 3.1.16] : show that the (d) of corollary
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Proposition 2.6. Suppose that k is a �eld of characteristic zero, k′/k a
Galois extension and let F/k(T ) be a Galois extension.Prolonging the action
of Gal(k/k) to k(T ) by �xing T , assume that Gal(k/k) stabilizes the set D
of geometric branch points of F/k′(T ).

Then noting G = Gal(F/k(T )), N = Gal(F/k′(T )) and Γ = Gal(k′/k),
there exists a section s to the following exact sequence:

(Seq/Split) 1 // N // G π // Γ

s
yy

// 1

Proof For a quick reference: the �rst criterion stated in the discussion done
below [DE, Th. 5.1] applies here. Indeed k being of characteristic zero,
the condition (Sec/Split)' is equal to (Sec/Split). And k(T ) has an in�nite
number of closed points.

For a proof, adapt for example [Dèb2, Th 3.2.1].

If E/k′(T ) is de�ned on k (in either one of the three meanings of De�nition
2.1), then it is isomorphic to its conjugates. This necessary condition is
restated group-theoretically as follows (see also [DèbDo] �2.7) :

De�nition 2.7. Same assumptions as in Prop-Def 2.3
[k′/k is a Galois extension with Galois group Γ, E/k′(T ) a �nite (G-) extension

and let F/k(T ) be a Galois closure containing E. Note as above G andN the Galois

groups of F/k(T ) and F/k′(T ). Let H ⊂ N be the �xator subgroup of the (G-

)extension E/k′(T ). For every τ in Γ, choose τ̃ any prolongation to G that �xes

T ]. One says that :

� [Wol, lemma 5] the �eld of moduli of E as mere k′-extension (as mere
curve) is the sub�eld km,c of k′ �xed by

{τ ∈ Γ, such that τ̃(E) is k′-isomorphic to E};
3.1.18 is not satis�ed. First, the distinguished generator of the inertia at the ideal (T 1/d)

is by de�nition (3.1.4.1) the element γ ∈ Gal
(
Q(ξd)(T

1/d)/Q(ξd)(T )
)
, which sends T 1/d

on ξT 1/d. Its conjugacy class C boils down to {γ} because G is abelian. Compute
what does this conjugacy class become when one conjugates the extension by an element
σ ∈ Gal(Q(ξd)/Q). So let σ : ξ → ξj (j invertible mod d), and σ̃ its prolongation to
the automorphism of Q(ξd)(T

1/d)/Q that sends T 1/d to itself. Then the inertia invariant

of the conjugate G-extension
σ̃
Q(ξd)(T

1/d)/Q((ξd)(T )), is equal to {γj−1 (mod d)}. Indeed
it su�ces to check that σ̃ ◦ γj−1 (mod d) ◦ ˜σ−1 sends indeed T 1/d on ξT 1/d [Which could
actually be directly deduced from the last point of corollary 3.1.13]. This invariant is
di�erent from C so the (d) of the corollary is not satis�ed.
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� [DèbDo, �2.17 restated] the �eld of moduli of E as mere extension of
k′(T ) (as mere cover) is the sub�eld km,G of k′ �xed by{

τ ∈ Γ, such that there exists ϕτ ∈ N, τ̃Hτ̃−1 = ϕτHϕ
−1
τ

}
;

� [Dèb2, prop 3.1.17 b)] suppose furthermore E/k′(T ) Galois, endowed
with a �xed isomorphism u : N/H → Gal(E/k′(T )). Then the �eld
of moduli of (E, u) as G-extension of k′(T ) is the sub�eld km of k′

�xed by the automorphisms τ ∈ Γ such that there exists χτ ∈ N/H =
Gal(E/k′(T )), such that

∀g ∈ N/H, τ̃u(g)τ̃−1 = χτu(g)χ−1
τ .

The rami�cation divisor (and thus the set of branch points on the base)
is automatically invariant under the subgroup of Gal(k′/k) �xing the �eld of
moduli of E as a cover.

Counterexample 2.8. [Cultural: let d ≥ 3 be an integer and ξ = ξd a d-th
root of unity. Then the �eld of moduli of the G = (Z/dZ)

.
-extension E =

Q(ξd)(T
1/d)/Q(ξd)(T ) is not Q. For this, consider any τ ∈ Gal

(
Q(ξd)/Q

)
:

ξ → ξj (j ∈ (Z/dZ)
.
), and extend it to E by �xing T 1/d. Suppose that

threre exists χτ : T 1/d → ξkT 1/d in Gal
(
E/Q(ξd)(T )

)
such that for all g :

T 1/d → ξlT 1/d in Gal(E/Q(ξd)(T )) the relation (2.7) holds. This is actually
impossible because applying it to T 1/d would imply jl = l for all l.]

3 Subgroups and their monodromy representa-

tions

3.1 Facts

Consider the group of permutations (Sd, .) with the reverse composition law:
a.b =̂ b ◦ a. One says that a group morphism G → (Sd, .) that induces a
transitive action on the set of d elements, is a transitive right representation
of G in Sd.

Prop-Def 3.1. letG be a group and d an integer. Then one has the following
bijection of sets of conjugacy classes, induced by the (non canonical) two
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arrows:

G-conjugacy classes of Sd-conjugacy classes of transitive

subgps of index d: H ⊂ G right-representations (Sd, .)← G

H ⊂ G �
action on the right classes

// φH : (SH\G, .)← G

FixG(1) φ : (Sd, .)← G�oo







Given a subgroup H, one says that the (Sd conjugacy class of the) group
morphism φH : G→ (Sd, .) is the monodromy representation of H.

Its kernel is equal to the intersection of the conjugates ofH inG: ∩g∈Gg−1Hg.
This is in particular the largest normal subgroup of G contained in H.

The image of G in (Sd, .) is thus isomorphic to the resulting quotient
group :

(3.1) G
/⋂
g∈G

g−1Hg.

It is called the monodromy group of H.

Proof The second arrow does induce a well de�ned map when quotienting
the source and the target by conjugacy [if two representations are conjugate
(by σ ∈ Sd), then the �xators FixG(1) are conjugate (by any element of G
sending 1 to σ(1))].

Let show that the �rst arrow also does.
(i) Two choices of numberings of the set G/H yields conjugated permuta-

tions.
(ii) Two conjugate subgroups H yield conjugate permutations.

Let us show the second point with the left-action convention φ : G→ SG/H ,
by commodity. Let n be an element of G, (gi)i=1...d a set of representatives
of G/H and (ngin

−1) the corresponding set of representatives of G/nHn−1.
Let σ be the permutation of {1..d} such that for all i, ngi ∈ gσ(i)H (so for all
i, gi ∈ ngσ−1(i)H). Then for all γ ∈ G, γngi ∈ gφ(γ)◦σ(i)H ∈ gσ−1◦φ(γ)◦σ(i)nH.

Next, the arrows are inverse to each other because (i) the kernel of the
right action H\G → G is H and (ii') (idem to (ii)) permutations with con-
jugate kernels are conjugate in Sd.

Finally for the kernel of G→ SG/H : it is equal to the intersection of the
�xators of the right classes Hgi: ∩di=1g

−1
i Hgi. It is immediate to show that

this subgroup is normal in G.
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Example 3.2 (π1 of P1 minus r points). Consider the group on r generators
with the following presentation:

(3.2) π1 = 〈δ1, . . . , δr, δ1 . . . δr = 1〉

Then the conjugacy classes of subgroups π1 ⊃ H of index d correspond to

{r-uples of permutations (σ1, . . . , σr) in (Sd, .) such that σ1. . . . .σr = 1}
/
∼

where ∼ means simultaneous conjugacy in Sd.
Attention : the data of a r-uple of permutations (the images) alone does

not determine the group morphism φH . It determines it modulo a choice of
ordered generators δi (the preimages).

The following lemma will be used for explicit computations:

Lemma 3.3 ([Dèb2, 7.4.2]). Let G act on the left on a �nite set X, φ :
G→ SX) the corresponding transitive left-representation. Let x ∈ X be any
element and Gx be its stabilizer. Then the representation φ is isomorphic to
the left representation G→ SG/Gx.

3.2 Case of congruence subgroups

A complete example

Example 3.4. Consider the degree 3 totally real �eld F = Q
(
cos(2π/7)

)
and

�x a generator α of F with minimal polynomial Pmin = X3 + X2 − 2X − 1
over Q. Fix the basis [R1, R2, R3] = [1, α, α2] of the ring of integers ZF .
Consider the prime ideal p7 ⊂ ZF of norm 7 above the totally rami�ed prime
(7) ⊂ Z. In the previous basis, it has the following two generators :

p7 = ZF
〈
[49, 0, 0], [25, 10, 1].

〉
Consider now the quaternion algebra B over F rami�ed exactly at two

real places (noted ι2 and ι3) and no �nite place. Fix a presentation of A :

A = F
〈

1, i, j, k, i2 = −2α2 + 2α + 1, j2 = α2 + α− 2, ij = k.
〉

Fix any Eichler order O(p7) of level p7 (F having narrow class number one,
they are all conjugate by Corollary III.2.5). For example the one with the
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following pseudobasis:

(ZF 〈R1〉, 1),

(ZF 〈7R1, 5R1 +R2〉, i),

(ZF 〈
1

2
R1〉, (α + 1) + (α2 + α)i+ j),

(ZF 〈
1

2
R1〉, (α2 + α) + (α− 1)i+ k)

Now consider the subgroup G = Γ0(p7) of PSL2(R) de�ned as in III.(-),
i.e. the image of the units of norm one of the order O(p7). It has the following
explicit presentation as a triangle group:

G =
〈
δa, δb, δc, δ

7
a = δ3

b = δ3
c = 1, δaδbδc = 1

〉
where the generators are expressed in the previous pseudobasis:

δa =[−2R2 −R3, 0,−
1

2
R1, R2 +

1

2
R3],

δb =[−R1 − 2R2 −R3, R1 − 2R2 −R3,
1

2
R2, R1 +

1

2
R2],

δc =[2R2 +R3, 0, 0,−R1 −
1

2
R2]

Let ιp7 : A ↪→ M2(Fp7) be an embedding of A into the matrix ring com-
pleted at p7 such thatO(p7) maps onto the integral matrices which are upper-
triangular modulo p7. There are several possible maps (compose at the source
with PSL2(ZF )), so we should have also made it explicit.

Let us consider the residue ring ZF/p
2
7, which is �nite local with maximal

ideal p7. The embedding ιp7 composed with the residue map πp27 modulo p2
7:

A ↪→ M2(ZF,p7)� M2(ZF/p
2
7),

induces a surjective morphism of G onto the subgroup Γ0(p7) ⊂ PSL2(ZF/p
2
7)

of matrices which are upper-triangular modulo p7. This morphism is deter-
mined by the respective images of the generators of G :

Ma =

(
[−3, 3, 0] [1, 0, 0]

[2,−1, 0] [−3,−3, 0]

)
, Mb =

(
[1,−1, 0] [−3, 2, 0]

[3, 2, 0] [1,−1, 0]

)
Mc =

(
[1,−3, 0] [0,−1, 0]

[1, 3, 0] [−2, 3, 0]

)
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De�neO(p2
7) ⊂ O(p7) as the canonical Eichler suborder of level p2

7 relative
to the same choice of the embedding ιp7 [namely: elements which map by ιp7
to integral matrices upper triangular modulo p7].

The previous data �nally allows to compute the monodromy representa-
tion relative to the subgroup

H =̂PO(p2
7)1 = Γ0(p2

7) ⊂ G = PO(p7)1 = Γ0(p7)

of the units of norm one (modulo −1). Indeed, it is equivalent to quotient ev-
erything by the normal subgroup Γ′(p2

7)/ PO1, and compute the monodromy

representation of the quotient subgroups Γ̃0(p2
7) ⊂ Γ̃0(p7) modulo Γ′(p2

7).
But, thanks to Proposition III.5.4, reduction modulo Γ′(p2

7) sends con-
gruence subgroups onto their counterparts in the �nite group PSL2(ZF/N)
(the groups studied in III.5.3). So it is equivalent to work with these latter
subgroups from now on.

We describe the left-representation φH : G→ (S7, ◦). By Lemmas 3.3 and
5.2, it su�ces to compute the left action of the matricesMa,Mb,Mc ∈ Γ0(p7)
on the subset (ii) of Prop-Def 5.1, equal to {(α, 1), α ∈ (ZF/p

2
7)\(ZF/p2

7)
.}/ ∼.

After arbitrarily numbering this subset, we obtain the corresponding triple
of permutations :

σ7,2 = [σa = (1, 6, 4, 2, 7, 5, 3), σb = (1, 6, 2)(4, 5, 7), σc = (1, 3, 4)(2, 7, 6)]

Which satisfy, as expected, σa ◦ σb ◦ σc = 1. Finally these permutations
generate the monodromy group of H in S7, which happens to be of order
3× 7.

Caution 3.5. : as warned in example 3.2, the previous triple σ7,2 alone does
not always determine the representation φH . It determines it up to the choice
of the generators of G that map to the triples. So, in the case that there
would exist two such choices leading to nonconjugate representations, the
map φH would not be determined by the sole triple.

Which is what happens here. Indeed, another run of the algorithm with
a di�erent presentation for G yields a second triple:

σ7,1 = [σa = (1, 7, 4, 5, 3, 6, 2), σb = (1, 5, 7)(3, 6, 4), σc = (1, 2, 3)(4, 5, 6)]

which is non-simultaneously conjugate to the �rst one (but generates a con-
jugate monodromy group, as expected).
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These are actually the only two possible triples3: an exhaustive search by
the algorithm BelyiInit in [Sij2] shows that these are the only ones with this
cycle lengths and monodromy group of order 21.

Summing-up: if one �xes arbitrary generators of G, then the monodromy
representation φH of the group H will be necessarily given by one of the two
triples σ7,1 and σ7,2.

Example 3.6. With the same quaternion algebra as above, consider the prime
ideal (2) = p2 ⊂ ZF of norm 8 above the inert prime 2. Then Γ0(p2) ∈
PSL2(R) is again a triangle group, of signature (7, 7, 2).

The computations take place in PSL2(R) with R the local ring ZF/p
2
2.

The output is the (isomorphism class of) the monodromy group of the sub-
group Γ0(p2

2) ⊂ Γ0(p2). It is the subgroup of order 23.7 in S8 generated by
anyone of these two triples:

σ2,1 = [(1, 5, 3, 7, 8, 2, 4), (1, 8, 3, 2, 4, 5, 6), (1, 2)(3, 4)(5, 6)(7, 8)]

σ2,2 = [(1, 3, 5, 2, 6, 7, 8), (1, 5, 2, 8, 6, 3, 4), (1, 2)(3, 4)(5, 6)(7, 8)]

And this time again they represent the two possible simultaneous conjugacy
class of triples generating this monodromy group. So, forgetting again the
generators of Γ0(p2) that map to these triples, one ends up with two possi-
bilities for the monodromy representation.

Example 3.7. With the same quaternion algebra as above, consider the prime
ideal p3 = (3) ⊂ ZF of norm 27 above the inert prime 3. Then Γ0(p3) ∈
PSL2(R) is a Fuchsian group of genus one on two generators: U1, U2 sat-
isfying U1U2U

−1
1 U−1

2 = 1 (It is the fundamental group of the pointed ellip-
tic curve X0(p3)). The same computations yield a monodromy group for
Γ0(p2

3) ⊂ Γ0(p3) of order 33.13.

Comparing the monodromy groups with PSL2(ZF/p
2ZF )

With the same notations and conventions as in sections III.1.2 and III.5,
let p be a prime of F and N an ideal of F . We would like to compare the
monodromy groups of the inclusions:

3Anticipating on the results of VI5.2, a monodromy computation shows that triples
σ7,1 and σ7,2 correspond to the inclusions of Γ0(p27) ⊂ Γ0(p7) and of its Atkin�Lehner

conjugate wp7
Γ0(p27)w−1p7

⊂ Γ0(p7) (see also VI.5.4). A direct computation with explicit
Atkin�Lehner conjugation of groups would be obviously more satisfactory.
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� Γ0(p2) ⊂ Γ0(p), with the group PSL2(ZF/p
2) = Γ0(1)/Γ′(p2);

� and of Γ(1) ⊂ Γ0(N), with the group PSL2(ZF/N) = Γ(1)/Γ′(N) (by
Proposition III.5.4).

The former is dealt with in this section (and we thank H. Randriam for
drawing our attention on this point), on the cases of Examples 3.4 and 3.7.
The latter will be dealt in general in Proposition 5.15.

Property 3.8. With the same quaternion algebra B as in Examples 3.4,
3.6 and 3.7 and for p equal to p7 or p3, the largest normal subgroup N of
G = Γ0(p) contained in H = Γ0(p2) is strictly bigger than Γ′(p2).

Thus the Galois closures of the covers (see Theorem 4.7) X0(p2)→ X0(p)
are strictly smaller than X ′(p2)→ X0(p).

Proof By the equation (3.1), the quotient G/N has cardinality equal to the
monodromy group of the inclusion H ⊂ G. Recall that these monodromy
groups for p7, P2 and p3 have cardinalities:

3.7, 23.7 and 33.13 ,

as computed in Examples 3.4 and 3.7. On the other hand:

[G : Γ′(p2)] = [Γ0(p)/Γ′(p2)] =
[Γ(1) : Γ′(p2)]

[Γ(1) : Γ0(p)]

where the numerator equals |PSL2(ZF/p
2)| by Proposition III.5.4 and the

denominator is given by the (5.13) of Corollary III.5.6.
Using the formula for |PSL2(ZF/p

2)| of Lemma III.5.3, one gets:

[
G : Γ(p2)

]
= if 2 - q:

q4(q2 − 1)(q2 − q)
2× (q2 − q)

1

q + 1
=

1

2
q4(q − 1)(3.3)

else:
q4

q × (1 + q)

(q2 − 1)(q2 − q)
q2 − q

= q3(q − 1)(3.4)

Which gives for p7, p2 and p3:

3.74, 29.7 and 312.13

which are all strictly bigger than the orders of the monodromy groups recalled
above.
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4 Arithmetic covers with no topological auto-

morphisms

4.1 A �eld-theoretic criterion of descent over the �eld
of moduli

Lemma 4.1. (Partial functoriality of the monodromy representation (1)).
Let G be a group, and N,H ⊂ G two subgroups. Let φH be the transitive
(left) monodromy representation of the subgroup H ⊂ G. Assume that the
restriction φH |N : N → Sd is transitive. Then

(i) φH |N is equal to the representation corresponding to N ∩H ⊂ N ;

(ii)

∣∣∣∣GH
∣∣∣∣ =

∣∣∣∣ N

N ∩H

∣∣∣∣
Proof Note N/H the left-classes in G/H that have a representative in N . It
is stable under the left-action of N . Consider the injection of sets: N/H ⊂
G/H. Then the assumption that the left-action of N is transitive implies
that it is a bijection. In particular there exists a set of representatives ni of
the left classes G/H that all belong to N , thus the �rst statement.

Next, the set morphism N → G/H induced by the inclusion being surjec-
tive, factorizing on the left by the equivalence modulo H yields the bijection:

N

N ∩H
→ G

H
.

hence the second statement.

Lemma 4.2. (Partial functoriality of the monodromy representation (2))
Let ψ be an automorphism of G and G ⊃ H be a subgroup of G of index
d. Then if φ : G → SG/H is in the conjugacy class of the (left) monodromy
representation of H ⊂ G, then the conjugacy class of the representation
φ′ : G→ SG/ψ(H), is equal to that of φ ◦ ψ−1.

Proof Let {gi}i=1...d be an ordered set of representatives of the right classes
G/H, and choose accordingly the set {ψ(gi)}i=1...d of representatives ofG/ψ(H).
Let γ be an element of G. Then by de�nition of φ′:

γ.ψ(gi)ψ(H) ∈ ψ(gφ′(γ)(i))ψ(H)
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Composing by ψ−1 gives:

ψ−1(γ).giH ∈ gφ′(γ)(i)H

So by de�nition of φ : φ(ψ−1(γ))(i) = φ′(γ)(i).

This enables to restate the �eld of de�nition condition using representa-
tions:

Proposition 4.3 ([Dèb2, Prop 4.1.2]). Let k be a �eld, k′ a Galois extension
with group Γ = Gal(k′/k) and F/k(T ) a �nite Galois extension containing
k′(T ), with groups G = Gal(F/k(T )) and N = Gal(F/k′(T )). Suppose that
the sequence (Seq/Split) has a splitting s (for example under the assumptions
of Proposition 2.6):

1 // N // G π // Γ

s
yy

// 1

Consider E/k′(T ) a mere extension with �xed �eld H ⊂ N of index d and
φ : G→ SN/H the corresponding transitive (left) monodromy representation.
Then the data of E0/k(T ) a regular k(T )-model of E/k′(T ), is equivalent to
the data of a group morphism ϕ : Γ → Sd such that for all x ∈ N , and all
τ ∈ Γ,

φ
(
s(τ)xs(τ)−1

)
= ϕ(τ)φ(x)ϕ(τ)−1.

Proof By the splitting, G is isomorphic to the semi-direct product N/Γ.
Thus, morphisms G → Sd correspond to pairs of group morphisms {(φ :
N → Sd, ϕ : Γ→ Sd)} that are compatible to the semi-direct product.

Finally, φ being transitive, any prolongation (φ, ϕ) : G→ Sd is transitive.
So by the correspondence of Proposition 3.1, arises from a subgroup H0 ∈ G
of index d. Finally, the restriction φ of (φ, ϕ) to N being transitive, (i) of
the Lemma 4.1 implies that H0 ∩N = H.

