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This paper considers protocols for Consensus with External Validity tolerant to malicious corruptions, also known as Multi-valued

Validated Byzantine Agreement (MVBA). We consider the model of [DLS88], where the network is assumed to become synchronous

after some unknown finite time denoted GST, and the maximum corruption tolerance, of t players out of 3t + 1. Since the latency of

deterministic consensus is linear in the number of players, many works studied under which conditions it is possible to guarantee an

output within 2 messages delay. Noticeably, many protocols exist since [DGV05, EPFL] which guarantee simultaneously:

(Slower Fast Track in 2 messages) if all players are honest and the network synchronous, players output within 2 messages delay;

(Normal–Case latency of 3 rounds) if some publicly designated player is honest and the network synchronous, then all players

output within 3 rounds.

Since 3 rounds is the optimal Normal–Case latency for partially synchronous consensus, these protocols are said to have Graceful

Degradation. We thus ask if it is possible to enable instead a Fast Track in only 1 message delay, as soon as all players are honest

and have the same input, and still have Normal–Case termination in 3 rounds, i.e., graceful degradation. This question was much

investigated in the crash-fault setting, e.g., [Lam06a, DISC], [DS06, DSN], [CS06, PRDC], where the optimal Normal–Case latency is of

2 rounds instead of 3.

We answer by the negative, by showing that for t ≥ 2, any partially Synchronous Consensus, be it either with with External

Validity or Weak Unanimity, if it has a Fast Track in 1 round, then it cannot have Normal–Case latency in 3 rounds.

We prove tightness of t ≥ 2 by exhibiting a matching upper bound for t = 1 of independent interest, i.e., a consensus with Fast

Track in 1 round when all four players are honest with the same input, and Normal–Case latency in 3 rounds, the latter noticeably

unconditioned on a leader.

We prove tightness of the lower bound of 3 rounds by observing that it is possible to compile any consensus with strong unanimity,

into one having a Fast Track in 1 message delay, in executions where the network is synchronous and all players are honest and have

the same input. Applying this compilation to an existing protocol [Abr+18, Podc], we match a Normal–Case latency of 4 rounds.

1 MODEL AND RESULTS

1.1 Model

1.1.1 Malicious Corruptions. We consider a set 𝒫 = (P1, . . . , Pn ) of n = 3t + 1 players, which are polynomial

deterministic machines. Up to t of them are corrupted by a polynomial machine denoted the Environment E , they share

all their state with it and behave as instructed by it. The remaining players are denoted Honest.

1.1.2 Digital Signatures. We consider the model known as the authenticated setting [LSP82; DS83]. We formalize it as

the ideal signing functionality, denoted FCERT in [Can04, Figure 2]. Any player can submit to FCERT any bitstring of

its choice, then is delivered a signature on this bitstring. Signatures can be copied and sent by message. Any player can

query FCERT to verify if some bitstring carrying a signature, was indeed submitted to FCERT by the purported signer.

This implies, in particular, that E cannot forge a signature on a bitstring, which would be certified by FCERT as having

been submitted by a honest player, if this did not happen.
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1.1.3 Partially Synchronous Network. Players are linked by pairwise secure channels. Secure means that, in addition to

be authenticated, the content of messages sent by honest players to honest players cannot be read by E . We consider

the Partially Synchronous model of [DLS88, §2.2 3], in which players have access to a global clock and proceed by

rounds of communication of fixed duration ∆. Namely, players send their messages simultaneously at the beginning of

a round, then wait for the round duration ∆ before sending any other message, even if they received new messages

in-between. Messages sent can be arbitrarily delayed by E . In addition, in every infinite execution, E must set a finite

time, denoted GST, such that synchrony holds after GST, i.e., all messages are delivered within ∆. Importantly, this

includes the messages sent before GST, i.e., no message is lost, which makes our lower bound stronger. The actual value

of GST is a priori not revealed to players. We notice that some consensus protocols [Yin+19] allow players in some

executions, denoted “optimistically responsive”, to output at the actual speed of the network. Thus, the model which

we consider, with time-outs of ∆, makes our lower bound comparatively stronger. By convention the starting time of

the (r + 1)th round is denoted t = r . Thus, GST = 0 denotes that synchrony holds from the beginning, in which case all

messages sent at the beginning of any round are delivered by the end of the round.