And likewise to restate the �eld of moduli condition:

Lemma 4.4 ([Dèb2] Prop 4.4.3). Same assumptions as in De�nition 2.7
[let k be a �eld of characteristic zero, k′/k a �nite Galois extension of group

Γ, E/k′(T ) a �nite (G-) extension of degree d. Let F/k(T ) be a Galois closure

containing E. Let again G and N be the Galois group of F/k(T ) and F/k′(T ), and

for each τ ∈ Γ, note s(τ) = τ̃ any prolongation of τ to G �xing k(T ).]
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Let now H ⊂ N be the subgroup �xing E and φ the corresponding repre-
sentation. Then an element τ ∈ Γ �xes the �eld of moduli of E if and only
if there exists ϕτ ∈ Sd such that for all x ∈ G,

φ
(
s(τ)−1xs(τ)

)
= ϕτφ(x)ϕ−1

τ .

Proof N being normal in G, the conjugation by s(τ) is an (outer) automor-
phism of N . So by Lemma 4.2, the monodromy representation associated to
s(τ)Hs(τ)−1 is equal to x→ φ

(
s(τ)−1xs(τ)

)
.

Next, noting χτ ∈ N the conjugating element as in 2.7, the point (ii)
in Prop-Def 3.1 shows that the representation associated to the conjugate
subgroup χτHχ−1

τ is equal to a conjugate permutation, say x→ ϕ−1
τ xϕτ

)
.

Let φ(N) be the monodromy group of H ⊂ N . Notice that for all τ1, τ2 ∈
Γ, the quantity

ϕ−1
τ1τ2

ϕτ1ϕτ2

Belongs to the centralizer C = CenSd(φ(N)). Thus if it is trivial, the ϕτ
de�ne a group morphism Γ→ Sd and the proposition 4.3 applies:

Corollary 4.5 ([Dèb2, Prop 4.4.4]). Under the same assumptions as in 4.4,
suppose that the �eld of moduli of E is k. Then if CenSd(φ(N)) = {1}, E
comes from a regular extension E0/k(T ).

Remarks 4.6. This can be seen as an analog of Weil's descent theorem for
quasi-projective varieties with no automorphisms [MilAG, Th. 16.32]. Indeed
by Theorem 4.7 (iii)&(v) and Theorem 4.9, the centralizer CenSd(φ(N)) is
antiisomorphic to the automorphism group of the corresponding topological
cover. But a direct proof showing that it is the automorphism group of the
�eld extension would be way more satisfactory!

Other descent criteria are derived in [Dèb2, Prop 4.4.4] with the same
approach of obtaining such a group morphism Γ → G. With more work,
[DèbDo] express the obstruction to its existence, as a cohomology class with
coe�cients in the center of the monodromy group Z(φ(N)). Thus they obtain
the striking corollary 3.2, that descent is possible as soon as this center is
trivial.

4.2 Characterization and descent from topological mon-
odromy

The Galois theory of connected covers of topological spaces basically states:
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- a dictionary between subgroups of the π1 of the base, and connected
covers

- such that the action of the π1 on the �ber �by prolongation of paths�
corresponds to the monodromy representation of the subgroup

- and such that the automorphisms of the cover are the permutations of
the �ber that commute with the action of the π1.

It can be summarized as follows:

Theorem 4.7. Let t = {t1, . . . , tr} a set of points in P1
C and f : X → P1

C\t
a topological (non rami�ed) connected covering of degree d. Fix a point t0 ∈
P1

C\t. Then the lifting property of paths de�nes a right-action of π1(P1
C\t, t0)

on the preimage f−1(z0). The representation ρ of π1(P1
C\t, t0) in Sd induced

is de�ned up to conjugation in Sd. It is called the topological monodromy
representation.

(i) [Don, �4 prop. 7 and �4.2.2] Let x0 be a point of X. Then the conjugacy
class of ρ coincides with the class of the right-monodromy representation
φ of the subgroup f∗(π1(X, x0)) ⊂ π1(P1

C\t, t0).

(ii) [Don, idem] Note X̃ the universal covering space of X. Then modulo
isomorphisms of covers and conjugacy in Sd, one has the following
bijection of isomorphism classes:

Isom. classes of top. connected Conjug. classes of transit. right-

covers of degree d f : X → P1
C\t repres. (Sd, .)← π1(P1

C\t, t0)

X = X̃/H H ⊂ π1(P1
C\t, t0).�oo







(iii) [Dèb2, th 7.6.1] The group of automorphisms Aut(f) acts on the left
on the preimage f−1(z0). This de�nes an injection in (Sd, ◦)/ ∼,
whose image is equal to the centralizer in Sd of the monodromy group
φ(π1(P1

C\t, t0)) (acting on the right on the preimage). These two ac-
tions thus de�ne the antiisomorphism:

(Sd, ◦) ⊃ Aut(f)
anti ∼−−−→ CenSd

(
φ
(
π1(P1

C\t, t0)
))
⊂ (Sd, .)

(iv) [Dèb2, th 7.7.1] Suppose now that the covering f is Galois. Then the left
action of Aut(f) is transitive. Moreover by a group-theoretic lemma,
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the previous anti-isomorphism induces an anti-isomorphism with the
monodromy group itself :

Aut(f)
∼−→ φ

(
π1(P1

C\t, t0)
) ∼= π1(P1

C\t, t0)

f∗(π1(X, x0))

(v) In particular, (iii), (iv) and equation (3.1) of 3.1 show that the mon-
odromy group of a cover is equal to the automorphism group of the
Galois closure.

Thanks to the dictionnary above, it is possible to prove that in the case of
Riemann surfaces, then �up to isomorphism� the topological cover f comes
from a compact analytic rami�ed cover de�ned above the missing points t.
This is Riemann's (analytic) existence theorem:

Theorem 4.8 ([Don, �4.2.2] or [Dèb2, �8.2.1]). Let X be a compact connected
Riemann surface, F : X → P1

C a proper analytic map of degree d which is
rami�ed above t ⊂ P1

C and let X = X − f−1(t) be the (punctured) Riemann
surface. Then, the restriction of F to the topological (unrami�ed) covering
f : X → P1

C\t, ([Don, �4.1] or [Dèb2, th. 8.3.3]) de�nes the �rst arrow of
the following bijection of isomorphism classes:

Isom. classes of proper analytic

maps F : X → P1
C Isom. classes of top. connected

of degree d with X compact. covers of degree d f : X → P1
C\t

F � restriction // f

[�ll above the branch points] f�oo







Finally, the following theorem states (i) that a compact analytic cover is
birational to the analyti�cation �call this functor

(
.
)an

� of an algebraic cover
f : X → P1

C (def. 2.1). (ii) and that, up to �xing a �nite Galois closure, the
two monodromy representations correspond (the one from Galois theory of
�elds, and the one from topological coverings (ρ, as in th. 4.4)).

Theorem 4.9. Let P (T, Y ) an irreducible polynomial in C[T, Y ] such that
degY (P ) > 0. Consider the function �eld E = C[T, Y ]/P (T, Y ). Then the
projection to T induces an algebraic cover of degree d (up to birational map):
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F : X → P1
C, where X is an integral smooth projective curve with function

�eld E [Dèb2, �8.3.5 & th. 8.3.12]. Note this F = Cover(E).
For the reciprocal correspondence, let X be a compact Riemann surface

and f : X → P1
C be an analytic cover. Then the image of the induced

morphism between function �elds:

f ∗M(P1
C) ↪→M(X )

is equal to the sub�eld C(f) [Dèb2, th. 8.3.6]. Furthermore the �eld extension
[M(X ) : C(f)] is of degree d [Dèb2, th. 8.3.11].

This induces the bijection of classes:

Isom. classes of separable Birat. classes of proper analytic

�eld extensions of maps F : X → P1
C

degree d [E : C(T )] of degree d with Xcompact.

E �

(
.
)
an

◦Cover
// F an : X an → P1

C

[M(X ) : C(f)] f : X → P1
C

�oo







Moreover [Dèb2, 8.3.12 c)] the extension [E : C(T )] = [M(X ) : C(f)]
is Galois if and only if the corresponding topological cover f : X → P1

C

(restriction of F to the smooth locus) is Galois. In this case the pullback of

maps:

{
Aut(f) −→ Gal([M(X ) : C(f)])

χ→ χ∗
de�nes an anti-isomorphism.

The next theorem shows that descent of covers from C to Q is unique:

Theorem 4.10 ([Dèb1, �12]). Let t ⊂ P1
C be a Q-rational set of points.

Then any algebraic unrami�ed (étale) cover W → P1
C\t descends to cover of

P1
Q
\t, which is furthermore unique up to Q-isomorphisms.

Remark 4.11. In the demonstration proposed in [Se2, th 6.3.3], the statement:

(4.1) π1(X × Y ) = π1(X)× π1(Y )

holds in the case where at least one of the two factors X or Y is compact
([Sza, cor 5.6.6]).
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But the situation here is as follows: Q ⊂ K ⊂ C is an algebraically closed
�eld, K ′ = K(t) a transcendental extension of degree 1, and one of the two
factors above : X = P1

K\t is not compact. So it is needed that Y be compact.
Although the author claims that it is exactly the case: Y = C = P1

K , the
problem is that to prove this, the author needs that any unrami�ed cover
W → X ×K K(t) does extend to W → X ×K P1

K (although it is a priori
only de�ned on the generic �ber). Which is not obvious, at least in higher
dimension : for example the argument of [Sza, cor 5.6.6] would only show
that the morphism extends to an a�ne subset Y of P1

K .
But there exists a way around, using Bertini's connectedness theorem,

which is specially devised to avoid the formula (4.1): see [Sza, Remark 5.7.8]
and the proof of 5.7.6 above. This approach generalizes [Dèb1, �12] for the
case of covers with arbitrary smooth connected projective base.

This �nally allows to state a criterion that guarantees the unicity �and
sometimes the existence� of the descent an algebraic cover, only from its
topological monodromy representation:

Theorem 4.12. Let Q ⊃ k′ ⊃ k ⊃ Q be a Galois extension of number �elds
with group Γ = Gal(k′/k). Consider an algebraic cover f : X → P1

k′ of degree
d rami�ed at most over a �nite set t ⊂ P1

k̄
, and let ρ : π1(P1

C\t, t0)→ (Sd, .)
be its topological monodromy representation.

(i) Suppose that the monodromy group ρ
(
π1(P1

C\t, t0)
)
has trivial central-

izer in Sd, then f has at most one model4 over k: f0 : X0 → P1
k.

(ii) Suppose furthermore that the �eld of moduli of f is k. Then f does
have a model over k.

Proof Let F/k(X) be a Galois extention that contains the extension E/k′(X)
corresponding to f . Let again G = Gal(F/k(T )) and N = Gal(F/k′(T )) be
the corresponding Galois groups, H ⊂ N the subgroup corresponding to E
and φ : N → Sd its monodromy representation. By the last statement of The-
orem 4.9, and by (i), (iii) and (v) of Theorem 4.7, the centralizer CenSdφ(N)
is equal to CenSd

(
ρ(π1(P1

C\t, t0))
)
. Which is trivial by assumption. The

second statement now follows from Corollary 4.5.

4It can be seen as a GAGA instance of the general principle stated in [Se1, III.1)].
Indeed by Theorem 4.7, CenSd

(φ(π1(P1
C\t, t0))) ⊂ (Sd, .)) is anti-isomorphic to the au-

tomorphism group of the cover. Once again, a purely �eld-theoretic proof of this, that
wouldn't involve the topological monodromy, would be very welcome!
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For the unicity, suppose now that there exists two models E0/k(X) and
E ′0/k(X) of E over k. Then by the correspondence of Proposition 4.3, they
would respectively be determined by group morphisms ϕ, ϕ′ : Γ → Sd such
that for s a �xed section of the exact sequence and for all τ in Γ,

φ
(
s(τ)xs(τ)−1

)
= ϕ(τ)φ(x)ϕ(τ)−1,

(and similarly for ϕ′). But these two relations then imply that ϕ(τ)ϕ′(τ)−1

is in CenSdφ(N) = {1}. So ϕ and ϕ′ coincide, and so do E0 and E ′0.

5 Descent of the canonical coversX0(N )→ X(1)

The conventions are those laid in �III.1.2, and in �III.5.1 for the congruence
subgroups. In particular O is a maximal order. The additional assumption
made at the beginning of Chapter IV also holds (unicity of the split real
place).

This last assumption implies that the �eld F is totally real (otherwise the
complex place would be split).

Let N be a ideal of F and ∞ the in�nite places of F . Then let F (N.∞)
be the abelian extension associated to the ray class group of modulus N.∞.
In particular when N = 1, one recovers the narrow class �eld F∞ = F (∞) of
De�nition III.1.1.

Set X0(N), X0(N)+, X(N), X(N)+ and X ′(N) for the quotients of the
upper half plane H by Γ0(N), Γ+

0 (N) etc.

5.1 Canonical models and their reduction

Shimura provides canonical models for the analytic quotients of the upper-
half plane by principal congruence subgroups :

Theorem 5.1. Consider the compact Riemann surface Γ+(N)\H. Then
there exists:

- a smooth projective curve X(N)+ over the class �eld F (N∞) ⊂ C;
- and a holomorphic function ϕ : H → X(N)+ ×F (N∞) C;

which is the unique morphism, up to a compatible F (N∞)-isomorphism of
curves, that satis�es the following:
(i) [Sh1, Th. 3.2 & 3.3] ϕ induces a biholomorphism

Γ(N)\H → X+(N)×F (N∞) C ,
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(ii) [Sh1, 3.2.3 (canonical model condition)] Let O a maximal order that
contains the Eichler order of level N involved. Then for all purely
quadratic imaginary extension L of F such that ZL ⊂ O , let z ∈
H be the �xed point of L. Then z comes from an algebraic point of
X(N)+, whose �eld of coordinates κ(z) generates the class �eld of L:
L.F (N∞)κ(z) = L(N∞). z is called a CM-point for L.

Similarly, canonical models X+
0 (N) for the Riemann surfaces Γ+

0 (N)\H
exist and are all de�ned over the narrow class �eld5 F∞ = F (∞).

They are furthermore functorial with respect to the inclusion of congru-
ence subgroups6.

Theorem 5.2 ([Sh1, Th. 3.17 simpli�ed]). In addition to the assumptions of
the section, suppose that N = 1 and that F is of narrow class number one.
Let z be a CM point for L as above , then the action of Gal(C/F ) on X+(1)
sends CM-points for L to CM points7for L.

Example 5.3 (Triangle groups from maximal orders [Sh1, 3.18.3]). Suppose
again that F is of narrow class number one. Suppose that the Fuchsian
group Γ+(1) ⊂ PSL2(R) is a triangle group with distinct indices a, b, c. Then
Shimura's canonical model over F for the Riemann surface Γ+(1)\H = P1

C

has three rational points. And in particular is equal8 to P1
F .

Proof: consider the elliptic point za of order a. Then it comes from an
algebraic CM-point for the (strictly) quadratic cyclotomic extension F (ζa).
So by Theorem 5.2, this CM-point is mapped under Gal(C/F ) to a CM-
point for F (ζa). But the orders of the three elliptic points being distinct, it
is mapped to itself.

5See for example [Duc, formula IV.2] for a treatment in the modern approach.
6I.e.: quotienting the upper-half plane by a larger congruence subgroup yields a func-

torial map X+
0 (N) → X+

0 (N′) between the two models: see [Del, Corollary 5.4], de�ned
over F∞ (by [MilSV, Theorem 13.6], the �eld of de�nition of the connected components
X+

0 (N) being F∞ by [Sij1, (3.6)]). So we are surprised not to be able to descend the map
f2 in VI.5.1.

7Indeed, the condition on τ in loc. cit. is empty because F (∞.N) = F . The auto-
morphisms being taken over F (and not only L), this statement is in a sense stronger
than the prediction of the [Sh1, Th. 3.5] in this particular case (see the formula (4) in the
introduction of loc. cit.). But we don't know if there also exists a reciprocity formula over
F (and not only L).

8A similar argument, using the automorphisms of P1
C and Theorem 5.6, enables [Hal,

Proposition 1] to prove that P1
F is also a canonical model in the cases where Γ+

0 (1) has
(i) exactly three elliptic points of the same order, along with (ii) a fourth elliptic point of
distinct order.
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Theorem 5.4 (Reduction with many points [Duc, Th IV.4.5]). Let p be a
prime of ZF of norm q = |p| which: (i) does not divides the �nite discrimi-
nant D of B nor the level N (ii) and has trivial class in Cl∞(F ). Consider
P a prime above p in the narrow class �eld F∞.

Then the canonical model X+
0 (N) (over F∞) has good reduction modulo

P over Fq.

Under these conditions, allow the discriminant D and level N to vary
such that the genera sorted in increasing order: gi = gN,D = g(X+

0 (N)) tend
to in�nity.Then the number of Fq2-points is asymptotically optimal:

|X+
0 (Ni)(Fq2)|

gi
−−−→
i→∞

q − 1

Let T = T (p) be the Hecke operator [Duc, p63] acting on the Jacobian of
the Riemann surface Jac(X+

0 (N)). The dual of this action on the classes of
divisors, is an action on the space of holomorphic di�erentials , which identify
themselves to the quaternionic modular cuspforms for the group Γ+

0 (N).

Theorem 5.5 (Point counting). Under the conditions of Theorem 5.4, let
T = T (p) be the Hecke operator acting on the Jacobian of the Riemann
surface Jac(X+

0 (N)). Then the number of points of the curve reduced at p is:∣∣X+
0 (N)(Fq)

∣∣ = q + 1− Tr(T )(5.1) ∣∣X+
0 (N)(Fq2)

∣∣ = q2 + 1− Tr(T 2) + 2qg(5.2)

Proof Apply [Duc, Corollary 2.7] and, to obtain the second equation in this
form, replace T (p2) using [Duc, Corollary 2.3] with r = 1.

5.2 Field of moduli: the Theorem of Doi�Naganuma

Doi and Naganuma show that the quaternion algebra with conjugate dis-
criminant leads to the conjugate canonical model. Which implies a �eld of
moduli property under Galois-invariant conditions.

One considers once and for all a sub�eld F ⊂ C. Let us call ι = ιv this
set-theoretic inclusion, corresponding to the place v. By the asumption laid
in the �rst paragraph of Chapter IV, v is the unique real place of F that
splits the quaternion algebra B.
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Then, let σ be an automorphism of C. The set-theoretic image σF =
σ(F ) is the �eld. Denote ισF the set-theoretic inclusion σF ⊂ C, which is
also a �eld inclusion. It thus corresponds to a place vσF of σF . 9

Theorem 5.6 ([DN, Theorem]). Let B′ be the quaternion algebra over σF
which is rami�ed exactly at:

- the in�nite place ισF ;
- and the conjugate σ(D) of the �nite places D where B is rami�ed.

Consider O(N) an Eichler order of level N in B, and X+(N)FN∞ the canon-
ical model for the corresponding group of totally positive units Γ+(N) (cf.
III.5.1 and Theorem V.5.1)

Then the conjugate curve σ
X+(N) is a canonical model, over the class

�eld σFσ(N)∞, for the subgroup of totally positive units of a certain Eichler
order O′(σ(N)) of level σ(N) in B′.

The same result holds when considering the canonical models X0(N)+

over F∞, and their conjugates σ
X0(N)+ over σF∞.

Similarly, there exists isomorphisms between the curves X+
0 (N) and their

conjugates: see e.g. [Moo, 2.14 Theorem] (or [MilClo, Theorem 5.5]) for the
modern approach.

Remark 5.7. It seems to us that an important point must be clari�ed in the
litterature.

Suppose that σF = F , so that ι = ισF .
Suppose in addition that σ(D) = D.
Then in Theorem 5.6 one has B′ = B.

But attention : B′ is not the conjugate algebra σB = B ⊗F,σ F . Because
σB is rami�ed at the in�nite place ι ◦ σ−1, which is di�erent from ι = ισF .

Assume e.g. that there is only one conjugacy class of Eichler orders of
a �xed level. Then the canonical model for the congruence group Γ(σ(N))+

of the conjugate algebra σB is trivially equal to X(N)+, and not to σ
X(N)+

("sens évident" in [Vig2, Theorem 3])

Example 5.8. Let us describe the curves referenced as e5d5D5i/ii in [Sij3,
Tables A.1/2/3] (they will also serve as Counterexamples 5.18). Let F be
the quadratic �eld with polynomial t2 − t− 1 and non-trivial automorphism
σ. Let p5 the prime ideal above the rami�ed prime 5, and p11 and σ(p11) the
two primes above the split (11). Fix a real place ι of F .

9so that if σF = F , then vσF = v
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Let B be the quaternion algebra with �nite discriminant p5 and split
exactly at ι.

Consider the two congruence groups Γ0(p11) and Γ0(σ(p11)). This has a
meaning since B has a unique conjugacy class of Eichler orders of given level,
because the narrow class number of F equals one.

Then the canonical models of these congruence groups: X0(p11) =e5d5D5i
and X0(σ(p11)) =e5d5D5ii, have conjugate Jacobians over F : see Table A.3
of loc. cit.)

How can one explain this ? We are in the same situation than in the
previous remark: the discriminant being Galois-invariant, the algebra B′ of
Theorem IV.4.5 restated above is equal to B. Thus by Theorem 5.6, the
conjugate curve σX0(p11) is equal to X0(σ(p11)).