1.1.4 Consensus with External Validity (CEV), a.k.a. MVBA, Normal Case Latency and 1 Message Fast
Track. Following [AMS19; Guo+22], we consider as given by the model a public deterministic efficiently computable

predicate ExtValid : {0, 1}∗ → {true, false}, denoted External Validity Predicate. We denote Valid Values the set of strings

𝒱 := {v ∈ {0, 1}∗ , such that ExtValid(v) = true}. Since E is only polynomial, we enrich the model with what we

denote as a Forgery Oracle, noted 𝒪 , which is a computationally unlimited entity which, on every query of E , samples a

valid value a random, i.e., some v ∈ 𝒱 , and returns it to E . In the following definition, the terminology of Consensus

with External Validity is also known asMulti-valued Validated Byzantine Agreement (MVBA) [CKPS01; AMS19; Guo+22].

We prefer the terminology of consensus [DLS88], since the one of Byzantine Agreement often denotes broadcast, which

is however unsolvable under partial synchrony.

Definition 1. [CEV] Under the previous model of corruptions, network and leader designation, we denote as Partially

Synchronous Consensus with External Validity (CEV) a deterministic protocol that has the following properties, for

every possible external validity predicate ExtValid and Environment E . Every honest player Pi may be initialized by E
with an input value vi , and may at some point irrevocably output a value.

(Consistency) no two honest players output different values;

(External Validity) if a player outputs v , then ExtValid(v) = true, i.e., v ∈ 𝒱 ;

(Termination) in every infinite execution in which every honest player received a valid input value, then they all output.

What makes the problem of CEV not trivial, is that valid values may be computationally untractable to forge by

players, e.g., in the typical use-case where ExtValid would check the signature of some external client. Thus, this

rules-out trivial protocols, such as requiring players to brute-force the smallest valid value then output it. In our

impossibility proof, we will leverage hardness to forge valid values in Lemma 11. Termination could be enlarged to any

execution in which players receive a valid value at some point, possibly attached to some message, but formalizing

this would require a black-box data structure for valid values. We notice that we did not consider the additional power

given to E in the original definition of External Validity [CKPS01], in which it could set itself which values are valid or

not, thus making our lower bound stronger.

Leader Designation and Normal–Case Latency. We assume that the Environment gives to the players the public

identity of a specific player L ∈𝒫 denoted the Leader.
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Definition 2. A Consensus with External Validity, in the sense of Definition 1, has Normal–case Latency in R rounds if:

in every execution where the leader is honest and GST = 0, then all honest players output by the end of the Rth round.

Fast Track in 1 message.

Definition 3. A Consensus with External Validity, in the sense of Definition 1, is said to have a Fast Track in 1Message

if: in every execution where all n = 3t + 1 players are honest and all have the same input v , and GST = 0, then all the

players output v at the end of the 1
st

round.

1.2 Main Results

1.2.1 Main Impossibility.

Main Theorem 4. Any deterministic Consensus with External Validity for n ≥ 7 players in the sense of Definition 1, if

it has a Fast Track in 1 message, then it cannot have Normal–Case Latency of 3 rounds.

Our proof will actually use the Fast Track condition on only one specific value, which thus makes the impossibility

stronger.

1.2.2 A Matching Upper-Bound for n = 4 and t = 1, Furthermore Without Leader. In §4 we prove:

Theorem 5. There exists a deterministic protocol for Consensus with External Validity for n = 4 players in the sense of

Definition 1, Fast Track in 1 message, and, if GST = 0, then all players output by the end of the 3rd round.

We describe and prove the protocol in §4. Apart from removing the leader condition, the protocol furthermore

withstands the following modifications to the model considered for the lower bound Main Thm 4, which all make the

result stronger.

- it withstands the model denoted “basic round” in [DLS88, §3], where E has the additional power to completely suppress

any message sent before GST [We notice that in this model, then [DLS88, §2.4] observe that players unavoidably send

infinitely many messages in some executions, even for protocols guaranteeing output within fixed latency after GST.

Anticipating on the protocol, these scenarios will however not be explicit since entirely captured by CEVcN.];

- it has Strong Unanimity;

- thus, by application of the compiler Lemma 6, players output in the Fast Track the actual speed of the network, i.e., it

has Optimistic Responsiveness [PS18; Abr+20];

- the protocol holds in the model where furthermore E which can read in clear the content of messages sent between

honest players, i.e., when downgrading secure channels into authenticated ones;

- it holds in the model [CKPS01] where E has the power to set itself which values are valid or not;

- the Fast Track is guaranteed even in settings where players would have input values enclosing different data vouching

for their validity, e.g., signatures from different accredited entities or different proofs of works, as long as the content of

values is the same. This follows straight from the model of [CKPS01], where E issues certificates of validity.

[However, even in the idealized model of signatures, we could not consider E unlimited, due to the artefact denoted

Requiring consistency in signature verification [Can04, p10]. Namely, an unlimited E could have brute-forced verification

of every polynomial length signatures of on every possible message, thereby preventing their later use by honest

players.]
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1.3 Consequences and Tightness of the Bounds

The purpose of remaining paragraphs §1.3, §1.4 and §1.5 is to state variants of our results under various related notions.

We provide reminders for these notions, which are: Weak/Strong Unanimity, Partially Synchronous Broadcast, Slower

Fast Track in 2 messages instead of 1, relaxed corruption tolerance for Fast Tracks, star-shaped communication patterns,

changes of leaders. Thus this may also help to understand related works, surveyed in section §2.

Some of the results have easy proofs which we provide directly. Also, §1.3.1 is proven in a self-contained way to be a

consequence of Main Thm 4. Then, §1.3.3 is proven to be a consequence of the proof of Main Thm 4, in a way which

does not require to understand the details of the latter. Thus these proofs may also serve as a warmup.

1.3.1 Corollary of Thm 4: Impossibility also Holds when Replacing: Fast Track in 1 Message, by: Strong Unanimity. A

consensus protocol is said to have Strong Unanimity, if and only if in executions where all honest players have the same

input value, then this must be the output value. Let us make the simple but possibly new observation that we have the

following compiler:

Lemma 6. Consider a protocol for Consensus External Validity in the sense of Definition 1, which has furthermore Strong

Unanimity. Then, the following additional instructions enable to obtain a Fast Track in 1 message delay, furthermore at the

actual speed of the network (Responsiveness), without increasing the latency to output in any execution:

• Players multicast their inputs in the first round, in the form of a report message with their signatures.

• Upon receiving n = 3t + 1 such reports for the same value v , a player outputs v .

Proof. Safety: if some player fast outputsw , then it must have received n = 3t + 1 reports for this valuew , which

proves that all honest players have inputw . Thus by Strong Unanimity, no honest player can output a value different

fromw . Liveness (optimistic output in one round) is obvious. □

By Lemma 6, we thus have that the impossibility Theorem 4 also holds when replacing the Fast Track assumption by

the Strong Unanimity assumption.

1.3.2 Tightness of Thm 4 with Respect to Normal Case latency in 3 Rounds. Surprisingly, no existing work describes

Byzantine leader–based consensus with a Fast Track in 1 message. Applying (the easy compiler of) Lemma 6, to the

consensus [Abr+18, §6.1], which has Strong Unanimity and Normal–Case Latency in 4 rounds, we obtain a consensus

with a Fast Track and Normal–case Latency in 4 rounds.

1.3.3 Corollary of the Proof of Thm. 4: Impossibility also holds when Replacing: External Validity, by: Weak Unanimity.

Weak Unanimity requires that, if all players are honest and have the same input value, then the output must be this

value. The proof of Thm 4 links two executions in which all players are honest and have input 0, resp., 1. Thus, our

impossibility also holds when replacing External Validity by Weak Unanimity.