Example 5.9. Let us recompute Example 3 page 21 of Voight�Willis 2013.
There is a slight typo in the reference: with minimal polynomial a2 + a− 1,
then the value of a should be the opposite of what is stated in the �rst
paragraph of Example 3 in the reference. Let us detail our input and results
below:

The totally real �eld is F 〈a〉, of degree 2 over Q and with minimal poly-
nomial a2 + a− 1.

We generate an algebra B rami�ed at: the prime p = (5a + 2) with
N(p) = 31 , and the place which sends a→ A = −1.61... (and not −0.61... )

We generate a CM point �xed by an embedding of the CM extension of
polynomial y2 + y + 2 , as the origin of the power series expansions
→We obtain the same j-invariant as in the paper, equal to −18733.423...

Which is recognized as the embedding of

−(11889611722383394a+ 8629385062119691)/318

by the split real place.
Then: we generate the conjugate quaternion algebra Bσ as in Remark

5.7, i.e. where the rami�ed places are the conjugates of both the �nite and
in�nite rami�ed places of B.
→We get the same j-invariant ”jσ” = j = −18733.423.., as predicted by

the trivial statement of Remark 5.7.

Now: we generate the "Doi-Naganuma" quaternion algebra B′ as in The-
orem 5.6. I.e. B′ is rami�ed at the conjugate of p , but at the same in�nite
place as B.
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→ We �nd the conjugate j-invariant : j′ = 12438.17832..., equal to the
embedding of −(11889611722383394a+ 8629385062119691)/318 by the ram-
i�ed real place. So it is indeed the conjugate of j, as predicted by Theorem
5.6.

To be sure, we also check that the conjugate algebra Bσ ′ also leads to the
same j-invariant: jσ ′ = j′.

Corollary 5.10 ([DN, Corollary, slightly relaxed]). Suppose furthermore
that:
(i) F is Galois over Q;
(ii) B has a unique conjugacy class of maximal orders;
(iii) the discriminant D is Gal(F/Q)-invariant;
(iv) the level N is Gal(F/Q)-invariant.
Then Q is the �eld of moduli (as a mere curve) of the canonical model X+(N)
of Γ+(N)\H.

5.3 Field of moduli of canonical covers

We would like to show more in the case of triangle groups:

Theorem 5.11. In addition to the assumptions of Corollary 5.10, suppose
furthermore that
(ii') (⇒ ii) F is of narrow class number one. [Thus: F (∞) = F , and

Γ+(N) = Γ(N) and Γ+
0 (N) = Γ0(N) by III.3.2];

(v) the group Γ(1) =̂ ι(O1) ⊂ PSL2(R) is a triangle group with elliptic
points of distinct orders.

Then Q is the �eld of moduli of the canonical cover X(N) → X(1). The
same result holds for the canonical cover X0(N)→ X(1).

Proof As in Theorem 5.1, let ϕ, ϕN, ϕσ and ϕσ,N the biholomorphisms
de�ning the canonical models of X(1) = P1

F ,
σX(1) = P1

F , X(N) and σX(N).
By the assumption (ii') and the example 5.3, the three elliptic-CM points on
both the models P1

F are F -rational. So composing by a F -isomorphism, one
can choose them to be at 0, 1,∞ with the same orders on both P1

F .
As in 5.6, let O′ be the maximal order of B′ = B that gives rize to

σX(N). By assumption it is conjugate in B to O : let α be the conjugating
element. Then the left multiplication by α acting on H, induces an isomor-
phism α. from the complex quotient Γ′(N)\H = α−1Γ(N)α\H to Γ(N)\H
(and similarly for Γ(1)).
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We follow the argument of [Sh1, 3.14.3]: consider the biholomorphism
φN ◦α. It realises X(N) as a canonical model for the conjugate Eichler order
α−1O(N)α. Thus by unicity of the canonical model (Theorem 5.1), there
exists a compatible F (N)-isomorphism α̃. between σX(N) and X(N) (and
similarly a compatible F -isomorphism α̃. for Γ(1)).

But the image by α. of the elliptic points on α−1Γ(1)α\H are the elliptic
points in the same order for Γ(1)\H. So the induced morphism α̃. sends the
points 0, 1,∞ of P1

F to the points 0, 1,∞ of P1
F , thus is the identity.

So that the right-face of the commutative cube (�):

(�) Γ(1)\H ϕ // P1
F

Γ(N)\H ϕN //

π

66

X(N)

π̃

;;

α−1Γ(1)α\H

α.

OO

ϕσ // P1
F

α̃.

OO

α−1Γ(N)α\H

α.

OO

π
66

ϕN,σ // σX(N)

α̃.

OO

π̃

;;

is in fact a F (N)-isomorphism of covers of P1
F .

5.4 Field of de�nition

Descent and topological characterisation

Under the assumptions of Theorem 5.11, the cover X(N)→ X(1) being also
Galois, the Proposition A.1.6 implies that the cover is de�ned over Q. We
would like to draw the same conclusion for the nonGalois covers X0(N) →
X(1):

Proposition 5.12. Let B be a quaternion algebra over a number �eld F
which has at least one split in�nite place. Let N be an ideal of ZF the ring of
integers of F . Fix a maximal order O along with nested congruence subgroups
of units of norm one: G = Γ(1), H = Γ0(N).

Then, [excepted in the case {F = Q and 2|N}] the monodromy group of
the subgroup H ⊂ G has a trivial centraliser in SG/H .
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Thus the topological cover X0(N) → X(1) has a trivial automorphisms
group.

Proof By [Dèb2, Lemme 7.6.5], it su�ces to show that NorGH/H = {1}.
Recall that the kernel Γ′(N) of the natural map from G to PSL2(N), is

also included (normal) in H. So it is su�cient to prove the proposition after
quotienting everything by Γ′(N) (exercice). Note G̃ and H̃ the quotients (i.e.
the images in PSL2(ZF/N)).

From the Chinese remainder (Sun Tsu) decomposition of Lemma III.5.3
(iv), it is also su�cient to prove the proposition it in each component.
Namely for each prime factor pe||N, one can consider from now on the

group G = PSL2(ZF/p
e) and its subgroup H = Γ̃0(pe). And what is to

be shown, is that the normalizer of the subgroup of upper-triangular matri-

ces: Γ̃0(pe), in PSL2(ZF/p
e), is reduced to Γ̃0(pe) itself. Consider an element(

a b

c d

)
∈ PSL2(ZF/p

e) in the normalizer. Then for every

(
u v

0 u−1

)
in

Γ̃0(pe), the conjugate:

1

ad− bc

(
d −b
−c a

)(
u v

0 u−1

)(
a b

c d

)
is upper-triangular.

But the bottom-left entry is proportional to ac(−u+ 1/u)− vc2, which is
thus equal to zero.

Choose �rst u = v = 1. Then c2 = 0, so c ∈ p. Thus a is not in
p, otherwise the determinant ad − bc would not be invertible. Hence a is
invertible.

Choose next v = 0. Then simplifying by a, it remains c(−u + 1/u) = 0.
The following claim shows that there exists a u such that one can simplify
by −u+ 1/u, and thus conclude that c = 0.

Claim: there exists an invertible u such that −u + 1/u /∈ p (so is again
invertible). Indeed �x p an element of p. Then the polynomial X(−X+1)−p
in the residue �eld ZF/p has at most two roots and a nonzero derivative. So
by Hensel liftings it has still at most two roots in ZF/p

e. So, provided that
the cardinality |ZF/pe| is greater than 2|p/pe|, then such a u exists. But by
the formulas of Lemma 5.3 (i), the di�erence between the two cardinalities
is equal to qe − 2.qe−1, where q = |ZF/p|. By assumption q > 2, so this
di�erence is strictly positive, which proves the claim.
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Remark 5.13. As a sanity check, one can verify this fact numerically for the
cases that are of interest for this work. Namely for B the quaternion algebra
of Examples 3.4, 3.6 and 3.7, let p be one of the primes p2, p7 and p3 of
ZF , compute the monodromy group of the inclusions Γ0(p2) ⊂ Γ(1) with the
same algorithm as in Example 3.4. Then trust Magma for the fact that it
has trivial centralizer in SG/H .

Theorem 5.14. Under the additional assumptions made in theorem 5.11:
(i) F is Galois over Q;

(ii') F is of strict class number one (so F (∞) = F );
(ii) the discriminant Df is Gal(F/Q)-invariant
(iii) the level N is Gal(F/Q)-invariant.
(iv) the group Γ(1) =̂ ι(O+) ⊂ PSL2(R) is a triangle group with elliptic

points of distincts orders.
Then the canonical cover f : X0(N)→ X(1) descends to Q.

This descent is furthermore characterised as being the unique cover over
Q (and actually over any algebraic extension of Q) that has the monodromy
representation of the topological cover X0(N)→ X(1).

Proof From Proposition 5.12 and the fact that the �eld of moduli of the
canonical cover f is equal to Q (by Theorem 5.11), the theorem 4.12 (ii)
applied to k′ = F and k = Q implies that the canonical cover f descends to
Q.

Theorem 4.12 (i) applied with k′ = Q and k = Q then implies the unicity
statement.

An alternative proof for descent only

Proposition 5.15. Let N be an ideal of ZF . Fix a maximal order O and
nested congruence groups of units of norm one: G = Γ(1), H = Γ0(N) and
Γ′(N)/H.

Then the greatest normal subgroup of G contained in H

(5.3) N =
⋂
g∈G

gHg−1,

is equal to Γ′(N).
Thus the Galois closure of the corresponding topological cover X0(N) →

X(1) is equal to X ′(N)→ X(1), with automorphism group equal to PSL2(N).
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Proof One can again quotient everything by the normal subgroup Γ′(N).
Again from the Chinese remainder (Sun Tsu) decomposition of Lemma

III.5.3 (iv), it is also su�cient to suppose from now on that G = PSL2(ZF/p
e)

and H = Γ0(pe)/Γ′(pe) (for pe||N). And thus to show that the largest normal
subgroup N of G included in H is {1}.

Firstly, conjugating H by g =

(
0 1

1 0

)
shows that

N ⊂
{( a 0

0 a−1

)}
.

Finally let n ∈ N be such a diagonal matrix. Then the equation (5.3)
shows that it remains diagonal after any base change of the free module(
ZF/p

e
)2

[This fact was pointed to us by B. Meyer]. So if (e1, e2) is the

canonical basis, considering the base change by

(
1 0

1 1

)
, there exists a

scalar λ ∈ ZF/p
e such that the basis vector e1 + e2 is taken to λ(e1 + e2) =

ae1 + a−1e2. Thus a−1 = λ = a.
For the last statement, the (hard) Proposition III.5.4 implies that the

inclusion Γ(1)/Γ′(N) ⊂ PSL2(N) is an equality.

Let us derive an alternative proof of the existence statement of Theorem
5.14. By Proposition 5.15, the monodromy group of the cover f : X0(N)→
X(1) is equal to PSL2(N), which is center-free by construction. So by the
(hard) [DèbDo, corollary 3.2] (see remarks 4.6), Q being the �eld of moduli
of the canonical cover f , it descends to Q.

Remark 5.16. One can check Proposition 5.15 numerically one some cases.
Let B be the quaternion algebra of Examples 3.4, 3.6 and 3.7. Let p be one
of the primes p7, p2 and p3 of ZF , compute the monodromy group of the
inclusions Γ0(p2) ⊂ Γ(1) with the same algorithm as in Example 3.4. The
cardinalities of these monodromy groups are equal to 23.3.74, 29.32.7 and
22.312.7.13.

These cardinalities are expected be equal to |PSL2(ZF/p
2)|. Which is

indeed the case, as veri�ed from the formulas given by Lemma III.5.3.
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5.5 Why the assumptions in Doi�Naganuma are neces-
sary

Counterexample 5.17. The assumption (iii) in Corollary 5.10 is necessary.
Indeed consider F the Galois totally real �eld of polynomial t3− t2− 2t+ 1,
ι a �xed real place of F , p7 the ideal over 7, and p13 one of the three ideals
over 13. Consider the quaternion algebra B rami�ed exactly at: the �nite
places p7p13 and at that the two real places other than ι. Then the canonical
model of the curve X(1) is of genus one, and its Jacobian is one of the three
elliptic curves e7d49D91i/ii/iii described in [Sij3, Tables A.1/2/3]10 11.

By the Theorem 5.6 they form an orbit under the Galois group of F .
Notice also that the assumptions (i), (ii) (the narrow class number of the �eld
F being one) and (iv) (the order is maximal) of the corollary are satis�ed.
But none of the j-invariants is rational, so the �eld of moduli is not Q.

Counterexample 5.18. The assumption (iv) in Corollary 5.10 is necessary. In-
deed the counterexamples X0(p11) and X0(p′11) e5d5D5i/ii in loc. cit. satisfy
all the other assumptions. But since their levels are not Galois-stable (p11

and p′11), it is thus not surprising to see that their Jacobians have non-rational
j-invariants.

Counterexample 5.19. The assumption (ii) in Corollary 5.10 is necessary.
Indeed the genus one curve e2d1125D16: X(1) in loc. cit. satis�es all the
other assumptions (it arises from a maximal order and the algebra has a
Galois-stable discriminant). But the conclusion of the corollary does not
hold because the Jacobian of X(1) has a nonrational j invariant.

5.6 Canonical models not de�ned over their �eld of mod-
uli

Overview of the counterexamples

Three canonical models appear in the work [Sij3], that have their �eld of
moduli (as mere curves) equal to Q �because they satisfy the conditions of

10Notice that in the reference, it is instead the �nite discriminant p7p13 that is �xed, and
the in�nite discriminant ι that varies. But the two constructions are actually the same.
Indeed one passes from one to the other by conjugating the whole quaternion algebra (both
�nite and in�nite places). Which leads to the same curve, as stressed in Remark 5.7.

11The curves e9d81D51i/ii/iii would also provide a similar counterexample.
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Corollary 5.10�, but are not de�ned over Q. These curves are all of genus
one and arize from maximal orders (X = X(1)).

The left-hand column of table of Table 5.1 is a reference for the data for
each of the three curves, as given in the tables of [Sij3]. The second and
last columns give the number �eld F and the �nite discriminant D of the
quaternion algebra B (where, for example, p3 and p′3 stand for the two primes
over the split prime 3). The two columns in the middle describe whether the
primes 2 and 3 are inert in F

Table 5.1: Counterexamples

curve F 2 inert 3 inert Df

e2d13D4
Q(
√

13) yes no
p2

e2d13D36 p2p3p
′
3

e3d8D9 Q(
√

2) no yes p3

Proof for one counterexample

Let us show that the curve X with label e2d13D36 is not de�ned over Q.
X is a curve of genus one de�ned over F , but doesn't necessarily have a

rational point. However one can derive properties of its Jacobian J , which
is an elliptic curve over F :

� Its conductor equals 6, by [Sij3, Proposition 2.1.6].

� The valuation of its j-invariant at p2 is equal to -10 (resp. -2 at p3 and
p′3). Let us detail this result for the valuation at p2. First, de�ne the
quaternion algebra H rami�ed exactly at both in�nite places of F and
at p3p

′
3. Call OH the maximal order of H. As in [Sij3, Proposition 3.1.9

(ii)] , consider OH(p2), a level p2 suborder of OH . Consider the set of
classes of right ideals of OH(p2), noted Picr(OH(p2)). To each ideal
class [I(p2)] in this set, associate the weight12 |Ol(I(p2))

.
/Z
.
F |. These

weights can be computed by running the Magma ([Ma]) �le PadInit in
[Sij2]. The sum of these weights is then equal to the opposite of the
valuation of j at p2, by [Sij3, Proposition 3.1.14 (iii)].

12Equal to the cardinality of the projectivized group of units of the left-order of I(p2).
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Now if the curve X were de�ned over Q, then the Jacobian J would de-
scend to an elliptic curve JQ over Q, by the argument of [MilJV, Proposition
1.9]. So, let us suppose that such a rational model JQ does exist, then

� the conductor of JQ is either equal to 6, or to 6 · 132. This is proven
by the following discussion, whose arguments were brought to us by
Randriam:

� at every place p but 13, the extension FPQp does not ramify, so the
conductor of JQ has the same valuation than J , by Proposition 5.4
(a) of [Sil]. (As regards the particular cases of 2 and 3, note that
J has multiplicative reduction at these places, so the valuation of
the conductor of JQ is necessarily equal to 1 at these places.)

� at the place 13 where the extension FP/Q13 rami�es, JQ cannot
have multiplicative reduction. For that if it were the case, then J
would also have multiplicative reduction at 13 (by [Sil, Proposition
5.4 (b)]). This contradicts the result above on the conductor of J .

� the j-invariant of JQ should be equal to the one of J . So, in particular,
it should have the valuations at 2 and 3 predicted above.

Then, by a lookup in the tables of Cremona (proved to be exhaustive, see
the introduction of [Cr]), only two elliptic curves E1 and E2 over Q ful�ll the
conditions above:

y2 + xy + y = x3 − 70997x+ 7275296

y2 + xy = x3 − 11998412x+ 15995824272

But considered over F , neither of their conductors is equal to 6 (one
obtains isomorphic curves over F of conductor 6.13). So neither of them can
be JQ, which therefore does not exist.

Alternative veri�cations (and nailing down the crucial point of the
thesis)

In [Sij1, Chapter 7], 5.6 it is shown that the canonical model of J over F is
given by
(5.4)
JF : y2 +(r+1)xy+(r+1)y = x3 +(16383r−38230)x+(1551027r−3576436)
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where r is a root of t2 − t − 3. Notice that the j-invariant is equal to
18013780041269221/9216 so JF is rational. Thus JF has �eld of moduli
Q (in particular is a Q-curve). And actually JQ is isomorphic over Q to an
elliptic curve over Q. But our point here is that the curve JF over F itself,
i.e. the canonical model, doesn't descend over Q: this is one of the main
subtleties that motivate this thesis.

Explicit methods to prove rigoroulsy equation (5.4) were also performed
in [Sij1].

Nevertheless, we would like to make a digression and recall the additional
sanity checks for the validity of equation (5.4) that were performed in our
joint work [BPRS, �3.8]:

� First, we checked that every quadratic twist of this model involving p2,
p3 and p′3, leads to a strict increase of the actual conductor 6, so cannot
be a candidate for J .

� In addition, we compared the traces of Frobenius on J at several primes,
to those predicted by the isomorphism of [Sij3, (5.16)] (or stated in
[DV, Th. 5.9]). This isomorphism asserts that the representation of
the Hecke algebra on the (one-dimensional) space of di�erentials on
E, is isomorphic to the representation of the Hecke algebra on the
subspace of the Hilbert cusp forms on F that are new at D. The com-
parison was made possible, since the traces for this last representation
are also computable in Magma (by the work of Dembélé and Donnelly
[DemDo]).

Now: take equation (5.4) of the jacobian J for granted, and let us show
(Nodesc): J does not descend to an elliptic curve overQ. Hence, as remarked
above, this will give one more proof that the curve e2d13D36 is not de�ned
over Q. For example, here are two ways to see (Nodesc):

� The trace of the Frobenius of J at the prime (11) of F , is equal to 22,
which is not of the form n2 − 2 · 11.

� Alternatively, one can check that the Weil cocycle criterion is not
satis�ed for the curve J . Namely, letting σ be the conjugation of
the quadratic �eld F , this boils down to verifying that, for any F -
isomorphism fσ : J → Jσ from J to the conjugate curve, then fσ does
not satisfy fσ ◦ σ(fσ) = id. The automorphism group of the elliptic
curve J being of order two, this is quickly done.
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Finally, there exists a last � and more straightforward � way to prove
that e2d13D36 is a counterexample. It does not use the actual equation for
the canonical model J , nor appeals to the various sophisticated theories used
above (that predict the traces, conductor and j-invariant). This approach
consists in computing the traces of the Hecke operators on J in the direct
manner. Namely, [Sij1, Algorithm 4.2.1] (available in [Sij2], TakData) enables
one to compute the action of the Hecke operators on the homology of the
complex curve Y 1

0 . Then, the computation of the trace at the inert prime
(11) leads to the same result, and thus conclusion, as above.



Chapter VI

Explicit recursive families

The notations and assumptions of Chapter IV hold, and as in Chapter V the
�eld F is supposed to be totally real.

1 Leitfaden

Let us trace back the logics of this chapter and its role in the proof of Theorem
B. The statements about canonical covers are summed-up in Theorem C in
�6.1 at the end of this addendum.

(a) the moduli interpretation of the involution of Atkin�Lehner (�2.3 para-
graph "Atkin�Lehner");
implies that:

(b) the dotted map ϕ in diagram (3.2) in �3.2 is surjective;

One has:

(c) ϕ is injective;

Proof: follows from �2.1, which describes the Atkin-Lehner involution
in our narrow class number one setting. Or, as suggested at the begin-
ning of �3.2: shown in [Duc, Proposition IV.5.1].

Then (b) + (c) implies that ϕ is bijective. Which implies that:

(d) towers of Shimura curves are recursive;

Also, one has :

106
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(e) the �rst steps of the towers considered in VI.5 descend over F3;

Proof: the unicity statement of Theorem V.5.14 shows that the candi-
dates for the canonical covers found in �5.2 are the correct ones. This
is stated neatly in the wrap-up Theorem C of �6.

Thus (d) + (e) implies:

(f) the whole towers descend over F3;

The possibility to intertwin modular towers of coprime levels (�3.1) +
the density of the genera in the intertwinned family (�IV.2.5) �nally
implies that:

(g) Theorem B holds.

2 Sketch of the moduli interpretation

We would like to detail the moduli interpretation over the complex numbers,
that underlies the recursive modular towers introduced in [El1, 3rd variation].

The �eld F is assumed to be of narrow class number one (De�nition
III.1.1). The assumption that B is a division algebra is dispensable here (it
is only necessary for the quotients Γ0(N)\H to be compact).

2.1 The involution of Atkin-Lehner

Thanks to the classi�cation of III.4.1 and to Proposition III.4.1, the following
description from [Ogg, �2] also applies in the class number one setting.

Let l be a prime of ZF , i ≥ 0 an integer and O(li) an Eichler order of level
li. The group of invertible two-sided fractional ideals that are maximal at
the rami�ed places, can be described as follows: (i) the obvious ones xO(li)
for x ∈ ZF\{0} (ii) a nonobvious one J = J(li), that satis�es J2 = liO(li).
It is de�ned as follows by its completions at each �nite place:

- at every p 6= l, Jp = O(li)p
- and (a) either l|D then Jl is the maximal ideal of O(li)l (b) or else:

ωi =̂

(
0 1

πil 0

)
, Jl = ωi .O(li)l = O(li)l . ωi.
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J is principal, generated by a totally positive element

wi ∈ O(li)

in the normalizer of Γ0(li). Thus the holomorphic transformation of the
upper-half plane H de�ned by wi, induces an involution of the Riemann
surface X0(li)C.

Furthermore two such generators wi and w′i di�er by an element of F
.O1.

that is independant of the choice of wi. By unicity of the canonical model
condition, as in Theorem V.5.11, it induces an involution wi of the canonical
model X0(li): the involution of Atkin�Lehner.

2.2 Classical modular curves

Without level: the classical complex modular curveX0(1), without the cusps,
parametrizes the isomorphism classes of complex elliptic curves E. Namely:

τ ∈ H → EτC/
(
Zτ ⊕ Z

)
With level: X0(N) (without the cusps) parametrizes the isomorphism

classes of elliptic curves endowed with a cyclic subgroup of order N (see [DS,
Theorem 1.5.1]). Equivalently, X0(N) parametrizes the isomorphism classes
of isogenies E → E/H de�ned by a cyclic subgroup of order N .

Atkin-Lehner: For l prime and i a positive integer, the matrix wi =(
0 1

−li 0

)
de�nes an involution wi : z → −1/liz of the upper-half plane

H, and normalizes the congruence group Γ0(li). Thus yields a well-de�ned
involution wi of X0(li).

In the previous moduli interpretation, this involution sends the isogeny{
E = C/

(
τZ ⊕ Z

)
−→ E ′ = E/

(
H = 〈1/li〉

)}
to the dual isogeny

{
E ′ =

C/
(
τZ⊕ 1/liZ

)
−→ E ′/〈τ/li〉 [li]

= E
}
.

2.3 Rational quaternion algebras

Let B be a rational quaternion algebra with discriminant D, let us �x

ι : B ↪→ B ⊗Q R ∼= M2(R)
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a real splitting and O a maximal order. For each τ ∈ H, let Yτ be the vector( τ

1

)
of C2.

Without level

(See [Lan, IX], the notes of J. Stankewicz or [Voi5, �42.6]). The space (B ⊗
R).Yτ is the full C2, thus:

ητ : b ∈ B −→ b.Yτ ⊂ C2 is an embedding, and(2.1)

Λτ = O.Yτ ⊂ C2 is a lattice.(2.2)

Every complex torus of dimension two, with multiplication by ι(B) and
uniformized by a lattice isomorphic to ι(O), arizes in this way �up to B-
equivariant isomorphism ([Lan, Theorem 4.2]).

Fix in addition T ∈ O, such that T 2 + D = 0. It de�nes a positive
involution ρ on B:

xρ = T−1 xT.

Then the skew-symmetric form:

Eτ :
(
ι(a).Yτ , ι(b).Yτ

)
−→ 1

D
tr(Tbρa) = tr(Tab)

is (up to a sign) a Riemann form with respect to the lattice Λτ , of determinant
one. Notice that the Rosati involution is induced by the involution ρ.

Two such principally polarized (B, ι,O, T )-lattices (or "QM-lattices") Λτ

and Λτ ′ are (B-equivariantly) isomorphic if and only if τ ′ ∈ ι(O1)τ ([Lan,
Theorem 5.1])

Thus the complex Shimura curve X0(1) parametrizes the isomorphism
classes of (B, ι,O, T )-principally polarized abelian surfaces.

Example 2.1. Assume that the discriminant D is one. Thus B is the matrix
algebra M2(Q), with the (non-positive) involution M →M = tr(M)Id−M .

Let O be M2(Z). Thus Λτ =
( Z⊕ Zτ

Z⊕ Zτ

)
and Aτ is the square of an elliptic

curve: Ellτ × Ellτ .

If furthermore T =

(
0 1

−1 0

)
, the (positive) involution ρ is thus M →

tM the transposition. Therefore the restriction of the Riemann form:

Eτ :
(
M1.Yτ , M2.Yτ

)
−→ tr(M1.T.

tM2)
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to each factor (C× {0} and {0} ×C) coincides with the canonical Riemann
form on Ellτ .

With level: case of the matrix algebra

Let us keep on the previous example with B = M2(Q) and O = M2(Z). The
N -torsion on Aτ = Ellτ×Ellτ has a straightforward basis as a Z/NZ-module:

Aτ [N ] =
〈( 1/N

0

)
,
( 0

1/N

)
,
( τ/N

0

)
,
( 0

τ/N

)〉
≡ (Z/NZ)4.

Rigidify the previous isomorphism classes of squares of elliptic curves, with
a subgroup Q of A[N ] ∼= (Z/NZ)4. Q is asked to be a sub-Z/NZ-module
isomorphic to Z/NZ⊕ Z/NZ and cyclically generated under multiplication
by the quaternion order O = M2(Z). Thus Q is easily seen to be of the form:

Q =

(
(Z/NZ).C/N

(Z/NZ).C/N

)
+ Λτ = M2(Z/NZ).

(
(Z/NZ).C/N

0

)
+ Λτ ,

with C a complex number of order N modulo NΛτ . Thus of the form c+dτ ,
c, d ∈ Z and gcd(c, d,N) = 1.

Let us now characterize standard representatives of rigidi�ed squares of
elliptic curves, mimicking [DS, Theorem 1.5.1]. Consider any square of ellip-
tic curve Ellτ ′×Ellτ ′ endowed with a subgroup Q of the N -torsion as above.
From the condition gcd(c, d,N) = 1, there exists a matrix

γ =

(
a b

c d

)
∈ O1 = SL2(Z)

De�ne τ = γ.τ ′ and C = cτ ′ + d as above. Then multiplication by C de�nes
an isomorphism from the rigidi�ed square of elliptic curves:

(2.3)

[
Ellτ × Ellτ ,

(
(Z/NZ).1/N

(Z/NZ).1/N

)
+ Λτ

]
to [Eτ ′ × Eτ ′ , Q].

Let us �nally study when two standard representatives for τ and τ ′ as
in (2.3) are isomorphic. An isomorphism commuting with the quaternionic
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multiplication is necessarily an homothety. Therefore there exists a complex
number m and γ ∈ O1 = SL2(Z) such that

(2.4) m
( τ

1

)
= γ.

( τ ′

1

)
.

And thus τ = γ.τ ′ and m = cτ ′ + d, where γ =

(
a b

c d

)
. It is further-

more required that the torsion subgroups are sent to one another:

m.

{(
Z/NZ.1/N

Z/NZ.1/N

)
+ Λτ

}
=

{(
Z/NZ.1/N

Z/NZ.1/N

)
+ Λτ ′

}
Thus considering the �rst coordinate, (cτ ′+d)/N must belong to 1/NZ+τ ′Z,
so d ≡ 0 mod N and γ belongs to the standard Eichler suborder

O(N) =

(
Z Z

NZ Z

)
⊂ O = M2(Z).

In conclusion, Γ0(N)\H parametrizes isogenies between principally po-
larized products of elliptic curves, de�ned by a subgroup Q of the N-torsion,
isomorphic to Z/NZ ⊕ Z/NZ and cyclically generated under multiplication
by the maximal order O = M2(Z).

With level: general case

In the previous case, the order O = M2(Z) had a canonical explicit matrix
action on the N -torsion points: the one induced from the complex action of
B = M2(Q) on C2.

Here one needs to make a choice. Consider the surjective morphism of
O-modules:

ητ/N : λ ∈ O −→ ι(λ).
( τ/N

1/N

)
∈ 1

N
Λ
/

Λ = A[N ].

Choosing an isomorphism as in the proof of Proposition III.5.4:

ιN : O/NO ∼= M2(Z/NZ) ,



112 Chapter VI. Explicit recursive families

ητ/N factorizes through a �non-canonical� isomorphism ofM2(Z/NZ)-modules:

ητ/N : M2(Z/NZ)
∼−−→ A[N ].

Letting eij be the standard elementary matrices in M2(Z/NZ), de�ne the
N -torsion point:

(2.5) Cτ = ητ/N(e12) ∈ ητ/N

(
e11.M2(Z/NZ)

)
(the analogous of

( 1/N

0

)
). It generates likewise a QM-cyclic subgroup:

Qτ = ητ/N
(
M2(Z/NZ)

)
.Cτ + Λτ .

of A[N ], isomorphic to Z/NZ⊕ Z/NZ.

Let us study when two standard rigidi�ed QM abelian surfaces:

[Aτ , Qτ ] and [Aτ ′ , Qτ ′ ]

are isomorphic. Once again (i) an isomorphism is necessarily induced by
multiplication by a complex number m (ii) and there exists γ ∈ O1, such
that τ = γ.τ ′ and the equation (2.4) holds.

Here the additional condition is that Qτ is sent to Qτ ′ . The group Qτ ′

being cyclic under O, one has:

m.Cτ ∈ ι(O).Cτ ′ ,

So that, letting e ∈ O be any element that reduces modulo N to e12, by
equation (2.5) there exists u ∈ O such that:

m.ι(e).
( τ/N

1/N

)
= ι(u.e).

( τ ′/N

1/N

)
.

Replacing the LHS with (2.4) yields:

ι(e.γ)
( τ ′/N

1/N

)
= ι(u.e).

( τ ′/N

1/N

)
.
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Finally the vector
( τ/N

1/N

)
having no torsion under O, this implies the

equality in O:
e.γ = u.e

Reducing modulo N , identifying O/NO with a matrix algebra by the isomor-
phism ιN and multiplying the matrices, this implies that γ is upper-triangular
modulo N . Thus belongs to the standard Eichler suborder. The unit γ being
furthermore of norm one, this results in:

Two standard rigidi�ed QM-abelian surfaces for τ and τ ′ are isomorphic
if and only if τ ∈ Γ0(N)τ ′.

Remark 2.2. The Morita equivalence for matrix algebras ([Lam, proof of The-
orem 17.20] or [Brou, Proposition 1.25]) implies that every nonzeroM2(Z/NZ)-
submodule Q of A[N ] is isomorphic to Q′ = e11Q⊕ e11Q. Where M2(Z/NZ)
acts on the left on Q′ by matrix�column vector multiplication.

So in particular Q is fully determined, as a M2(Z/NZ)-module, by the
Z/NZ module generated by C = e11Q. Which is, in our case, free of rank
one.

However the isomorphisms of M2(Z/NZ)-modules allowed in our situa-
tion are only those arizing from complex homotheties.

This is why we did not use this argument as in [Cl1], and stuck with
non-canonical choices and explicit computations.

Atkin-Lehner

The case of the matrix algebra mimicks the case of classical modular curves.
The involution of Atkin�Lehner:

wN =

(
0 1

−N 0

)
sends the standard rigidi�ed QM lattice:

Λ̃τ =
[
M2(Z).

( τ

1

)
,

(
Z/NZ.1/N

Z/NZ.1/N

)
+ Λτ

]
to the standard rigidi�ed QM lattice:

Λ̃wN τ =
[
M2(Z).

( wN .τ

1

)
,

(
Z/NZ.1/N

Z/NZ.1/N

)
+ ΛwN .τ

]



114 Chapter VI. Explicit recursive families

Where wN .τ = −1/(Nτ). Thus the complex homothety of multiplication by
τ sends Λ̃wN τ to the �non standard� rigidi�ed QM lattice:[

ΛwN .τM2(Z)
( wN .τ

1

)
,

(
Z/NZ.1/N

Z/NZ.1/N

)
+ ΛwN .τ

]
.

One recognizes the pair that parametrizes the dual isogeny of Λ̃τ . But beware
that the QM-structure and the polarization have been twisted by wN .

In the general case, let us borrow the more intrinsic description of the
QM-cyclic isogenies proposed in [Cl1]. Assume for simplicity that the level
N is a prime power pe. The Eichler order O(pe) is the intersection of the two
maximal orders O and O′, who di�er exactly at their completions at p:

Op =

(
Zp Zp
Zp Zp

)
and O′p =

(
Zp p−e

pe Zp

)
This gives rize to two isogenies, of kernel isomorphic to O/O(pe) ∼= Z/peZ:

q1,τ : Aτ = C2
/
ι(O(pe)).

( τ

1

)
−→ Aτ,1C

2
/
ι(O).

( τ

1

)
and(2.6)

q2,τ : Aτ = C2
/
ι(O(pe)).

( τ

1

)
−→ Aτ,2C

2
/
ι(O′).

( τ

1

)
(2.7)

The maximal orders O and O′ are conjugate by the Atkin-Lehner element:
O′ = weOw−1

e . Let us see how the involution we of the upper half plane, sends

q1 to q2. LetMe =

(
a b

c d

)
= ι(we) be the real matrix corresponding to we,

and let me be the complex number cτ + d. Then the following commutative
diagram links q1,weτ to q2:

(2.8) C2
/

1
me
ι(O(pe))M−1

e .
( τ

1

)
q1,weτ // C2

/
1
me
ι(O)M−1

e .
( τ

1

)

C2
/
ι(O(pe)).

( τ

1

)
1
me

Me.

OO

q2 // C2
/
ι(O′).

( τ

1

)
1
me

Me.

OO
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Once again, although the vertical arrows are isomorphisms, they twist
the polarization and the QM-structure by we. The same diagram obviously
applies to q2,weτ and q1.

Finally, the polarization being principal, it enables to de�ne dual isoge-
nies:

q∨1 :Aτ,1 → Aτ and(2.9)

q∨2 :Aτ,2 → Aτ .(2.10)

In conclusion, the involution we sends the QM-cyclic isogeny:

q2 ◦ q∨1 : Aτ,1 → Aτ,2

to the dual isogeny:
q1 ◦ q∨2 : Aτ,2 → Aτ,1

(up to twisting the polarization and the QM-structure by we).

Wrap-up

See [El1] for the analogous case of classical modular curves. Let p be a prime
number and i ≥ 0 an integer. The complex curve X0(pi+1)C parametrizes
"cyclic pi isogenies" between QM polarized abelian surfaces A1 → A2. I.e.
isogenies that arize from a subgroup Q of A1[pe], which is isomorphic to
Z/pe⊕Z/pe and generated by a point C under multiplication by the maximal
order O. This data is equivalent to the chain of cyclic p-isogenies:

(2.11) A1

./O.pi−1C
−−−−−−→ A1

/
O.pi−1C

./O.pi−2C
−−−−−−→ . . .

./O.C
−−−→ A2

The projection fi+1 : X0(pi+1)→ X0(pi) sends such an isogeny to the one
de�ned by the pi−1-torsion point pC. That is to say, sends a chain (2.11) of
cyclic p-isogenies to the chain truncated at the end :

A1

./O.pi−1C
−−−−−−→ A1

/
O.pi−1C

./O.pi−2C
−−−−−−→ . . .

./O.pC
−−−−→ A1

/
O.pC

The involution of Atkin�Lehner wi sends a cyclic pi-isogeny A1 → A2 to
its dual A2 → A1. Thus the composition wi ◦ fi+1 ◦wi+1 sends a chain (2.11)
to the chain truncated at the beginning:

A1

/
O.pi−1C

./O.pi−2C
−−−−−−→ A1

/
O.pi−2C

./O.pi−3C
−−−−−−→ . . .

./O.C
−−−→ A2
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2.4 Over totally real �elds

Without level

For general totally real �elds F + Q, the following classi�cation makes it
necessary to enlarge the quaternion algebra B by a CM �eld K.

Proposition 2.3 ([Sh0, Prop. 1]). Every division algebra over Q with a
positive involution belongs to the following four types of algebras.

(Type I) Totally real algebraic number �eld F ;

(Type II) Central simple algebra L over F such that LR = L⊗QR =
∏degF

i=1 M2(R);

(Type III) Central simple algebra L over F such that LR = L⊗Q R =
∏degF

i=1 H;

(Type IV) Central simple algebra L over a totally imaginary quadratic extension
K of F .

So consider the larger quaternion algebra L = B ⊗F K ([Sh1, �7.3]) and
�x, as in the rational case ([Sh1, 7.13]):
(i) positive involution ρ of L (as in [Sh0, Prop. 2]);
(ii) a complex representation Φ = Φ1 ⊕ . . .Φ[F :Q] of L equal to [F : Q]

copies of M2(C), such that ρ induces the transconjugation of matrices
([Sh0, (6.1.1)]), and such that, in particular, the sub�eld F acts through
its real place in Φ1 and its complex places in Φi>1 (see [Sh0, (6.1.3)]
and [Sh0, (8)]);

(iii) an ideal M of L with left-order a maximal order O ([Sh1, 7.13]: for
example choose M = O a maximal order).

Then consider the isomorphism classes of simple complex polarized abelian
varieties A such that ([Sh0, 1.4]):
(i) A is of complex dimension n = 4[F : Q] and the endomorphism �eld

EndQ(A) is isomorphic to L via the complex representation Φ ([Sh0,
1.4] or [Sh1, 4.1]);

(ii) thus if D is the complex lattice that uniformizes A: A = Cn/D, then
Φ induces an isomorphism of L-modules: η : L→ QD. It is asked that
η−1(D) = M ([Sh0, (9)-(10)] and [Sh1, �4.1]). Thus the endormorphism
ring End(A) is equal to the maximal order O;

(iii) the involution ρ of L induces the Rosati involution.
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By the discussion summed up in [Sh0, Theorem 1], all isomorphism classes
of such (L,Φ, ρ, T,M)-abelian varieties arize (with redundancy) from the
following construction. Let T be an element of L such that: (i) T ρ = −T

and (ii) −iΦ1(T ) is conjugate to

(
1 0

0 −1

)
and −iΦi>1(T ) to

(
1 0

0 1

)
([Sh0, (11),(12),(25)] or [Sh1, (6.1.4)]).

Let D be the unit disc and for all z ∈ D, let Yz be the vector of (C2)[F :Q] =
(R4)[F :Q] with its �rst R4-component equal to Yz,1 = (1, z, z, 1), and the
others equal to Yz,i>1 = (1, 1, 1, 1). Consider the lattice Λz = Φ(M).Yz ⊂
C2[F :Q]. Then the skew-symmetric form:

Ez(Φ(a).Yz,Φ(b).Yz) = tr(aTbρ)

is a Riemann form.
Two points z and z′ in D give isomorphic polarized lattices if and only

if they are in the same orbit of D under the action of a certain subgroup of
units of L: z′ ∈ Φ1(Γ(T,M)).z [Sh0, Theorem 2].

With level

Rigidify the previous (L,Φ, ρ, T,M) abelian varieties, by endowing them with
a full level N structure: that is to say, a basis v of the N-torsion ([Sh1, 7.13]).
E.g. the full level N = (1) is an empty set. By the statement [Sh1, (4.2.5)]),
the unit disc D parametrizes (with redundance) all such rigidi�ed polarized
lattices.

Two points z and z′ D give isomorphic rigidi�ed (L,Φ, ρ, T,M, v)-lattices
if and only they are in the same orbit of a certain subgroup of units Γ(T,N,M)
of L [Sh0, Theorem 2].

The miracle is then that, under a suitable choice of CM �eld K ([Sh1,
Proposition (7.6)]), the congruence subgroup Γ(N) ⊂ B ⊂ L in B coincides
with the �xator Γ(T,N,M) ⊂ L of a full levelN structure ([Sh1, Propositions
4.11 & 6.3]).

Thus every intermediate congruence subgroup Γ: Γ(1) ⊂ Γ ⊂ Γ(N) also
�xes intermediate level structures. E.g. Γ0(N) parametrizes cyclic subgroups
and thus cyclic isogenies.

In conclusion, switching to the upper-half plane by [Sh1, (7.3.1)], the
complex curve X0(N) parametrizes exactly the isomorphism classes of: iso-
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genies, between such (L,Φ, ρ, T,M) abelian varieties, de�ned by a group of
rank 2[F : Q] which is O-cyclically generated by an N-torsion element.

3 Recursive families

The goal of this section is to prove the recursivity of the modular towers
introduced in [El1, 3rd variation], the moduli interpretation underlying them,
and to recall how two curves of coprime levels can be intertwinned. This last
fact, although already considered in [El1, 2nd variation] is the key point of
this work and was pointed to us by Elkies.