1.4 Other (Easy) Impossibilities When Trading Assumptions for Others

1.4.1 (Easy) Impossibility of Partially Synchronous Broadcast with a Fast Track, even Without Normal–Case Latency.

Partially-Synchronous Broadcast (p–sync BC) [ANRX21], without external validity, may be defined as the following

modifications to Definition 1:

replace External Validity by: if GST = 0 and the Leader is honest, then, if a player outputs v , it must be that the Leader

received input v ;
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replace Termination by: all players output in every infinite execution.

Proposition 7. No p–sync BC exists which would have a Fast Track in 1 message, in the sense of Definition 2.

Proof. Assume existence of such a p–sync BC for n = 4 players of which t = 1 may be corrupt. Consider an

execution in which: P1 and P2 are honest with input 0; P3 is the Leader, is honest and has input 1, P4 is corrupt and

remains completely silent, and messages are delivered at least between P1, P2 and P3. Then, P1 and P2 must ultimately

output 1, without waiting to hear from P4.

But P1 and P2 cannot tell apart from an execution in which P3 is actually corrupt and behaves specifically towards P4

as if having input 0, all messages to P4 are delivered in the first round, thus P4, upon hearing from all players, decides 0

in the 1
st

round, then is cut from the network. □

1.4.2 (Easy) Impossiblity of a 1-Message Fast Track Tolerating Corruptions. We make the simple but possibly new

observation that, for a Fast Track in 1 message, then it is impossible to relax the condition: all 3t + 1 players are honest,

by: any 3t out of 3t +1 players, including the leader, are honest. The statement is general since it holds without requiring

External Validity nor Weak Unanimity, nor any Normal Case latency. This thus contrasts with the tight corruption

bound for Slower Fast Tracks in 2 rounds, which can be guaranteed as soon as any 3t out of 3t + 1 players, including

the leader, are honest. This bound comes as a particular case of the unpublished results of [DGV05], as recalled in §2.2.

Proposition 8. No consensus under partial synchrony, in the sense of [DLS88, §2.4] can guarantee that, if 3t players out

of 3t + 1 are honest and have the same input value, then players output this value at the end of the 1st round.

Proof. Otherwise, for four players P1, P2, P3, P4, assume an execution in which P2 is the leader and is corrupt, P1

and P3 have input 0 and P4 has input 1. P2 behaves honestly towards P1 as if having input 0, and honestly towards

P3 and P4 as if having input 1. All messages are delivered in the 1
st
round, except: the message from P4 to P1, and all

messages from P1. By the relaxed Fast Track condition, P1 outputs 0 at the end of the 1
st
round. Then P1 is cut from the

network. Thus, P3 cannot safely output another value than 0.

Subsequently, P4 cannot tell apart this execution, from one in which P1 would have been dishonest and silent since

the beginning. Thus P4 must output, without waiting to hear from P1.

However, P4 cannot either tell apart this execution from one in which P3 would have been corrupt and would have

reported to P1 having input 1, thereby triggering P1 to output 1 at the end of the 1
st
round. Thus, P4 cannot safely

output another value than 1. □

1.5 Further Variations, to be Detailed in a Future Version

1.5.1 Variant for the Subclass of Protocols with Linear Message Complexity. We claim the following variant of Main

Theorem 4. Consider a CEV with a communication pattern which is star-shaped around the leader, as, e.g., in [Gol+19;

Yin+19]. Then if is has a Fast Track in 2 messages, it has at least Normal Case Latency in 6 rounds. This impossibility

extends to any family of CEV with a Fast Track in 2 messages, parametrized by n, such that the message complexity is

linear in n.

1.5.2 Extension to After a Change of Leader. We claim that our techniques also apply to the following related setting.

We consider a CEV in the sense of Definition 1, where we do not require anymore a fast track, but in which we enrich

the leader designation abstraction such that a new leader may be designated after some time, and possibly itself replaced,

etc. Typical such protocols are [CL99; Yin+19]. Then, we claim a (tight) latency of at least 4 rounds to output from the
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point when: synchrony holds, and a honest leader is designated, as long as the previous leader, possibly corrupted, had

been in place for more than 3 rounds.