3.1 Intertwinning coprime levels

Consider m and n two coprime ideals of F . The following diagram commutes:

(3.1) X0(mn)

πm

&&

πn

((
ϕ

''
X0(m)×X0(n)

p2
��

p1
// X0(n)

fn
��

X0(m)
fm // X(1)

The ideals m and n being coprime, Corollary III.5.6 implies that the de-
grees of the projections from πm and πn are equal to Ψ(n) and Ψ(m), them-
selves equal to the degrees of the projections X0(n) → X(1) and X0(m) →
X(1). So the induced map ϕ : X0(mn)→ X0(m)×X0(n) to the �bred prod-
uct is of degree one onto its image. This image is a connected component of
the �bred product.

The main point is that the complexi�ed map ϕC is surjective. Thanks to
the moduli interpretation in paragraph "Atkin�Lehner" of �2.3 above, then
the proof is formally the same as in [El1, top of page 2] (use the wrap up
of ). Thus the �bred product is geometrically (irreducible), thus ϕ is an
isomorphism.
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3.2 Equal levels

Let i ≥ 0 be an integer and l a prime ideal of F . Firstly, one easily checks
that the outer-arrows of the following diagram commute (see also the proof
of [Duc, Proposition IV.5.1]):

(3.2) X0(l i+3)

fi+3

''

wi+2◦fi+3◦wi+3

))
ϕ

((
X0(l i+2)×X0(l i+2)

p2
��

p1
// X0(l i+2)

fi+2

��
X0(l i+2)

wi+1◦fi+2◦wi+2 // X0(l i+1)

Indeed with the notations of �2.1, consider the ratio r = wi+2wi+3/wi+1wi+2.
One the one hand r generates the integral two-sided ideal pO(pi+1). Thus
by the narrow class number one assumption, r belongs to F+O(pi+1)

.
. On

the other hand it is a quaternion of totally positive norm. In conclusion
r ∈ F+O(pi+1)+. Which is included in F

.O(pi+1)1, by Proposition III.3.2.
Thus r induces the identity on X0(pi+1).

The induced map ϕ is again of degree one onto its image for degree
reasons.

It is also left as an exercice that the complexi�ed map ϕC is surjective
(see the wrap up of the moduli interpretation �2.3 above). Thus the �bered
product is geometrically (irreducible), thus ϕ is an isomorphism.

By successive pullbacks of morphisms, a recurrence implies the closed
formula for X0(li):

(3.3) X0(l2)

w1◦f2◦w2
,,

× X0(l2)

f2
rr

w1◦f2◦w2
,,

. . . X0(l2)

w1◦f2◦w2
,,

× X0(l2)

f2
rrX0(l) X0(l) X0(l)

4 A new curve with many points �in need of a

moduli interpretation

We thank J.�P. Flori for bringing our attention to [Has].



120 Chapter VI. Explicit recursive families

4.1 Predictions from the theory

Let F be the totally real �eld F = Q(
√

3). Let p2 and p3 the primes of norm
two and three over the rami�ed primes (2) and (3), and B the quaternion
algebra rami�ed exactly at: p2 and one in�nite place. The narrow class
number h+ = |Cl∞(F )| is two �with corresponding abelian extension F∞ =
Q(
√

3, i). So we don't know if a modular tower can be built from Atkin�
Lehner involutions �there exists possibly more than one involution at each
step ! Nevertheless, our attempt to build recursive curves succeeds:

Consider a maximal order O in B and the Fuchsian group Γ+
0 (p4

3) in
PGL+

2 (R) arising from the units with totally positive norm O(p4
3)+ of the

Eichler order1 of level p4
3 in O. By Theorems V.5.1 and V.5.4, X+

0 (p4
3) is

de�ned over the narrow class �eld F∞ and has good reduction modulo the
prime p5 = (5) over the residue �eld F52 .

The number of F54-points of the reductionX
+
0 (p4

3)F52
is given by Theorem

V.5.5. One can compute the matrix of the Hecke operator T (p5) using two
independant algorithms available in Magma:

� the generalization of modular symbols [GV] (which further generalizes
[Sij1, Algorithm 4.2.1] for genus one curves);

� the action of Hecke operators on spaces of Hilbert modular forms
[DemDo]. As mentionned earlier, the correspondence of Jacquet�Langlands
states that the action of T (p5) on the space of holomorphic di�eren-
tials on X+

0 (p4
3), is isomorphic to its action on the subspace of p2-new

Hilbert cusp forms on F of level p4
3.

But beware, the output of both algorithms is the matrix of the full Hecke
operator [Duc, equation (IV.10)] acting on the Jacobian of the full Shimura
curve [Duc, equations (IV.1) and (IV.2)] de�ned over F . Which has h+ = 2
connected components, of which X+

0 (p34). The matrix being diagonaliz-
able with rational values, we simply divide the trace by two, and obtain
871 points over F54 .

Magma tells us that the Fuchsian group Γ+
0 (p4

3) has genus �ve . So this
number of F54-points is bigger than the previously best-known value for this
genus, equal to 868.

1[Has] studies the subgroup Γ0(p43) of units of norm one, of index two in Γ+
0 (p43) by

Proposition III.3.2
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4.2 Veri�cation with explicit equations

Magma tells us that the Fuchsian groups Γ(1), Γ+
0 (p3) and Γ+

0 (p2
3) have sig-

natures < 0; 2, 3, 12 >, < 0; 2, 2, 3, 3 > and < 0; 2, 2, 3, 3, 3 >. By Corol-
lary III.5.6, the indices are [Γ(1) : Γ+

0 (p3)] = N(p3) + 1 = 4 and [Γ+
0 (p3) :

Γ+
0 (p2

3)] = N(p3) = 3.

One deduces from this a possible rami�cation behaviour for the mor-
phisms f1 : X+

0 (p3) → X(1) and f2 : X+
0 (p2

3) → X(p3) of degrees 4 and 3.
Let Ri, Qi and Pi be the elliptic points of orders i in the curvesX0(1), X+

0 (p3)
and X0(p2

3), �possibly with a prime (e.g. P ′3) when two points have the same
order. Non-elliptic rami�cation points are just numbered with their rami�-
cation indices. e.g.: (3) is rami�ed of order 3 above R3. The numbers beside
the arrows are the rami�cation indices of the points (hence the redundant 3,
etc.).

X0(p2
3)

f2 3
��

(2)

2 !!

P2

1
��

P ′2

1
��

(2)

2}}

P3, P
′
3, P

′′
3

1,1,1
��

(3)

3
��

X0(p3)

f1 4
��

(2)

2 !!

Q2

1
��

Q′2

1}}

(3)

3 %%

Q3

1
��

Q′3

4
��

X0(1) R2 R3 R12

Remarks 4.1. Considering the covers f1 and f2 individually, there is only one
possible rami�cation behaviour for them.

But for the composition f1 ◦ f2, there are two possibilities: one could
swap the rami�cation above the branch points Q3 and Q′3 (one rami�ed point
instead of three non-rami�ed, and conversely). However this would have lead
to a di�erent monodromy triple for f1 ◦ f2. And, thanks to computations
similar to Example V.3.4, we could discard this possibility

Fix the coordinates of R2, R3 and R12 at λ = −27/625, 0 and ∞. Set
ω =
√
−2. Then the function:

f1(t) = (t− 1)(t− 1/5)3

has the desired rami�cation behavior with Q2, Q
′
2 of coordinates ±ω/5, and

with Q3, Q′3 of coordinates 1 and ∞.
Let us multiply from now on the coordinates on X+

0 (p3) by �ve, for the
sake of reduction modulo (5): Q2 = ω, Q′2 = −ω, Q3 = 5 and Q′3 =∞.
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Exercice: a nonidentity involution of P1 (in characteristic not two) has
trace zero. We look for an involution w1 that both swaps Q2, Q

′
2 and Q3, Q

′
3.

The �rst condition implies that w1 is of the form(x + 2c)/(cx − 1) or 2/x.
Then the second implies:

w1 =
5x+ 2

x− 5
.

We �nd similarly:
f2(z) = −3z − 2z3

which has the desired rami�cation data with P2 = ω, P ′2 = −ω and P3, P
′
3, P

′′
3

the roots of P (X) = (X + 1)(X2 −X + 5/2).
We �nally look for an involution w2 that swaps ±ω, so of the form (x +

2c)/(cx− 1) or 2/x, and which furthermore stabilizes the polynomial P (X)
up to scalar multiplication. A numerical solving for c provides

w2 =
x+ 4

2x− 1
.

Applying the closed formula (3.3), it follows that the function �eld of
X0(p4

3) is de�ned over F3 by:

3x3y3 + 2x3y + 4x3 + 4x2 + 2xy3 + 3xy + 3x+ 2 = 0 and(4.1)

3y3z3 + 2y3z + 4y3 + 4y2 + 2yz3 + 3yz + 3y + 2 = 0(4.2)

From this equation, one can run general function �eld theoretic algorithms
in Magma to con�rm that this curve is indeed of genus �ve and has 871 F54-
points.

4.3 A still unknown moduli interpretation

The complex curve X0(1) parametrizes classes of polarized abelian varieties
with quaternionic multiplication by B as in 2.4. WhereasX+

0 (1) parametrizes
only weak classes : that is to say, such polarized abelian varieties modulo
multiplication of the polarization by the action of a totally positive element
of F ([Sh1, 4.7, 4.10, 4.11]).

BUT �contrary to the situation X0(p2
3) → X0(1)� the curve X+

0 (p2
3)

DOES NOT seem to parametrize the quaternionic p2
3-isogenies between classes

of abelian varieties parametrized by X+
0 (1). Indeed suppose that it were the

case, then X+
0 (p2

3) would parametrize three p3-isogenies of type R3 → R →
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R3 or R12 (R being any point, elliptic or not). But I see only two possi-
ble such isogenies when looking at X+

0 (p3), which are R3 → R12 → R3 and
R3 → R→ R3.

5 The intertwinned tower X0(p
i
2.p

j
7) over F3

5.1 The towers X0(p
i
7) and X0(p

i
2)

Let us describe the rami�cation data determined at the end of chapter IV.
Pi, Qi and Ri stand for the elliptic points of orders i in the curves X0(1),
X0(pk) and X0(p2

k), k = 2, 7 �possibly with a prime (e.g. P ′7) when two have
the same order. Non-elliptic rami�cation points are just numbered with their
rami�cation indices. e.g.: (2)4 stands for four rami�cation points of order
two above Q2. The numbers beside the arrows are the rami�cation indices
of the points (hence the redundant 24, etc.). X0(pi7) starts from the left and
X0(pj2) from the middle.

X0(p2
7)

f2 7
��

(3)2

32

P3

1

P ′3

1

(3)2

32

(7)

7

X0(p7)

f1 8
��

(3)2

32 $$

Q3

1

Q′3

1

(2)4

24

Q7, (7)

1 7

X0(1) R3 R2 R7

X0(p2
2)

f2 8

(7)

7

P7

1

P ′7

1

(7)

7

(2)4

(2)4

��
X0(p2)

f1 9
��

(7)

7

Q7

1

Q′7

1

(3)3

33

Q2 , (2)4

1 24

X0(1) R7 R3 R2

We saw that X(1), X0(p2) and X0(p7) are of genus zero, whereas X0(p2
7)

and X0(p2
2) are of genus one.

Recall from Example V.3.2 that covers of degree d of the projective line
minus three points, are in bijection with conjugacy classes of triples of per-
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mutations satisfying: {
δa, δb, δc ∈ Sd, δa ◦ δb ◦ δc = 1

}
Recall the triples for the cover f2 : X0(p2

2) → X0(p2) obtained in Example
V.3.6. Depending on the conjugacy class of the subgroup Γ0(p2

2) inside Γ0(p2),
one obtains two possible conjugacy classes of triples:

σ2 = [(1, 5, 3, 7, 8, 2, 4), (1, 8, 3, 2, 4, 5, 6), (1, 2)(3, 4)(5, 6)(7, 8)]

σ′2 = [(1, 3, 5, 2, 6, 7, 8), (1, 5, 2, 8, 6, 3, 4), (1, 2)(3, 4)(5, 6)(7, 8)]

Remark 5.1. These two possible choices are equivalent for our purpose. In-
deed, one of them determines the cover f2, whereas the other one determines2

w1 ◦ f2. Anyway, computing the �bre-product (3.2) after substituting w1 ◦ f2

to f2 gives the same result (exercice).

Likewise for X0(p2
7)→ X0(p7) one got in Example V.3.4:

σ7 = [(1, 6, 4, 2, 7, 5, 3), (1, 6, 2)(4, 5, 7), (1, 3, 4)(2, 7, 6)]

σ′7 = [(1, 7, 4, 5, 3, 6, 2), (1, 5, 7)(3, 6, 4), (1, 2, 3)(4, 5, 6)]

Each of the four previous permutation triples generate groups in S7, or
S8, which have a trivial centralizer. Thus by the (i) of Theorem V.4.12, if
one �xes generators for e.g. the π1(P1

C − {Q7, Q
′
7, Q2}), and one �xes one of

those triples, e.g. σ2, then two covers over a number �eld that both have the
triple σ2, will be isomorphic over the number �eld and not only C.

5.2 Computing the covers

The goal is now clear: for each pair of triples (σ7/7′ and σ2/2′), �nd one of
the two uniquely possible covers f2 : E → P1 having this monodromy action.
Then check for good reduction over F3.

j-invariants and rationality of quaternionic modular forms

Thanks to an algorithm for covers of the projective line arizing from sub-
groups of triangle groups, kindly shared by John Voight, we could determine

2Which is the subcover from the image subgroup of Γ0(p22) by the Atkin-Lehner invo-
lution w1. This image is non-conjugate in Γ0(p2) (nor in Γ0(1): see Remark 5.4)



5. The intertwinned tower X0(pi2.p
j
7) over F3 125

the j-invariants of the complex curves of genus one X0(p2
7)C and X0(p2

2)C
whose monodromy over P1 equals the triples above. Namely:

(5.1) j7 = −3375 and j2 = 1792

The method consists in, e.g. for X0(p2
7)C:

(i) embedding in PSL2(R) the Fuchsian group Γ0(p7), seen as the (7, 3, 3)
triangle group ∆, as described in [KVMSV, Prop 2.5] (not the quater-
nionic embedding). And then in the group of direct transformations of
the unit disc centered at the elliptic point Q7 of order 7 of ∆ (as in
[KVMSV, p 11]) ;

(ii) determining a set of coset representatives for the subgroup Γ = Γ0(p2
7)

de�ned by the triple σ7 [KVMSV, Algorithm 3.5]. And thus a funda-
mental domain for Γ in the unit disc;

(iii) determining a basis {g(z)} for the (one dimensional) space of weight
two modular forms for this subgroup ([KVMSV, p30-33]);

(iv) by integration of this di�erential form on the fundamental domain ,
determining the periods lattice of the elliptic curve X0(p2

7)C ([KVMSV,
p44-45]);

(v) and possibly compute the Belyi map to X0(p7)C ([KVMSV, p33-35],
though we didn't use it).

Let us share a surprising pattern in the development of g. After comput-
ing a power series expansion with precision 140 in the unit disc centered at
Q7, and normalizing the variable w → w/λ (we chose λ equal to the ratio of
the two consecutive non zero coe�cients of g of degrees 7 and 8), we found:

g(w) = 1− 2/3.w + 23/33.w3 + 27/(37.7)w7 + 27/(37.7)w8 + 29/(310.71)w10

− 213.5/(313.72.13)w14 − 215.5/(315.72.13).w15 + 215/(316.72.13)w17

− 219.31/(316.72.13)w21 + . . .

This is surprising, �rstly because although Q7 is not an elliptic point for
Γ, the development follows a periodic pattern : 1101000 1101000 . . . , where 0
means a zero coe�cient and 1 a nonzero one. Finally because the coe�cients
could be clearly recognized as rational numbers, although the general theory
only predicts them to be algebraic.

It also raizes the question of, when one has determined numerically a
larger basis of g > 1 modular forms, does there exist numerical methods
to �nd a linear transformation to apply to this basis in order to retrieve a
rational one (after a further simultaneous normalization).
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Theoretical predictions for the canonical models

Several hints help. First, the canonical models of the Shimura curvesX0(p2
7)F

andX0(p2
2)F �a priori de�ned over F� are actually de�ned overQ by Theorem

V.5.14 applied to the corresponding covers f1 ◦ f2 : X0(p2)F → X(1).
In addition: [Sij1, Th 3.1.6] gives information about the conductors of the

Jacobians over F = Q(cos(2π/7)). The one of X0(p2
7)F is equal to a strict

power of p7. So by the same argument as on page 102, after descent over Q,
the conductor is of the form 7i, i ∈ [1, 2]. Similarly the one of X0(p2

2)F is
equal to a strict power of p2. So after descent over Q, is of the form 7i.2j,
i ∈ {0, 2} and j ∈ [1 . . . 8] (remind that the exponent of a prime p > 3 in the
conductor of a rational elliptic curve can't be greater than two).

Finally: a lookup in [LMFDB] selects eight possible elliptic curves for the
Jacobian of X0(p2

2)F . Among which, only one has the traces of Frobenius
equal to traces of Hecke operators of level p2

2 at the primes p3, p5, p11 and3

p17:

(5.2) Jac
(
X0(p2

2)F
)

: y2 = x3 + x2 − 114x− 127

The case of Jac
(
X0(p2

7)F
)
is similar but an ambiguity remains at this

stage, so the determination will be described in what follows.
To start with, in order to compute f2, one would like to know the �eld of

the coordinates of the (CM-elliptic of order seven) branch points Q7 and Q′7.
For example, by identifying them as the points that are unrami�ed above R7

by f1. So let us compute this last map.

Determining the cover f1 : X0(p2)→ X(1)

The triple of the genus zero Belyi map f1 happens to have a trivial central-
izer. So the equation of f1 can be determined without ambiguity from its
rami�cation data.

To start with, the branch points R2, R3 and R7 are rational over F by
Example V.5.3, so can be set at ∞, 42 and 0. The following representative
for the isomorphism class of f1 was then computed with the "ASD trick"

3The respective traces being −8, −18, 72, −126. Surprisingly, the traces of the other
candidates di�er only from their signs. I must miss an elementary fact about elliptic curves
here.
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described in [Bir]:

(5.3) f1 =
(x+ 13/7)7(x2 + 7)(

x4 − 172/63x3 + 2914/147x2 − 130204/7203x+ 39913/441
)2

In particular Q7 and Q′7 are at ±
√
−7.

Equation of the cover f2,F (
√
−7) : X0(p2

2)Q(
√
−7) → X0(p2)Q(

√
−7) over a

quadratic extension (because of a pointless canonical model)

To start with, both the canonical covers f1 and f1 ◦ f2 descend to Q by
Theorem 5.14. So the pointed cover (f2, (P7, P

′
7)) descends toQ (here (P7, P

′
7)

is seen as a point of degree two). But, as we will see in Remark 5.2, the
canonical model X0(p2

2)F has no rational point. So it is hopeless to �nd
equations for f2 over Q from the rational Weierstrass model (5.2).

We still want to use this Weierstrass model, thus we are going to compute
f2,F (

√
−7) over the quadratic extension Q(

√
−7. So let us chose the smallest

�nite �eld of good reduction containing z =
√
−7: namely F29, to compute

the cover f2,F29 modulo 29. In particular, the trick detailed in [SV1, page 39]
saved days of computations4.

Next: a (two-variables) Hensel-lifting, followed by lattice methods to rec-
ognize rational coe�cients (we thank B. Meyer for discussions about this),
lead to two possible isomorphism classes of covers de�ned over Q(

√
−7) ⊂

F (
√
−7)) and rami�ed over {Q7 =∞, Q′7 = 1, Q2 = 0}. They are given by

the following f2 and its complex conjugate f2, where z =
√
−7:

(5.4) f2,F (
√
−7) =

1

x− 1/32(91z + 169)

[
1/12544(−z + 11)x4

+ 1/12544(−27z − 151)x3 + 1/3136(71z − 109)x2 + 1/3136(491z + 4231)x

+1/3136(−8411z−14971)+y
(

1/614656(−13z−49)x3+1/153664(205z+49)x2

+ 1/76832(−317z + 1519)x+ 1/153664(−2613z + 5831)
)]
.

4Precompute all the possibilities for the polynomials expressing the resultant between
f2,F29

and its derivative.
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And the (CM-elliptic of order seven) unrami�ed points above Q7 and Q′7
are in a�ne coordinates:

P7 =[1/32(91z + 169) , 1/128(−1911z + 931)] and:(5.5)

P ′7 =[−14z + 16 , −98z − 49](5.6)

The "ASD-trick" described in [SV1, Lemma 2.7] provides a sanity check
that the equation for f2,F (

√
−7) given here has the correct rami�cation data.

Let (7) = [2,−7z] be the rami�ed point of degree seven above Q′7 = 1. Then
the sum of points 2.P7 + Q7 − 5.(7) on the elliptic curve X0(p2

2)F (
√
−7) is

expected to be the neutral element, which is indeed the case.

Remark 5.2. We can check that (f2, (P7, P
′
7)) indeeds descends to Q: the

map φ, equals to the addition of the point Q = (2 : 7z : 1), maps the pointed
cover to its conjugate and satis�es the Weil cocycle condition φ.φ = 1.

However there doesn't exist any F (
√
−7)-endomorphism of the elliptic

curve X0(p2
2)F (

√
−7) that maps the pair (P7, P

′
7) to a pair of conjugate points.

So the pointed map doesn't descent to a pointed map from the elliptic
curve Jac

(
X0(p2

2)F
)
to P1

F . So the canonical model is not an elliptic curve.

Reduction and descent over F3

Reducing the cover modulo5 F32 = F3〈z2 = −1〉 , the descent begins. First,
apply a translation to the elliptic curve X0(p2

7)F32
, in order to move the

elliptic points P7 and P ′7 into conjugate points. Then, as suggested in [SV2,
A.1], apply a homography to P1

F32
so that (i) the branch points 0, 1 below P7

and P ′7 are mapped to the conjugate points z and −z (ii) and∞ is unchanged
(indeed, we notice a F3-rational point over ∞, so we want to preserve this).

This provides a model over F3. But being computed by composition by
an elliptic-curve translation morphism, the size of the fraction de�ning the
cover explodes. So we recompute a simpler equation over F3 for the whole
cover again, taking advantage of the knowledge of conjugate coordinates for
P7 and P ′7 (and also of the rational point above ∞) determined just above.

5Which could also be directly computed in this �nite �eld. But Hensel lifting was
problematic from here.
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This results in:

f2(x, y) =
1 + x2 + x3 + x4 + (x+ 2x2)y

2 + x2 + x3 + x4 + x2y
(5.7)

X0(p2
2)F3 : y2 = x3 + x2 + 2(5.8)

w2 : X0(p2
2)F3 3 P −→ (1 : 2 : 1)− P(5.9)

w1 : t ∈ P1
F3
3 t −→ −t(5.10)

Where w2 is the involution on X0(p2
2)F3 that swaps the elliptic points P7 and

P ′7.

Computation of the cover f2 : X0(p2
7)→ X0(p7)

The same hints leave us this time with two candidates for Jac
(
X0(p2

7)F
)
: the

rational curves 49.a2 and 49.a4 of the LMFDB (which are both isogenous
and twists). But attempts to compute the cover with one and the other
candidate, singles out 49.a4 as the right one. It has the following model over
the rationals:

X0(p2
7)F : y2 + xy = x3 − x2 − 2x− 1(5.11)

We could furthermore perform pointed descent of the cover f2 over Q,
thanks to the method of [SV2, A.2] using the rami�ed point (7) = {∞} of
order seven above the rational point Q7 = {∞}. This descended global cover
f2 has also good reduction modulo 2 as a bonus. Here are the equations:

f2(x, y) = 2x+ 5x2 − 3x3 + (−3 + 3x+ x2)y branched over(5.12)

Q3, Q
′
3 = ±

√
−3;(5.13)

w2 : X0(p2
7)Q 3 P −→ (2,−1, 1)− P(5.14)

w1 : t ∈ P1
Q 3 t −→ −1− t(5.15)

Remark 5.3. Notice that we removed the Jac in equation (5.11). Indeed we
obtain here an equation of the cover f2 de�ned over the �eld F of de�nition
of the curve X0(p2

7)F (over the rationals, actually). Thus the rami�ed point
(7) = {∞} of order seven above the rational point Q7 = {∞} is rational. So
the canonical model X0(p2

7)F is an elliptic curve.
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Additional monodromy computations for X0(pi7)

The cover f2,Q : X0(p2
7) → X0(p7) given in (5.12) being de�ned over Q, it

is possible to use Maple's algorithm to compute the monodromy. We check
that it is indeed given by one of the triples σ7/7′ (depending on the base laces
chosen).

But recall that the cover f2 has no automorphisms, as one checks directly
by verifying that the triples σ7 and σ′7 have trivial centralizers. Thus by
Theorem V.4.12 (ii), the f2,Q given in (5.12) coincides with the unique descent
of the canonical cover f2,F over Q (up to Q-isomorphism).

The next remark explains the ambiguity about the choice of base laces
(and thus of triple σ7/7′). The two choices are deduced from one other by
the involution of Atkin�Lehner. Thus, as our goal is to compute the �ber
product of the cover with its twist by Atkin�Lehner, the choice is harmless.

Remark 5.4. Firstly, we computed the monodromy of the map (5.12) twisted
by Atkin�Lehner (basically: compose it with a switch of the conjugate branch
points Q3 and Q′3). We obtained the two triples σ7 and σ′7, that correspond
to the monodromies of the canonical cover and of its Atkin�Lehner twist.

Remark 5.5. This remark is not mandatory. Fix a representative of the
isomorphism class of the cover f1. Then one could further ask which one
as the two candidates f2 and f ′2, gives the correct composed cover f1 ◦ f2 :
X0(p2

7)→ X0(1).
Firstly, the triple of the genus zero Belyi map f1 happens to have a trivial

centralizer. So it can be determined straight from its rami�cation data, with
the help of [Bir]. We get e.g.:

f1 =
1

26.32

(x2 + 232/3x+ 3403/36)3(x2 + 3/4)

(x− 13/6)7

Then, a computation of the monodromy of the compound cover f1 ◦ f2

(of degree 56 !), shows that, with this choice of f1, then the f2 given in (5.12)
provides the correct canonical composed cover f1 ◦ f2.

On the contrary, we could unfortunately not perform monodromy com-
putations with the cover f2,F (

√
−7) : X0(p2

2)→ X0(p2), because our equations
are only de�ned over Q(

√
−7). So this leaves open the possibility that the

equation in characteristic zero for the covers f2,F (
√
−7) and f2,F (

√
−7) that we
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obtained in equation (5.4), might actually describe covers with wrong ram-
i�cation triples. Indeed, J. Sijsling's algorithm BelyiInit in [Sij2] provides
another pair of conjugacy classes of triples that have the same rami�cation
data (i.e. cycle lengths) as the pair σ2 and σ′2:

σ2,wrong = [(1, 2)(3, 4)(5, 6)(7, 8), (1, 3, 4, 5, 7, 6, 8), (1, 7, 6, 8, 5, 3, 2)](5.16)

σ′2,wrong = [(1, 2)(3, 4)(5, 6)(7, 8), (1, 5, 6, 8, 3, 2, 4), (1, 3, 7, 8, 5, 2, 4)](5.17)

Their monodromy group is of cardinality 1344 (instead of 56). There
exists a �fth triple with this rami�cation data but it is discarded (since it
cannot account for the pair of nonisomorphic covers f2,F (

√
−7) and f2,F (

√
−7)

that we obtained).

Thus, this ambiguity motivates the tedious proof done in section 6 (based
on exhaustive Hensel liftings). We hope to resort soon to numerical methods
to check the monodromy representation anyway. Beforehand, we describe
sanity checks.

5.3 Computing the next steps of the towers

As an additional check for both towers, we computed the �bred products
de�ning X0(p3

7)F3 and X0(p3
2)F3 as in (3.2). More precisely, we could deter-

mine their function �elds as follows:

Let A4 be the a�ne plane with variables x, Y, z, T . Call Ex,Y (p) and
Ez,T (p) the polynomials de�ning the plane models of the elliptic curves
X0(p2) determined above (p equals p2 or p7). Using addition and inver-
sion formulas on an elliptic curve, one determines a rational formula for the
involution w2(z, T ), which is correct except at one point.

The locus of the �ber products X0(p3) in the square of the plane model
X0(p2) × X0(p2), is de�ned by the vanishing of the numerator Np of w1 ◦
f2(x, Y )− f2 ◦ w2(z, T ). We get (up to points where it is badly de�ned):

Np7 = 2x2Y z4 + 2x2Y z3 + 2x2Y z + 2x2Y + x2z4 + x2z3 + x2z + x2+

+ xz4 + xz3 + xz + x+ 2z2T + z2 + z + 2
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and
Np2 = x4z8 + 2x4z7 + 2x4z6T + x4z6 + 2x4z5T + 2x4z5 + 2x4z4T + x4z4

+ 2x4z3T + 2x4z3 + 2x4z2T + x4z2 + x4zT + x4z + 2x4T + 2x4

+ x3z8 + 2x3z7 + 2x3z6T + x3z6 + 2x3z5T + 2x3z5 + 2x3z4T

+ x3z4 + 2x3z3T + 2x3z3 + 2x3z2T + x3z2 + x3zT + x3z + 2x3T

+ 2x3 + 2x2Y z7 + 2x2Y z6T + 2x2Y z6 + 2x2Y z5T + x2Y z5

+ 2x2Y z4T + 2x2Y z4 + 2x2Y z3T + x2Y z3 + 2x2Y z2T

+ 2x2Y z2 + x2Y zT + 2x2Y z + 2x2Y T + x2Y + x2z8 + 2x2z7

+ 2x2z6T + x2z6 + 2x2z5T + 2x2z5 + 2x2z4T + x2z4 + 2x2z3T

+ 2x2z3 + 2x2z2T + x2z2 + x2zT + x2z + 2x2T + 2x2

+ 2xY z8 + xY z6 + 2xY z5 + xY z4 + 2xY z3 + xY z2 + xY z

+ 2xY + z7 + z6T + z6 + z5T + 2z5 + z4T + z4 + z3T

+ 2z3 + z2T + z2 + 2zT + z + T + 2

Summing up, one considers the scheme:

E = {(x, Y, z, T ) ∈ A4 , Ex,Y (p) = Ez,T (p) = N(x, Y, z, T ) = 0},
Which has one irreducible component X of genus �ve (respectively seven).
These are happily the genera predicted by Corollary IV.2.12 for the curves
X0(p3

7) and X0(p3
2).

Remark 5.6. In addition, E has one (respectively two) other irreducible com-
ponents of degree one. They probably occur as X0(p2)×{0}, because of the
points where f2 ◦ w2(z, T ) are badly de�ned.

Our two-variable equations for the function �elds of the component X
�which is expected to be the one of X0(p3

7) (respectively X0(p3
2))� are one

page-long. This is mainly due to our computations of f2 ◦w2 as compositions
with the translation by a point on an elliptic curve: this raises the size of the
fraction expressing f2.

Computing it directly as a cover solves this problem (and also suppress
the parasitic components): this is done in the �nal section 6.3.

Next, one enlarges the constant �eld of X to F33 and computes the places
of degree one and two of XF33

. This enables to recover the number of points
over F33 and F36 of the smooth model of XF33

. Which gives: 28 and 1000
points for X0(p3

7), and 24 and 1760 points for X0(p3
2). These numbers happily

coincide with those predicted by Theorem V.5.5 (the traces being evaluated
with Hilbert modular forms).
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6 Wrap-up of VI.5.2 and complements on canon-

ical covers

6.1 Wrap-up statement of VI.5.2

Let us �rst recall the de�nition of the towers considered in VI.5. Let F =
Q(cos(2π/7)) be the totally real number �eld of degree three and narrow
class number one. Fix once and for all a real embedding ι : F ↪→ R. Let B
be the quaternion algebra over F which is rami�ed exactly at: the two other
in�nite places than ι, and no �nite place.

One remark about the choice of ι: actually all the levels N considered in
the thesis for this algebra B are Galois-invariant. Also, the �nite discriminant
of B is Galois invariant because it is trivial. Thus Remark 5.7 above, about
conjugate quaternion algebras, implies that one would get the same Shimura
curves if having �xed another in�nite split place ι ◦ σ for B.

B acts on the upper-half plane through through the split real place ι :
B ↪→ M2(R). Consider the prime ideals p2 and p7 of F above the inert
prime (2) and the rami�ed (7). De�ne the corresponding nested families of

congruence subgroups of PSL2(R): Γ0(pi2) and Γ0(pj2) (see III.5.1). Forming
the quotients of the upper-half plane, inclusions of nested subgroups give rize
to the two towers of canonical covers (see Theorem V.5.1) over F :

. . .
f4−→ X0(p3

7)
f3−→ X0(p2

7)
f2−→ X0(p7)

f1−→X0(1)

. . .
f4−→ X0(p3

2)
f3−→ X0(p2

2)
f2−→ X0(p2)

f1−→X0(1)

Theorem C. (i) The canonical cover f2,F : X0(p2
7)F −→ X0(p7)F descends

over Q. Its equation, and that of the Atkin�Lehner involutions, are given by
Equations VI.(5.11) and VI.(5.12)�(5.15):

X0(p2
7)F : y2 + xy = x3 − x2 − 2x− 1(6.1)

f2,Q(x, y) = 2x+ 5x2 − 3x3 + (−3 + 3x+ x2)y , branched over(6.2)

Q3, Q
′
3 = ±

√
−3;(6.3)

w2 : X0(p2
7)Q 3 P −→ (2,−1, 1)− P(6.4)

w1 : t ∈ P1
Q 3 t −→ −1− t(6.5)
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(ii) The quadratic base �eld extension to F (
√
−7) of the canonical model

X0(p2
2)F is given by VI.(5.2):

X0(p2
2)F (

√
−7) : y2 = x3 + x2 − 114x− 127 .

(ii')The quadratic base �eld extension to F (
√
−7) of the canonical cover

X0(p2
2)F −→ X0(p2)F = P1

F , is given by VI.(5.4):

f2,F (
√
−7) =

1

x− 1
32

(91z + 169)

[
1

12544
(−z + 11)x4 +

1

12544
(−27z − 151)x3

+
1

3136
(71z − 109)x2 +

1

3136
(491z + 4231)x+

1

3136
(−8411z − 14971)

+y
( 1

614656
(−13z − 49)x3 +

1

153664
(205z + 49)x2

+
1

76832
(−317z + 1519)x+

1

153664
(−2613z + 5831)

)]
.

(iii) The equations for the reduction over F36 of the canonical cover after
the quadratic extension to F (

√
−7): f2 : X0(p2

2)F (
√
−7) −→ X0(p2)F (

√
−7) =

P1
F (
√
−7)

, and likewise for the Atkin�Lehner involutions, are given by Equa-

tions VI.(5.7) to (5.10). Luckily for us, they descend over F3:

f2(x, y) =
1 + x2 + x3 + x4 + (x+ 2x2)y

2 + x2 + x3 + x4 + x2y

X0(p2
2)F3 : y2 = x3 + x2 + 2

w2 : X0(p2
2)F3 3 P −→ (1, 2, 1)− P

w1 : t ∈ P1
F3
3 t −→ −t

Proof (i) Recall that the veri�cations done in the paragraph "Additional
monodromy computations "f2,Q" prove that the equation of f2,Q given in
(6.1) (i.e. (5.12)) coincides with the unique descent of the canonical cover
f2,F over Q (up to Q-isomorphism).

(ii) Consider the rami�cation diagram of X0(pi2) in �5.1. Here, "rational"
means "rational over F", the �eld of de�nition of the canonical covers. The
rational point R7 has two preimages that are rami�ed of order one by the
rational map f1,F : Q7 and Q′7. So they are quadratic conjugate over F . The
formula in equation (5.3) even shows that they have coordinates in F (

√
−7).
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Each of these points have a unique preimage by f2,F that is rami�ed of
order one: P7 and P ′7. So P7 is de�ned over F (

√
−7): this shows that the

base �eld extension of the canonical model : X0(p2
2)F (

√
−7) is an elliptic curve.

So it is equal to its Jacobian over F (
√
−7).

By arguments with the conductor and the j-invariant, we could determine
its equation in the paragraph "Theoretical predictions for the canonical mod-
els": VI.(5.2), recalled in (ii).

(ii') Firstly, the whole purpose of (ii') is to give an equation for f2,F (
√
−7)

with smaller coe�cients than the output of the algorithm of [KVMSV].
But there certainly exists more clever methods than our whole recompu-

tation.

From now on, our goal is to certify that the map f2,F (
√
−7) given in (ii')

has the same monodromy as that of the canonical cover: σ2 or σ′2. Because
then, by the same unicity argument as in (i), they will coincide.

Unfortunately as pointed at the end of "Additional monodromy compu-
tations", we were not able to do the same numerical veri�cation as in (i).
Hence this time the map f2,F (

√
−7) is not de�ned over Q and Maple had trou-

ble with the input given in �oating complex numbers. There exists plenty of
(privately implemented) numerical methods to overcome this.

But for now in this case, we got along with a cheaper method. At the
cost of the following lengthy argumentation:

� Firstly, we know from (ii) the reduction of X0(p2
2) over F3(

√
−7), and

also that of X0(p2)F3(
√
−7) = P1

F3(
√
−7)

;

� Then, an exhaustive computation shows that there exist only two iso-
morphism classes of covers over F3(

√
−7): call them f2,F3(

√
−7) and

f2,F3(
√
−7) that have the same rami�cation pattern than the canonical

cover f2,F .

(Unicity) Thirdly, an exhaustive search for Hensel liftings shows that there exists
only two isomorphism classes of covers over F (

√
−7): f2,F (

√
−7) and

f2,F (
√
−7) with this rami�cation pattern: the �rst one is given in (ii').

(We ensured exhaustivity very recently).

(Existence) But, remember that the algorithm of [KVMSV] certi�es that there
exists two isomorphism classes of covers: X0(p2

2)F (
√
−7) −→ X0(p2)F =
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P1
F with this rami�cation pattern, and whose monodromies are given

by σ2 or σ′2 (this is how we found that X0(p2
2)F (

√
−7) was the canonical

model).

� thus by unicity, the covers f2,F (
√
−7) and f2,F (

√
−7) are equal to the latter

and thus their monodromies are given by σ2 and σ′2. One of them is the
canonical one, and the other is isomorphic to the Atkin�Lehner twist.
Since we are going to take the �ber product of the two, the ordering is
not important.

(iii) The proof of (ii') shows that the two covers f2,F3(
√
−7) and f2,F3(

√
−7)

that we started from, are indeed the reduction of the canonical covers!

6.2 On the form of a rational function on an elliptic
curve, by H. Randriam

Proposition 6.1. Let E be an elliptic curve and f a rational function of
degree d. Let OE be the point at in�nity. Denote div(f) = Z −D with avec
Z,D prime to one another and e�ective of degree d. Then

� either the points of D with multiplicities sum to zero (and thus Z also),
then f can be expressed as a rational fraction u/v of degree d;

� or D does not sum to zero. Then f can be expressed as a rational
fraction u/v of degree d+ 1

Proof One �rst looks for u in L(dOE) such that v = fu in L(dOE), which is
equivalent to ask for div(u) = D − dOE, possible if and only if D sums to
OE.

If it is not the case, then one chooses u in L((d+1)OE) such that div(u) =
D + (−P ) − (d + 1)O. Then one concludes likewise with v = fu in L((d +
1)OE).

6.3 Simpler equations for the twisted covers, including
over F5

As mentionned in Remark 5.6, the Atkin�Lehner twists of the covers f2 could
have shorter equations if they were computed directly from their rami�cation
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data. This is what we did, with the help of the previous argument on rational
functions (a cover of P1 is a rational function).

- For f2,Q : X0(p2
7)Q −→ X0(p7)Q:

f2,Q(x, y) = 2x+ 5x2 − 3x3 + (−3 + 3x+ x2)y branched over(6.6)

w1 ◦ f2,Q ◦ w2 =
1

(x− 2)4

(
x4 + 4x3 + 4x2 + 3 + y

(
x2 + 3x+ 2

))
(6.7)

- For the reduction f2,F3(
√
−7) : X0(p2

2)F36
−→ X0(p2)F36

= P1
F6

3
, which

descends over F3:

f2,F3(x, y) =
2x4 + 2x2 + x+ 2 + y

(
x3 + x2 + 2

)
x2 + y

(
x2 + x+ 2

)(6.8)

w1 ◦ f2,F3 ◦ w2 =
2x4 + 2x2 + x+ 2 + y

(
2x3 + 2x2 + 1

)
2x2 + y

(
x2 + x+ 2

)(6.9)

- Likewise, the cover f2,F5(
√
−7) : X0(p2

2)F56
−→ X0(p2)F56

= P1
F6

5
and its

Atkin�Lehner twist luckily descend over F5:

f2,F5 =
3x4 + 4x2 + 4x+ 1 + y

(
2x3 + x+ 4

)
2x3 + 3x2 + 4 + y

(
x2 + x+ 2

)(6.10)

w1 ◦ f2,F5 ◦ w2 =
2x4 + x3 + 3x2 + 2x+ 2 + y

(
2x2 + x

)
x4 + x3 + x2 + x+ 3 + y

(
2x2
)(6.11)

But our computations to verify the next step X0(p3
2)F52

did not end yet.
So we wait a bit before claiming that Theorem B also holds over F5 with
Shimura curves. This would then prove that the �gure 4,74 in Table 2.2 can
indeed be reached with Shimura curves.
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Explicit symmetric multiplication

algorithms

1 Roadmap

As a motivation, consider the inequality (1.2) of Theorem I.1.1 and �x the
degree of the divisor G. It is equal to degG =

∑
i ui.di, where di is the degree

degPi. Then �as one sees from table I.2.1� the upper bound on µsym
q (m) given

by the RHS of the inequality will be all the more large that the degrees of
the points Pi and their multiplicities ui are big.

We are going to discuss this issue in the symmetric case, because the
bound of Corollary 1.2 leaves more room for improvement than the assym-
metric bound of Proposition 1.5.

So let us set D = D1 = D2, and remind recall that the three divisors
(G,D,Q) must simultaneously respect the conditions of Theorem I.1.1. Call
such an admissible triple (G,D,Q) an interpolation system.

Thus, to minimise the symmetric bilinear complexity of the multiplication
in Fqm , one is lead to:

1 Collect (and improve) the best bounds for the µsym
q (m, l);

2 Find curves with many points Pi of low degree;

3 For such a curve X, �x a (small) degree degG of G such that one
hopes the existence of an admissible interpolation system (G,D,Q) on
X (as precised in next section). For this candidate value of degG,

138
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�nd a combination (ui, Pi)i of points and multiplicities that, numeri-
cally, minimises the upper bound of Theorem I.1.1 under the constraint
degG ≥

∑
i ui. degPi;

4 For this �xed candidate value degG, given such a numerically optimal
G =

∑
i uiPi, check the existence of an interpolation system (G,D,Q).