2 RELATEDWORKS

In our setting of malicious corruptions, the only works known to us considering a Fast Track in 1 Message, as in

Definition 3, are [Kur02; Zie06; FMR04; SR08; NIK10]. None of these previous works describes a consensus with a Fast

Track in 1 message and Normal–Case latency of 4 rounds. We provide one in §1.3.2.

2.1 Slower Fast Tracks allow Optimal Normal Case Latency. Most existing works in the malicious setting consider

Slower Fast Tracks, i.e., with output in 2 messages delay instead of 1 [DGV05; MA05; Kot+09; Cle+09; GQV08; GV10;

PS18]. A slower Fast Track guarantees output within 2 messages delay if the network is synchronous and any 3t out of

3t + 1 players, including the leader, are honest. We have the same under–optimality for [Gol+19] in the subclass of

protocols with a star-shaped communication pattern around the leader. Namely, [Gol+19] has a slower Fast Track in 3

messages delay, instead of the optimal 2 in this subclass. Paying the price of such a slower Fast Track, in one more

message delay, offers in return the feasability of reaching 3 rounds, which is the optimal Normal–Case Latency of

partially–synchronous Consensus with External Validity with no Fast Track at all. A protocol combining a slower Fast

Track with such optimal Normal–Case latency is achieved in [DGV05], they name this property Graceful Degradation.

Their technique consists in performing in parallel a Fast track and a Slow track. This technique shows up in [GV10], in

[Gol+19] in the subclass of star-shaped protocols, and in [Abr+20] in the synchronous setting. Let us outline it, which

we observe precludes Strong Unanimity, since the leader imposes its input to players. The leader sends its input v to all

players; players acknowledge reception in a signed message that they send to all players; a fast output of v is triggered

by the reception of sufficiently many such signed acknowledgements, typically from all 3t + 1 players (3t , with the

optimization discussed in §2.2). Such a large set of acknowledging players is denoted as a fast quorum. Even if a fast

quorum is not met, if GST = 0 and the leader honest, honest players are still guaranteed to collect a slow quorum of

2t + 1 acknowledgements for the value proposed in the Fast Track. Thus they are exactly in the same situation as at

the end of the 2
nd

round of, e.g., [CL99], thus can output in the 3
rd
round. In the case where GST > 0, then a leader

proposing again a value has to collect reports from a quorum of players in order to show that no other value was output

in the slower Fast Track. Some safety and liveness issues in some published protocols with slower Fast Tracks are

discussed in [Abr+17; SK19; SKD19].

2.2 Slower Fast Tracks can be Allowed Under One More Corruption. In our setting of maximal corruption tolerance, i.e.,

n = 3t + 1 players, it was observed in [DGV05] that it is possible to guarantee a slower Fast Track with one corruption,

instead of none. Namely, they safely achieve that all players output within 2 messages delay, as soon: as any 3t out

of 3t + 1 players, including the leader, are honest, and GST = 0. This result is stated in the Theorem of their §1.2,

case 2., with authentication, particularized to Q = 0 and F = M . It is proven p46-47 under the name DGVAlд4. Their

technique consists in, upon detection of an equivocation of the leader in the slower fast track, to not take into account

its subsequent messages.

[DGV05] provide lower bounds on the number of corruptions for slower Fast Tracks, under the most general

parameters so-far: leader internal or external to the set of players, trade-offs between crash and malicious corruptions,

trade-offs between overall corruption tolerance and corruptions tolerated for the slower Fast Track. They tightly match

all these lower bounds.



Latency of 1–Message Fast Partially Synchronous Leader-Based Consensus: a Complete Characterization 7

In the crash fault-setting, [Lam06b] gives tight bounds on the number of corruptions under which a Fast Track in 1

message can be guaranteed.