1 is the motivation for I.2.3. The methods to �nd the new bounds are de-
scribed in the next section. 2 is the motivation for the last section. 3 is an
integer programme and will be illustrated in �3.2. 4 will be discussed in the
next section.

2 (Improved) search for optimal multiplication

algorithms in F2m[y]/y
l

2.1 The algorithm

To obtain the new upper and lower bounds, we built on the exhaustive search
method introduced in [Oce], then in [BDEZ]. We would like �rst to share
our techniques of implementation and search that contributed to these re-
sults. And last, regarding the new lower bounds, we give the arguments that
make our computational proofs valid and reproducible, especially when new
shortcuts are involved.

Let K be a �eld, A = Kp a K-vector space of dimension p and B a
(symmetric)K bilinear map, taking here values in A, seen as a tensor in A∗⊗
A∗ ⊗ A. Then, evaluation on the last component A de�nes a "coordinate"
map1:

A∗ → A∗ ⊗A∗ ,

whose image is a K-vector subspace noted T . Let G be the set of (symmetric)
bilinear forms of rank one in A∗ ⊗ A∗. Thus from k generators of T in G,
one deduces explicit decompositions of B of rank k. Then the (partially
symmetric) tensor-rank of B is equal to the least number k, of elements of
G, necessary to generate T .

Going in the other direction, the incomplete basis theorem implies that:
a subspace W of dimension k of A∗ ⊗ A∗, which both (i) is generated by

1This could be seen as a "tensor-�attening map", but we ignore how far this helps.
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elements of G and (ii) contains T , can be generated by a basis of T completed
with elements of G

E.g. in the case where B is the multiplication in a K-algebra A, then one
need to complete exactly with k − n elements. Because the subspace T is of
dimension n as soon as A has a unit.

These arguments validate the following algorithm ([BDEZ]), which both:
given an integer k, determine if B is of rank strictly greater than k and, if
not, �nd all the decompositions of length k of B.

Algorithm 2.1. Start with the subspace W = T of A∗ ⊗ A∗, of dimension
n. Then, for each element g of G independent from W , complete W by g,
to obtain W ′ = W ⊕ g of dimension n + 1. Iterate until the dimension
reaches k. Test if the subspace obtained is generated by elements of G. If it is
not the case for all the subspaces produced, it thus implies that the (partially
symmetric) rank of B is strictly greater than k.

In practise, the algorithm �rst produces, by recursion on the dimension,
all subspaces W of dimension k in A∗ ⊗ A∗, that can be generated from
T completed with elements of G. Then, for each subspace, tests if it is
generated by elements of G (the production and testing stages are actually
simultaneous, in order to cut nodes of the recursion on the �y).

2.2 Improvements

We describe now three implementation techniques that saved us signi�cant
computation time.

(1) When looking for a symmetric decomposition of a symmetric bilinear
form B, the entire research can be implemented in the subspace of
symmetric bilinear forms;

(2) As pointed by F. Courbier, the �nal step of the algorithm can be sped
up. Instead of systematically computing the rank of G ∩W , one can
check beforehand if its cardinality is lower than2 dimW ;

2This leads to noticing that, for algebras of dimension greater than 7, letting k be the
known upper bound for the tensor rank of multiplication, then a general subspace W of
dimension k in (A∗⊗A∗)Sym will a priori contain less than 0.01 rank-one tensor. Thus, it

would be interesting to know how to restrain the search to subspaces with a higher density

of rank-one tensors.
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(3) To avoid testing several times the same subspace, one can �x once for
all an ordering on G = (g1, . . . , gM). Then, at each step of the recursion,
completeW = T⊕Kgi1⊕. . . Kgis by only the vectors g in G numbered
after gis .

Finally, we put apart an observation that, either, helps �nding quicklier
a decomposition of given length k (and thus an upper bound), or, when none
exists, gives a theoretical shortcut to establish this nonexistence3.

Observation 2.2. Suppose that a group H of linear transformations of E =
A∗ ⊗A∗ :
(i) preserves the set G of symmetric rank-one bilinear forms;
(ii) preserves the subspace T spanned by the components of the bilinear map

B.

Then, given an element g ∈ G, there exists a subspace W of dimension k
solution of the problem (i.e. (a) generated by rank one bilinear forms and (b)
containing T ), if and only if, for each element h(g) in the orbit of g under H,
there exists a subspace W ′ of dimension k which is a solution of the problem

The observation has the following consequence. Suppose that one wants
to perform a recursive search (say for rank k, so a recursion of depth k− n).
Then it is enough to �x one element γj ∈ G per orbit Oj = H.γj (the orbit
representatives). And to perform the recursion with the �rst element gi0
equal to one of the representatives γj . So this greatly narrows the choice of
the �rst element.

Note that the work [Svy] has, since, generalized this observation. Among
other improvements, it computes on the �y the stabilizer of the subspace
obtained at every step of the recursion.

Here are two examples. In the case of a �nite �eld extension A = Fqm/Fq,
there is one single big orbit in the set G of symmetric bilinear forms, under the
action of the group of invertible elements H = F

.
qm de�ned by composition

with two-side multiplication :

(2.1) b ∈ F
.
qm : λ(· , ·) −→ λ(b ·, b ·)

Consider now the algebra

A = Fqm [y]/yl = Fq

〈
(xiyj)i=0...m−1

j=0...l−1

〉
.

3This method might be an elementary case of tensor decomposition methods. It origi-
nated thanks to an apparently innocuous lecture of G. Cohen on cyclic codes.
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The dual is A∗ = Fqm [y∗]/y∗,l, where y∗,j is the linear form that sends x0yj

to one and the other standard basis elements to zero. The group of invertible
elements H = A. is equal to the polynomials of valuation zero in y. Consider
the action of H on the symmetric tensors of rank one G ⊂ A∗ ⊗A∗, de�ned
the same way as previously.

Then there are l orbits {O0, . . . ,Ol−1}. The orbitOj = H.(yj,∗)⊗2 consists
in the symmetric bilinear forms of rank-one expressible φ⊗2, where φ is a
polynomial of degree exactly j in y∗. In particular the largest orbit is Ol−1

and consists of elements φ⊗2 such that, said otherwise, φ is not zero on at
least one element in A of degree l − 1 in y.

Regarding this last example, notice in addition that any minimal (sym-
metric) multiplication algorithm will involve at least one element of the great-
est orbit Ol−1. So this narrows the search for subspaces containing the ten-
sor's space of components T .

2.3 Perspectives

These computations were performed with the C library [M4rie] dedicated
to fast linear algebra in characteristic two. But far less computer resources
were used than in [BDEZ]. So we hope that these re�nements of the method
�and more certainly the further improvements of [Svy]� will help �nd more
bilinear formulas. E.g. �nd if µ4(1, 6) ≤ 13 ?, as proposed in remark I.2.11,
or �nd if µ2(7, 1) ≤ 18 ?, as proposed in remark I.2.13.

3 Best expectable complexity using a given curve

3.1 Best expectable interpolation systems

We introduce new results and tools that help �nding optimal interpolation
systems on a given curve.

Let X be a curve of genus g over Fq. An optimal symmetric interpolation
system on X with respect to multiplication in a �nite �eld extension Fqm , is a
triple (G,D,Q) that provides a symmetric multiplication algorithm in Fqm ,
reaching a lower bound for the complexity of the Chudnovsky-Chudnovsky
interpolation method on X. This will be precised in De�nition 3.5.

The �rst two key-observations were brought to us by H. Randriam.
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Observation 3.1. When H1(X,O(D)) = 0, the su�cient condition (ii') in
Theorem I.1.1 is in fact equivalent to (ii). Moreover, it is remarkable that
this situation happens, for instance, when degD ≥ 2g − 2, by the Riemann-
Roch theorem.

Indeed, one then has the shortened exact sequence :

(3.1) 0→ H0(X,O(D −Q))→ H0(X,O(D))
evQ−−→ OX,Q/(tQ)→ . . .

. . .→ H1(X,O(D −Q))→ 0

Observation 3.2. Let X be a curve of genus g over Fq, m an integer and Q
a closed point of degree m. Suppose that there exists an interpolation system
(G,D,Q) on X, with Q of degree m, which furthermore satis�es the su�cient
condition (ii') of Theorem I.1.1. Then, degG ≥ 2m+ g − 1 .

Proof Let (G,D,Q) be the interpolation system of the hypothesis, and n
(reps. d) the degree of G (resp. D). By condition (i) of Theorem I.1.1,
l(2D − G) = 0. Thus, the theorem of Riemann�Roch applied to 2D − G
yields:

(3.2) 2d− n ≤ g − 1

In addition, by condition (ii') of Theorem I.1.1, which is satis�ed here by
assumption, i(D −Q) = 0. Thus, the theorem of Riemann�Roch applied to
D−Q yields d−m ≥ g− 1. Multiplication by −2 of this inequality yields:

(3.3) −2(d−m) ≤ −2(g − 1)

Summing (3.2) with (3.3), leads to 2m− n ≤ −g + 1.

Lemma 3.3. Let X be a curve of genus g, m an integer and Q a closed
point of degree m. Suppose furthermore that m > g. Then, any divisor
D belonging to an interpolation system (G,D,Q) on X satis�es degD ≥
m+ g − 1.

Proof Note d the degree of D.
First case : suppose 2g− 2 < d < m+ g− 1 (which is not an empty case

as soon as g is strictly lower than m−1). Then, for degree reasons, i(D) = 0.
Thus the Riemann-Roch theorem implies l(D) = d+1−g < m = dimFq(Q).
Therefore, the evaluation map (ii) of Theorem I.1.1 cannot be surjective, for
dimension reasons.
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Last case : suppose d ≤ 2g−2 < m+g−1. Then, K being the canonical
divisor ofX, the Riemann-Roch theorem and Serre duality imply that l(D) =
l(K −D) + d+ 1− g. But K −D being of non-negative degree, we also have
the bounding l(K −D) ≤ 2g− 2− d+ 1. Thus, l(D) ≤ g < m = dimFq(Q),
thus the same contradiction as previously.

The following consequence was known to H. Randriam before it was pub-
lished in our paper [Ra, Table 1].

Proposition 3.4 (Properties of optimal interpolation systems). Let X be a
curve of genus g, m an integer and Q a closed point of degree m. Suppose
furthermore, as previously, that m > g. Then :

1. The degree of an interpolation divisor G, belonging to an interpolation
system (G,D,Q), cannot be lower than 2m+ g − 1;

2. For such an interpolation system, i.e. with degG attaining the lower
bound 2m+g−1, then the degree of D is necessarily equal to m+g−1.

Proof Let (G,D,Q) be an interpolation system with Q of degree m. Note d
the degree of D. Firstly, d being strictly greater than 2g− 2, observation 3.1
applies. Hence, the interpolation system satis�es (ii'). Thus, observation 3.2
applies : G cannot be of degree lower than 2m+ g − 1.

For the second part, let (G,D,Q) be an interpolation system as in the
assumption, that is with Q of degree m and degG attaining the lower bound
2m+ g − 1. Then, recall that by inequality (3.2), 2d− degG ≤ g − 1. Thus
here, d ≤ m+ g − 1. But by the previous lemma, we also have the opposite
inequality : d ≥ m+ g − 1.

De�nition 3.5. Let X be a curve of genus g over Fq, and m an integer.
Suppose furthermore, as previously, that m > g. An optimal interpolation
system on X in degree m is a triple (G,Q,D), with Q of degree m, that
satis�es the three following conditions :

1. Satis�es the conditions (i') and (ii') of Theorem I.1.1;

2. degG reaches the lower bound 2m+ g − 1 of proposition 3.4;

3. G is numerically optimal, that is : write G = u1P1 + · · ·unPn, then,
this combination of points Pi and multiplicities ui minimizes the upper
bound on µsym

q (m) given by Theorem I.1.1.
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Proposition 3.6 (E�ective construction). Let X be a curve of genus g,
such that there exists an optimal interpolation system (G,D,Q), with Q of
degree m. Note Cl0(X) the zero-class group of X. Then, it is possible to build
(G,D,Q) with at most twice #Cl0(X) emptiness-checkings of Riemann�Roch
spaces4.

Indeed, �rst notice that, (G,D,Q) being optimal by assumption, the
degree of D is m + g − 1 by proposition 3.4. In particular by Observation
3.1, the su�cient condition (ii') of Theorem I.1.1 is actually equivalent to
(ii). Thus, one does not miss any optimal interpolation system (G,D,Q) by
checking conditions (i') and (ii') instead of (i) and (ii). Secondly, notice that
conditions (i') and (ii') depend only on the class of D−Q (resp. 2D−G) in
Cl0(X).

Step 1 : Look for a numerically optimal G, of degree 2m + g − 1, whose
class has not been already produced in the previous runs5 of Step 1, then
proceed to Step 2.

� Step 2 : look for a divisorD, of degreem+g−1, such that l(2D−G) = 0,
and such that the class of D has not been considered yet in the previous
runs6 of Step 2. If such a D exists, proceed to Step 3.

� Step 3 : �nd every possible closed point Q of degree m, such that
the class of D − Q in Clg−1(X) has not been tested yet in the
previous runs of Step 3, and then test if i(D − Q) = 07. If so,
return (G,D,Q).

4Actually, both computations for (i') ("Step 1") and (ii') ("Step 2") will here occur in
the group Clg−1, so one can remove the factor 2, as soon as one keeps in memory all the
classes of divisors already tested

5Enumerating the (classes of) numerically optimal divisors on X is performed in two
steps : (1) enumerate each collections of integers (nd,u)d,u (where nd,u stands for the
number of points of degree d involved with multiplicity u in G), that (a) minimise the
upper bound of Theorem I.1.1:

∑
d,u nd,uµ

sym
q (d, u), under the constraints that (b) the

total degree
∑
d,u nd,udu (is greater or) equal to the above lower bound 2m + g − 1, and

(c) for each d,
∑
u nd,u is lower or equal to the number of points of degree d in X. (2) for

each collection (nd,u)d,u, enumerate the divisors involving exactly nd,u points of degree d
with multiplicity u

6This involves at most |Cl0(X)| emptyness checks of Riemann�Roch spaces in Clg−1(X)
(minus those already performed in the previous runs).

7This involves at most |Cl0(X)| emptyness checkings of Riemann�Roch spaces in Clg−1.
(D−Q being here of degree g−1, the theorem of Riemann�Roch implies that this condition
is equivalent to l(D −Q) = 0)
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� If we are here, this means that the last run of Step 3 did not return
any solution. Assuming that an optimal interpolation system does
exist, this implies that there remain classes (C1 . . . Cs) in Clm(X),
which have not been tested yet in the previous runs of Step 3.
Thus, return to Step 2.

� If we are here, it means that no divisors D were found in Step 2. Then,
the assumption for the existence of an interpolation system implies
that: there exists another numerically optimal divisor G′′, and another
D′′, such that there exist classes (C1, · · · , Cs) in Clg−1(X), that have
not been tested in Step 3 and are of the form (D′′ − Qi)i∈I . Thus,
return to Step 1.

Remark 3.7. Under the additional assumption where points Q of degree m
would exist in every single class Clm(X), then the �rst run of Step 3 always
returns a solution as soon as an optimal interpolation system exists. Thus, if
no solution is returned, this is a proof that no optimal interpolation system
of degree m does exist on X.

It is to be noted that, even if the case of elliptic curves can be dealt with
directly, a proof of the additional assumption in this case does exist. Indeed
[Sho, Th. 27] states that, for q ≥ 7 (and presumably ≥ 4 for m su�ciently
large), for m ≤ 24096, there exists a prime divisor of degree m in every class8.
Any analogous proof in higher genus would be of interest.

3.2 The example of elliptic curves, over F2

Lowest expectable value for the degree of G

We �rst recall the known su�cient conditions to build interpolation algo-
rithms on elliptic curves over a general Fq ([Ran1, Prop. 4.3]) :

Proposition 3.8. The notations being as in Theorem I.1.1, let X be an
elliptic curve over Fq and P∞ the neutral element of the group of points of
X(Fq). Let m be an integer. Suppose that X admits a closed point Q of
degree m. Let G be an e�ective divisor on X, written as:

(3.4) G = u1P1 + . . .+ unPn ,

8 There is actually a mistake in Lemma 19 of loc. cit.: in the �rst line of (2), µ is
actually meant to be n/vr. Thus, in the last but one line, µ can actually be equal to 1
when n has no square factors. Anyway this is compensated when, e.g. , m is greater than
6! = 720.
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where the Pi are pairwise distinct closed points of degrees degPi = di, so
degG =

∑n
i=1 diui. Then,

µsym
q (m) ≤

n∑
i=1

µsym
q (di, ui)

provided one of the following conditions is satis�ed :

(i) degG = 2ml and |X(Fq)| ≥ 2 and Cl0(X) is not entirely of 2-torsion.

(ii) |X(Fq)| ≥ 2 and degG ≥ 2ml + 1.

Furthermore if the additional criterion on G is satis�ed:

the divisor G− degG.P∞ is not equivalent to 0

then degG can even be taken equal to 2ml.

(iii) degG ≥ 2ml + 3.

Taking the example of F2, the �ve equivalence classes of elliptic curves
over this base �eld are given by the following equations.

y2 + y + x3 + x+ 1 = 0(3.5)

y2 + xy + x3 + x2 + 1 = 0(3.6)

y2 + y + x3 = 0(3.7a)

y2 + y + x3 + x = 0(3.7b)

y2 + xy + x3 + 1 = 0(3.7c)

In Table 3.1 below, we classify these curves along the previous conditions.
For each curve X we give: the number B1 of integral points, the structure
of the group of points Cl0(X) and, thus, the smallest degree of G satisfying
the previous su�cient conditions: we call this value "upper-bound". In ad-
dition, we also bound below the degree degG of an interpolation divisor on
X (distinguishing whether or not the additional criterion on G is satis�ed).
Regarding the 2-torsion case, we �nally explain why it is in fact nearly always
possible to �nd a divisor G satisfying the additional condition. Before giving
proofs, we can notice that all the lower bounds were actually reached by the
previously known upper-bounds9.

9The proofs and results for this column are the same on a general base �eld Fq. And
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Table 3.1: Lower-upper bounds for the degree of the best interpolation divisor
G

Curve
B1 Cl0

Additional
criterion on

G

Lower
bound

on degG

Upper
bound

on degG

Is the additional
criterion on G
satis�able ?

(3.5) 1 0 . 2ml + 3 2ml + 3 .

(3.6) 2
Z/2

when false : 2ml + 1 2ml + 1 yes, for nearly
all m ≤ 24096

when true : 2ml 2ml

(3.7a)
3

Z/3
. 2ml 2ml .

(3.7b)
5

Z/5

(3.7c)
4

Z/4

Demonstrations Curves (3.7a), (3.7b), (3.7c) and [(3.6) when criterion
on G true] : the lower-bounds settled at 2ml are a direct consequence of
Prop. 3.4,(1.)10.

Curve (3.6) - when criterion on G false : if degG were 2m, then by
Prop. 3.4,2 the degree of D would by m, thus 2D−G would be in the zero-
class, thus l(2D−G) would be one, which contradicts (i) by Riemann-Roch.

Curve (3.5) : Firstly, it is not possible to build a degree 2m interpolation
divisor G. We reuse the arguments of [Ran1] 4.7. The evaluation map evQ :
L(D) −→ OX,Q/(tQ) �ts in the long exact sequence

(3.8) 0→ H0(X,O(D −Q))→ H0(X,O(D))
evQ−−→ OX,Q/(tQ)→ . . .

. . .→ H1(X,O(D −Q))→ 0

But, D being of degree m by proposition 3.4, the Riemann-Roch theorem

regarding the discussion on the divisor G for the full 2-torsion curve (3.6), such cases of
curves arise in �nite number (indeed, it is a basic fact that the 2-torsion group of an elliptic
curve is included in Z/2Z× Z/2Z, and on the other hand, curves have enough points for
q su�ciently large). Furthermore, the classi�cation provided by [BBT] shows that this
number is small.

10And were probably known since Shokrollahi 1992
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implies that l(D) = m. Also, the divisor D − Q having degree 0 and (iii)
having trivial class group, D − Q is then equivalent to zero, thus l(D − Q)
is equal to 1. As a result, dimension-counting implies that the evaluation
map evQ has image of dimension lower or equal to m − 1, thus cannot be
surjective.

Secondly, degG cannot be equal to 2m + 1. Indeed, the previous ar-
guments shows that, in order to have the surjectivity of the evaluation
at Q map, one must have d = degD > m. Write d = m + i. Then,
deg(2D − G) = 2i − 1 > 0. Thus, i(2D − G) = 0 for degree reasons. So,
by the Riemann-Roch theorem, l(2D − G) = 2i − g = 2i − 1 > 0. So the
condition (ii') is false. But recall that, by observation 3.1, the degree of D
being greater than 2g−2, condition (ii) of Theorem I.1.1 is also not satis�ed.

Finally, degG cannot be equal to 2m + 2. For that, writing again d =
m+ i > m, two cases are possible:

� Either i > 1, thus deg(2D−G) = 2i− 2 > 0 so by the same argument
as above, condition (ii) of Theorem I.1.1 is not satis�ed;

� Or, i = 1. But then deg(2D−G) = 0, thus linearly equivalent to zero,
by triviality of the zero-class group of curve (iii). Thus l(2D−G) = 1,
contradicting condition (i) of Theorem I.1.1.

Curve (3.6) - satis�ability of the condition on G : Claim : for
each degree m ≤ 24096, there exists a point P of degree m such that P−mP∞
does not lie in the zero class.