2.3 The Crash Fault Setting is what motivated this work, since Fast Tracks in 1 Message are much more investigated

in this setting than under malicious corruptions. The topic was initiated by [PS98; Bra+01]. The issue of degradation of

the Normal Case Latency was observed by Lamport in Fast Paxos [Lam06a]: “If collisions are too frequent [here: if not

all players have the same input], then classic Paxos might be better than Fast Paxos.” Guerroui-Raynal [GR04, §5.5.3]

then Dobre-Suri [DS06, §5], and independently Charron-Bost and Schiper [CS06], asked if a Fast Track unavoidably

harms latency in the normal case. All of them answered that degradation can be circumvented. More precisely, they

enable a Fast Track in 1 message, at least when all n players are honest and the network synchronous, and still reach

an optimal Normal-Case latency of 2 rounds, which is the optimal in the crash fault setting [KR03]. Our lower bound

shows that, by contrast, this degradation of latency cannot be circumvented in the partially synchronous Byzantine

setting. Our one-more-round lower bound is also reminiscent of the t + 2 lower bound in the context of Indulgent

consensus [DG02], i.e., based on unreliable failure detectors, and withstanding asynchrony.

2.4 Early decision in the Unauthenticated Deterministic Synchronous setting, without leader, for Broadcast. [DRS82, §9]

asked if Byzantine broadcast in which players output fast, i.e., in ≤ f + 2 rounds in favorable executions where there

are f < t corrupted players, can always output within the tight general t + 1 number of rounds with optimal t < n/3

resiliency. The problem was solved in [BGP92], then in [AD15] with optimal communication complexity and corruption

tolerance in the subclass of protocols without digital signatures nor leaders. Notice that, in this unauthenticated

leaderless setting, [DL13] show a strict communication cost for earlier output, even in the crash fault setting (cubic

instead of quadratic).

Randomized algorithms without leader. Cohen [Coh+19] showed that under synchrony, then 3 rounds is the minimum

to have a non negligible probability that any player outputs, which is matched by the baseline of [CM16] provided

a common coin. The question is open whether this degrades over partial synchrony: for instance recall that in the

deterministic setting, partial synchrony is shown in [DG02] (PODC’02) to require one more round before output. The

question also holds for the other measurement of latency, which is the expected number of rounds before output. For

instance in the partially synchronous [Abr+18, §6] (PODC’19 long version), which uses leader sortition using a trusted

setup, the expected number of rounds before output is more than 5 “phases”, so 20 rounds.

3 PROOF OF MAIN THEOREM 4

3.1 Formalism

An execution of a protocol is a sequence of rounds that starts from time t = 0 at which E initializes the players, gives

the honest ones their inputs, corrupts up to t of players, and makes public the identity of a leader. Notice that by

determinism, the internal state of a player in a round boils down to: its input, the leader, and all messages received so

far, timestamped by the round in which they were received. We assume without loss of generality a protocol which

instructs players to send their full internal state to all other players, at the beginning of every round. Then, to emulate

any actual protocol, we simply have receivers discard the information that they are not supposed to process. We prove

Main Theorem 4 for n = 7, then it generalizes to any n by standard methods [GR04; LSP82].

We say that two (partial) executions ℰ and ℰ ′ up to some finite time t are equivalent from the point of view of some

honest player P (resp. some group of honest players Sh ), and we write ℰ
P
∼tℰ ′ (resp. ℰ

Sh
∼tℰ ′), if and only if P (resp.
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any player in Sh ) outputs in at least one of the two executions at time t , and the state of P (resp. of any player in Sh ) at

time t is the same in both executions – that is, both executions are identical for P (resp. for every player in Sh ) up to t .

Notice that by determinism, this implies that P (or any player in Sh ) outputs in both executions, at time t , the same

values in both executions, as formalized in Lemma 3.1. We say that two executions ℰ and ℰ ′ are linked, which we

denote by ℰ ∼ ℰ ′, if and only if there is a chain of equivalent executions from ℰ to ℰ ′. It is then a straightforward

consequence of Consistency that, if some player outputs in ℰ , then no player in ℰ ′ can output a different value.

Lemma 3.1. Suppose there is a honest player P and two executions ℰ and ℰ ′ such that ℰ
P
∼tℰ ′. Suppose further that P

outputs the value vℰ at time t in ℰ . Then P outputs in ℰ ′ the same value vℰ at time t .

Proof. Since at time t , the player P has the same state in both ℰ and ℰ ′, by determinism of the protocol, it must

take the same actions in both executions at time t . In particular, it must output, and output the same value, in both

executions. □

We furthermore assume that valid values are hard to forge, in the precise sense given in §3.5, and that there exists at

least 2 distincts valid values.

3.2 Main goal

We follow the classical strategy consisting in exhibiting two executions in which players output different values, then

prove that they are linked, and thus the values should instead be the same. The two executions which we exhibit are

denoted ℰ (0,fast) and ℰ (1), and are described below. Input values are denoted for simplicity 0 and 1, more detailed

assumptions and formalism are provided in §3.5.

ℰ (0,fast) : GST = 0 , all players are honest and are given input 0 by E . Thus by the Fast Track condition, they all

output 0 by the end of the 1
st
round.

ℰ (1) : GST = 0, all players are honest and are given input 1 by E . Since valid values are hard to forge, we conclude

by Lemma 11 in §3.5 that players cannot output another value than 1.

3.3 First step

Before we expose our strategy, we need to go to another starting point, from ℰ (0,fast) in two steps, as follows.

ℰ (0,iso) : GST = 4, only the leader, which is P4, is corrupt. All players have input 0 and all messages sent are

timely delivered, except all the messages sent by P7, which are all delayed to GST. In that sense, P7 is isolated, which

accounts for the “iso”. P4 behaves honestly as if it were honest and had input 1, with the following exception: the

message that P4 delivers to P7 in the 1
st
round is the same as in ℰ (0,fast), i.e., compatible with being honest and having

input 0. Thus, executions ℰ (0,fast) and ℰ (0,iso) are equivalent for P7 by the end of the 1
st
round, when it outputs.

ℰ (sil) : GST = 0, only P7 is corrupt, and does not send any message, i.e., it is “silent”. The leader P4 is now honest,

and has input 1. Since the leader is honest, all players output by the end of the 3
rd
round. The executions ℰ (0,iso) and

ℰ (sil) are equivalent for all players {P1, P2, P3, P4, P5} by the end of round 3, when they output.

3.4 Structure of the Proof

Our goal is to find a link from ℰ (sil) to an execution in which all players are honest, including P7, with P7 having input

1. Then, by repeating the strategy to every other player, we will be able to ultimately link to ℰ (1). This is the overall

strategy of [DS83], let us recall their approach.
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Definition 9. We denote a corrupt player P as r–hidden if

• until, and including in, round r − 2, P acts like a honest player, i.e. he sends messages that agree with its full state;

• until, and including in round r − 1, P sends a subset of messages ℳ ′ ⊂ℳ that it would have been meant to

sent if it were honest;

• from round r , P is forever silent, i.e. does not send any message.

A 1–hidden player is thus a player silent from the beginning, e.g. as P7 in ℰ (sil).

3.4.1 Main Technical Tool. We assume that for r ∈ {2, 3, 4} we have the following tool at our disposal for any player,

excepted the leader P4:

(T.r) consider one execution with GST = 0 in which only one player P is corrupt, r–hidden, and who in particular sends

only a subset ℳ ′ ⊂ℳ of the messages that it is intended to send in round r − 1. Then, we can link this execution with

an execution with GST = 0 in which P is corrected by one more messagem in round r − 1, i.e. ℳ ′ ← {ℳ ′ ∪ {m}}.

We use this result for r ∈ {2, 3, 4} in what follows. They correspond to Lemma 14, Lemma 13, and Lemma 12,

respectively, proved in Section 3.6 and 3.7.

3.4.2 Claim. From the previous tool we can deduce the following

Claim: one can link any two executions ℰ and ℰ ′ such that

(i) in ℰ , P is 0–hidden, i.e. completely silent, and all other players honest;

(ii) in ℰ ′, we have that all players are honest;

(iii) the inputs of all players 𝒫\{P} are unchanged in ℰ and ℰ ′;

(iv) we can choose arbitrarily the input value v of P in ℰ ′.

The proof of the Claim is discussed below in §3.4.4.