Proof of the claim: one adapts the estimations in [Sho] that lead to
his Theorem 16 (1) (paying attention to a small mistake in the proof: see
Footnote 8), replacing q and the pi-torsion by their values, taking m great
enough to compensate the new positive terms, and computationally check
the values of m below this threshold.

End of the proof: for nearly all m, given a numerically optimal divisor
G of degree 2m on Curve (3.6) (furthermore assumed not built using points
of degree greater than 24096), it is possible to deduce a numerically optimal
G′ that does not lie in the zero-class (by swapping a couple of points and/or
multiplicities)11.

11Indeed, the possible degrees degG = mi for which this swapping is not possible, lie
among those for which all the points Pi of X �up to a certain degree ni� occur in G with
equal multiplicities.
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Table 3.2: Today's best possible upper bounds for µsym
2 (m) using elliptic

curves

m
former upper
bound ([BBT])

better bounds -
with existing
ingredients

best bounds -
using improved
ingredients

163 906 905 905

233 1340 1339 1339

283 1668 1661 1661

409 2495 2494 2492

571 3566 3563 3562

New bounds for the NIST-size extensions of F2

Five extensions of F2 are recommended by the NIST in [NIST] to perform
elliptic-curve based cryptography, of degrees from m = 163 to 571. The
best known bounds for the symmetric complexities of the multiplication in
these extensions have been set in [BBT]. To achieve this, the authors used
interpolation divisors G of the smallest degree given by the previous su�cient
conditions 3.8. But we have just shown, in the previous paragraph, that these
conditions on degG could not be sharpened. Nevertheless, it is still possible
to improve these �ve bounds.

Firstly, the authors seem to have used the value 15 as upper-bound on
µsym

2 (1, 6), although a better value, 14, is known (cf. Table I.2.1). Using this
value, and interpolating on the curve of equation (3.7b) instead of (3.7a),
already provides better bounds for all the �ve extensions considered. This
is shown below in the third column of Table 3.2. Secondly, plugging in the
three new bounds given in Table I.2.1, leads to further improved bounds for
the two last extension degrees, as shown below in the last column of Table
3.2.
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4 Further improvements, with classical modu-

lar curves

We are grateful to H. Randriam for guiding this �rst research work.

4.1 Method

The classical modular curves X0(N)F2 of computable size are also candidates
to build interpolation systems. Indeed they are numerous and have many
points of degree two (although degrees four or six are preferable, as shown
by Table I.3.1).

Similarly to the point-counting on the jacobian described in �I.5, the num-
ber of Fpm-points of X0(N)Fp can be computed from the value of the trace of
the Hecke operators Tpi . Precisely, their action on the space of holomorphic
di�erential forms (equivalently of cusp forms), which is of dimension g the
genus of X0(N):

S2 = H0(ΩX0(N),C).

An explicit formula is provided in [Mo, Cor. 5.10.1]. As a result, this enables
to count closed points in the modular curves X0(N)Fp with analytic tools.

But computing with cusp-forms expansions cannot be performed in large
level N . Instead, the space S2 is preferably seen in the (twice) larger space
of complex di�erential forms on X0(N)C. Indeed one can describe, in a
purely algebraic fashion, the action of the Hecke operators on the Poincaré
dual, H1(X0(N),C), using a preferred basis called "Manin symbols". This
action is implemented in Sage [Sa]. Then, to retrieve the trace of the Hecke
operators on the subspace, H0(ωX0(N),C)∗, the following proposition shows
that it su�ces to divide by two the total trace:

Proposition 4.1. There exists a common basis of cusp forms such that the
matrices of the Hecke operators:

Tn|S2

have rational coe�cients.

Demonstrations The neat reformulation of the following argument greatly
owes to H. Randriam. De�ne the Q-algebra of dimension g generated by the
Hecke operators acting on S2:

A = 〈Tn〉|S2 (noted T′ in [Ste, p54]),
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so that the complexi�ed A ⊗Q C (noted T′C in loc. cit.) is a subspace of
EndC(S2). De�ne

A∗ = HomQ(A,Q),

then [Ste, Proposition 3.24] states the isomorphism:

S2
∼−−→ A∗ ⊗C

ω −→
{.→ a1

(.(ω)
)}

Claim : The natural rational action ofA onA∗, extended by⊗QC coincides,
via this isomorphism, with the action of A on S2. Proof: exercice.

End of the proof: the matrices of both actions are thus equal.

4.2 Results

Data gathering

Having computed the number of closed points of degrees up to 10 on the
X0(N)F2 for N up to 1300, we selected those which provide the best numer-
ically optimal divisors G, for the same �ve extension of F2 as considered in
the previous section.

We mainly used the equations given in the tables of [Ga] and [Ya], some-
times helped by Q. Liu's algorithm to �nd regular models of hyperelliptic
curves in characteristic two.

although we recomputed those of X0(45) and X0(73) with the canonical
embedding method.

In addition, we used the plane integral model of the genus four hyperel-
liptic curve X0(47)Q provided in [Ya], because this one had good reduction
over F2.

However we could not �nd a model with good reduction modulo two for
the interesting curves X0(59) and X0(73) of genus �ve (which explains the
empty �fth column of the following Table 4.1), nor for the interestingX0(141)
of genus six.

It �nally remains to check that these divisors G do belong to an optimal
interpolation system, using the construction described in 3.6. This can be
done in a timely manner, using a well-known proprietary software ([Ma]),
which implements an algorithm of Hess for Riemann-Roch spaces computa-
tions.



4. Further improvements, with classical modular curves 153

Outcome and one example

The following Table 4.1 gives the best bounds obtained, using curves up to
genus 6, for the X0(N)F2 which could actually be computed.

Table 4.1: Upper bounds on µsym
2 (m), sorted by the genera of the curves used

m\g 1 (Tab.
3.2)

2 3 4 5 6

163 905 903 901 . . 900

233 1339 1336 . 1335 . .

283 1661 1660 . 1654 . .

409 2492 2491 . 2486 . .

571 3562 3561 3560 3555 . .

Let us describe a reproducible run of algorithm 3.6, leading to the best
entry (in bold) 900, for the extension degree m = 163. It is performed
on the genus 6 curve X = X0(71)F2 . The lowest expectable degree for G is
2×163+6−1 = 331 and, in this case, D should be of degree 163+6−1 = 168.
Setting the random seed to 0 in Magma, we �x once for all an enumeration
of the points of X (up to degree 8). At this stage, it results from the bound
of Theorem I.1.1 that a numerically optimal G would lead to 900.

Let us �x an isomorphism of the class group of X with Z/315Z⊕Z : the
�rst generator (of degree 1) being called D1 and the second (of degree 0),
D2.

Step 1 : (using the notations of Footnote 5) (1) (a) �x an optimal collec-
tion of integers : n1,5 = 1, n1,6 = 3, n2,4 = 3, n3,1 = 4, n4,1 = 6, n5,1 = 4,
n6,1 = 10, n8,1 = 21, (b) which is of total degree 331 (c) and is compatible
with the number of points on X of respective degrees up to 8. (2) Build a
divisor G from this collection. A �rst attempt is to use the points in the order
in which they were enumerated (so that, for the four points of degree one on
X, the �rst is given multiplicity 5 and the three remaining multiplicity 6).

� Step 2 Building the class of D as i.D1 + 168.D2, with a varying coe�-
cient i for D1, it happens that for i = 2, the condition l(2D − G) = 0
is satis�ed.
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� Step 3 : With various random seeds, we generate random points
Q of degree m in several classes12. It happens that with seed
one, i(D − Q) = 0, thus giving an optimal interpolation system
(G,D,Q).

Perspectives

These computations, that date back to 2014, could now be updated by:
(i) Atkin�Lehner quotients of modular curves. Indeed these quotients con-

tain as much supersingular points as the initial curve, but have a lower
genera. In particular, a recent preprint of P. Mercury enlarged the
tables of [Ga];

(ii) The curve of genus �ve over F2 with many points of degree six X0(p3
7)F2

computed in �VI.5.3.

12In practise this is achieved by splitting only the place at in�nity, so we do not know
if this leads to every possible class for points of degree m.



Appendix A

Annexes

1 Shorter proofs for other descent criterions

Lemma 1.1. Let

(†) 1 // N // G
π // Γ

s
yy

// 1

be a split exact sequence of groups. The section s induces an action of Γ, by
conjugacy, on the subgroups of G. Then one has the following bijection of
sets:

{H, Γ ⊂ H ⊂ G} {H ′ ⊂ N with H stable under Γ}
H � f // H ∩N

〈H ′,Γ〉 H ′�goo

Demonstrations La suite exacte étant scindée, elle est isomorphe à :

1 // N // N os Γ // Γ // 1

(1, γ) γ
soo

Avec cette description, un sous-groupe H de G contenant Γ est égal à
{(h, γ), h ∈ N ∩H et γ ∈ Γ}. Par conséquent le sous-groupe

f(H) = H ∩N = {(h, γ), h ∈ H ∩ Γ}

est bien stable sous Γ.

155
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f ◦ g = id Avec les expressions précédentes de H et de N ∩H, il reste à
montrer que le sous-groupe

〈N ∩H,Γ〉 = {(h, γ), h ∈ N ∩H et γ ∈ Γ}

est égal à H, ce qui est tautologique.
g ◦ f = id C'est le sens moins évident. Il s'agit de véri�er que si H ′ est

un sous-groupe de N stable sous Γ, alors le groupe engendré 〈H ′,Γ〉 est en
fait réduit à l'ensemble

(H,Γ) = {(h, γ), h ∈ N ∩H et γ ∈ Γ}.

Pour le voir, il su�t de remarquer que le produit

(h1, γ1).(h2, γ2) = (h1.γ1h2γ
−1
1 , γ1γ2)

est encore dans (H,Γ) par hypothèse.

The following proposition was communicated by H. Randriam:

Proposition 1.2. Let k be a �eld and k′ a Galois extension with group
Γ = Gal(k′/k). Let K be an extension of k (for example k(T )) and F/K a
�nite Galois extension of group G, such that the sequence V.(Seq/Split) has
a splitting s (for example under the hypotheses of Proposition V.2.6) :

1 // N // G // Γ

s

ww // 1

with N = Gal(F/Kk′) being again the �xator subgroup of Kk′. De�ne F0

the sub-extension of F/K �xed by Γ̃ = s(Γ):

F
N

F0

Γ̃

Kk′

K

Γ

Then one has the following bijection between two subsets of sub-extensions of
F ⊃ K:

sub-extensions L0, sub-extensions L′, Kk′ ⊂ L′ ⊂ F , such that

K ⊂ L ⊂ F0 the �xator subgroup H ′ ⊂ N is stable under Γ̃

L0
� ϕ // L0k

′

F 〈Γ,H
′〉 L′ = FH′�ψoo






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In particular if G is abelian, every subextension L′, Kk′ ⊂ L′ ⊂ F , comes
from an extension L/K of the same degree.

Demonstrations On remarque d'abord que ϕ préserve le degré des extensions
(autrement dit que toute sous-extension de F0/K est régulière). Pour des
raisons de degré, il su�t de le montrer pour F0/K. C'est à dire de montrer
que F0k

′ = F . Mais F0k
′ est aussi une sous-extension de F/F0, qui est

galoisienne de groupe Γ̃. Donc pour conclure, il su�t de remarquer que
le sous-groupe de Γ̃ �xateur de ϕ(F0)k′, est réduit à {1}. C'est immédiat
puisque Γ̃ agit sur k′/k par Γ.

On remarque ensuite que le premier ensemble correspond aux sous-extensions
de F/K dont le groupe H contient Γ̃.

En�n pour montrer la proposition, en vertu du lemme, il su�t de montrer

que ϕ(FH) = FH∩N . On a déjà l'inclusion Fix(FHk′) ⊃ H ∩N car soit (xi)i

une base de L sur K, alors l'élément général de FHk′ est y =
∑

i λixi, où les
coe�cients λi sont dans Kk′. Mais par dé�nition N �xe les λi, H �xe les xi
donc H ∩N �xe y.

On a ensuite l'égalité pour des raisons de degré : en e�et F/L (respectively
F/F0) étant galoisienne, son degré est |H| (respectively |Γ̃|). Donc le degré
de F0/L est |H|/|Γ̃|. Qui est égal à |H/Γ̃|, car H contient Γ̃ par la deuxième
remarque. Donc par le lemme, l'intersection H ∩N s'identi�e à {(h, 1), h ∈
H ∩N}. Donc |H/Γ| = |H ∩N |.

The following corollary was singled out by Randriam:

Corollary 1.3. With the same hypotheses, let L/K be a �nite extension,

then the Galois closure L̂k′ of Lk′/Kk′ comes from an extension E0/K of
the same degree. In particular if Lk′/Kk′ is �nite Galois, then it comes from
an extension E0/K of the same degree.

Demonstrations Let us embed L̂k′ in a �nite extension F Galois on K, with
group G = Gal(F/K). By the proposition, the subgroup H ⊂ G �xator of
Lk′/K, is stabe under s(Γ). But then the subgroup of G �xator of L̂k′/K,
equal to the intersection of the conjugates of H :

⋂
g∈G gHg

−1, is also stable
under Γ.

Example 1.4. Consider K = R(T ), Kk′ = C(T ), note Z =
√
T 2 + i and Z =√

T 2 − i, and �x a Galois closure F = R(Z,Z ′)/R(T ) of the extension L =
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R(T )(Z)/R(T ). Consider the complex conjugation

{
τ : C(T ) −→ C(T )

i→ −i
,

and Γ =< 1, τ >. Then among the 8 automorphisms of F = R(Z,Z ′)/R(T ),

4 extend τ of which 2 are of order two :

{
τ̃1 : Z −→ Z ′

Z ′ → Z
, and

{
τ̃2 : Z −→ −Z ′

Z ′ → −Z
.

Thus both de�ne sections of the exact sequence V.(Seq/Split): s1 and s2.
Hence two subextensions F0,1 ⊂ F and F0,2 ⊂ F . The corollary thus pro-
vides two possible regular descents of L̂C = LC/C(T ), which occur as the
sub�eld of F0,1 (respectively F0,2) �xed by N =< 1, σ >, with σ : Z ′ → −Z ′.
In this case they actually coincide, because E0 = R(T )(

√
T 2 + 1) (exercice).

F = R(T )(Z,Z ′)

F0,1 = R(T )(Z + Z ′)

2

s1(Γ)

F0,2 = R(T )(Z − Z ′)

2

s2(Γ)

L = R(T )(Z)

2

C(T )(Z) = L̂C

N

2

E0 = R(T )(
√
T 2 + 1)

2N
2

N

C(T )

2

R(T )

4

Γ

2

2

Counterexamples 1.5. The previous example provides two cautions with re-
spect to the corollary :

� Lk′/Kk′ �nite Galois does not imply that L/K itself Galois. Consider
L/R(X) = R(

√
T + i)/R(X) and LC = L̂C/C(T ).

� L̂k′/Kk′ �nite Galois does not imply that the regular extension E0/K,
provided by the corollary, be Galois over K. Consider this time F =
FC/C(T ). Then neither of the two possible descents provided by the
corollary : F0,1R(Z + Z ′)/R(T ), nor F0,2R(Z − Z ′)/R(T ), is Galois
(exercice).

The following theorem is traditionally credited to Coombes & Harbater.
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Here is a short demonstration due to Randriam1:

Proposition 1.6. Let k be a �eld and k′ a Galois extension with group
Γ = Gal(k′/k). Let K be an extension of k (for example k(T )) and F/K
a �nite Galois extension containing Kk′ with groups G = Gal(F/K) and
N = Gal(F/Kk′), such that the sequence V.(Seq/Split) has a splitting s (for
example under the hypotheses of Proposition V.2.6) :

Consider E/Kk′ a Galois extension (for example if N is abelian) such
that k is the �eld of moduli of E as mere extension of Kk′. Then L comes
from a regular Galois extension of K.

Demonstrations Consider F a Galois closure of K containing E/Kk′ and s a
section of V.(Seq/Split). Thanks to Proposition 1.2 (applied with L′ = E), it
su�ces to show that the �xing group H /N of Kk′ ⊂ E ⊂ F is stable under
s(Γ). Let τ be in Γ, then by the �eld of moduli assumption there exists x in
N such that

s(τ)Hs(τ)−1 = xHx−1

which is equal to H because here H is distinguished in N .

2 Formulas

The notations are as in equation (1.2) of �I.1.1. For the sake of completeness,
we also gave in the tabulars below the matrix forms of the squares of the linear
forms φi:

φi ⊗ φi : (x1, x2) −→ φi(x1).φi(x2).

The algebra considered are Fqm [y]/yl (q equals 2 or 4). But in our formulas
of the two last sections where q = 4 and m = 1, we allowed ourselves to use
the symbol yi for the linear form that takes a polynomial in y and returns
the coe�cient in yi (with value in F4).

2.1 µ2(3, 2)

The extension F23/F2 is generated by t, of minimum polynomial X3 +X+1.
The algebra considered is

A/F2 = F23 [y]/y2 .

1A similar statement can also be found in Völklein th. 3.6 but with many more restric-
tions.
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We express the linear forms φi in terms of the ordered basis of A∗/F2:

c0,0, c0,1, c0,2, c1,0, c1,1, c1,2 ,

where ci,j returns the coe�cient in yitj of an element of A (the coe�cients
take values in F2).
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i φi φ⊗ φ wi

0 c0,0 + c0,1 + c0,2 + c1,0 + c1,1 + c1,2



1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1


(t2 + t) y + t

1 c0,0 + c1,0 + c1,2



1 0 0 1 0 1

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 1 0 1

0 0 0 0 0 0

1 0 0 1 0 1


ty + t2

2 c1,1 + c1,2



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 1

0 0 0 0 1 1


(t2 + t+ 1) y

3 c0,0 + c1,0 + c1,1 + c1,2



1 0 0 1 1 1

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 1 1 1

1 0 0 1 1 1

1 0 0 1 1 1


t2y + t

4 c0,0 + c1,2



1 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 1


y

5 c0,1 + c1,0 + c1,2



0 0 0 0 0 0

0 1 0 1 0 1

0 0 0 0 0 0

0 1 0 1 0 1

0 0 0 0 0 0

0 1 0 1 0 1


(t2 + t+ 1) y + t2
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6 c0,0 + c0,1 + c1,2



1 1 0 0 0 1

1 1 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 1 0 0 0 1


t2y

7 c0,0 + c0,1 + c1,0 + c1,2



1 1 0 1 0 1

1 1 0 1 0 1

0 0 0 0 0 0

1 1 0 1 0 1

0 0 0 0 0 0

1 1 0 1 0 1


y + t2

8 c1,0 + c1,2



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 1

0 0 0 0 0 0

0 0 0 1 0 1


t2y + t2

9 c1,0 + c1,1 + c1,2



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 1 1

0 0 0 1 1 1

0 0 0 1 1 1


t

10 c0,1 + c0,2 + c1,2



0 0 0 0 0 0

0 1 1 0 0 1

0 1 1 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 1 1 0 0 1


(t2 + 1) y
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11 c0,1 + c0,2 + c1,0 + c1,1 + c1,2



0 0 0 0 0 0

0 1 1 1 1 1

0 1 1 1 1 1

0 1 1 1 1 1

0 1 1 1 1 1

0 1 1 1 1 1


ty + t

12 c0,0 + c0,2



1 0 1 0 0 0

0 0 0 0 0 0

1 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(t2 + t+ 1) y + t2 + 1

13 c0,0 + c0,1 + c0,2



1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


y + t+ 1

14 c0,0 + c0,1



1 1 0 0 0 0

1 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


ty + t2 + t+ 1

15 c0,2 + c1,1 + c1,2



0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 1 1

0 0 0 0 0 0

0 0 1 0 1 1

0 0 1 0 1 1


(t2 + t+ 1) y



164 Appendix A. Annexes

2.2 µ4(1, 4)

The extension F22/F2 is generated by a, of minimum polynomial X2 +X+1.
The algebra considered is

A/F4 = F4[y]/y4.
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i φi φi ⊗ φi wi

0 1


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 ay3 + ay2 + 1

1 y2 + ay + 1


1 a 1 0

a a+ 1 a 0

1 a 1 0

0 0 0 0

 ay3 + y2 + y

2 y2 + y + 1


1 1 1 0

1 1 1 0

1 1 1 0

0 0 0 0

 ay2 + y

3 ay2 + y + 1


1 1 a 0

1 1 a 0

a a a+ 1 0

0 0 0 0

 y3 + ay

4 ay2 + 1


1 0 a 0

0 0 0 0

a 0 a+ 1 0

0 0 0 0

 ay3 + y2 + ay

5 (a+ 1) y3 + ay2 + y


0 0 0 0

0 1 a a+ 1

0 a a+ 1 1

0 a+ 1 1 a

 y3

6 ay3 + y2 + (a+ 1) y + 1


1 a+ 1 1 a

a+ 1 a a+ 1 1

1 a+ 1 1 a

a 1 a a+ 1

 (a+ 1) y3
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2.3 µ4(1, 5)

The extension F4/F2 is generated by t, of minimum polynomial X2 +X + 1.
The algebra considered is

A/F4 = F4[y]/y5 .
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i
φ
i

φ
i
⊗
φ
i

w
i

0
c 0

      1
0

0
0

0

0
0

0
0

0

0
0

0
0

0

0
0

0
0

0

0
0

0
0

0

      
a
y

4
+
a
y

2
+

1

1
c 0

+
c 1

+
(a

+
1)
c 2
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