3.4.3 Concluding the Proof by using the Claim. Applying the Claim to P6, it follows that one can link the execution ℰ (sil)

to one in which all players are honest and with inputs {0, 0, 0, 1, 0, 0, 1}. Then, choosing another player in 𝒫\{P4 ∪ P7}

with input 1, e.g. P1, one can apply the Claim backwards to further link the execution with another execution in which

P1 is completely silent, then flip its input, and apply the Claim forward, to obtain an execution with GST = 0 in which

all players are honest, with inputs {1, 0, 0, 1, 0, 0, 1}. Repeating the process for each remaining player {P2, P3, P5, P6}, we

achieve {1, 1, 1, 1, 1, 1, 1}

3.4.4 Proof of the Claim. Before we start, let us notice that, in the synchronous context of [DS83, Thm. 2], the Main

Technical Tool is proven all at once with the Claim, by backwards induction on r . However, they can start their induction

at a fixed time, which is t + 1 in their context, when their players are guaranteed to output. This guarantee however

does not hold in our context, we do not have any fixed delay to output when the leader is corrupt.

Thus, instead, we prove directly the Claim from the tools above, as follows.

Starting from a completely silent player P , add one by one messages sent in round 1 using (T.2), all of them being

compatible with having input v . Then add one by one messages sent in round 2 using (T.3), add one by one messages

sent in round 3 using Lemma (T.1). At this point P is honest, with input v .

For the same reason, since we cannot either apply any backward induction as in [DS83] to prove the tool (T.r) for

r ∈ {2, 3, 4}, we need to construct all of them by hand.
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3.5 Hard to Forge Valid Values Implies Weak Unanimity, in Some Sense

Definition 10 (Hard to Forge Valid Values). Consider a game involving a machine denoted 𝒜 , which can query

arbitrarily many times the illimited Forgery Oracle 𝒪 . We say that 𝒜 wins the game if, at some point, it outputs a

value which is valid, and which was not returned by 𝒪 in a previous response. We say that valid values are Hard to

Forge if the ExtValid predicate is such that no polynomial machine 𝒜 has nonnegligible advantage of winning.

An example is when ExtValid returns true only if the value carries a digital signature of which the private signing

key is known to 𝒪 (in particular, does not leak its signature key to anyone else). Indeed, the definition of Existential

Unforgeability under Chosen-Message Attacks (EUF-CMA) implies Definition 10 of Hard, since in the EUF-CMA game

the adversary can request valid signatures on any messages of its choice, and thus a fortiori random ones, before trying

to forge a signature on a new message. A counter-example is when ExtValid checks validity of a signature of which E
knows the private key.

All executions considered in the proof of Main Theorem 4 share the following common initial events: E queries once

the input forgery oracle 𝒪 and obtains a valid value, which we denote for simplicity 1. Notice that 1 is not the actual

bitstring {1}, since otherwise it would be easy to forge. For technical reasons, in ℰ (1), E stops further querying 𝒪 .

Lemma 11. Consider an execution of Consensus with External Validity (Def. 1). Assume that E queries 𝒪 only once, and

denote 1 the valid value received from 𝒪 . Assume that E initializes all players with input 1 and corrupts none of them.

Then players cannot output another value than 1, except with negligible probability.

Proof. Consider a Hardness game of E against 𝒪 , where E makes one single query, then initializes players with the

response 1, as in the Lemma 11. Then E outputs the value output by players. If players would output a different value

than 1, then the PPT machine 𝒜 , consisting in E together with the players, would win the Hardness game against 𝒪 .

Thus this happens with negligible probability. □

All other executions in the proof of Main Theorem 4 also share the following subsequent events: E queries repeatedly

𝒪 until it obtains a valid value which is different from 1, and which we denote for simplicity 0, then stops querying 𝒪 .

Let us give a mainstream example captured by these assumptions. 𝒪 , which we denote as Mick, generates a signature

key pair. ExtValid returns true on a bitstring if it comes appended with a signature which is valid with respect to the

public verification key of Mick. E queries Mick and obtains 1, equal to the signed bitstring “stay”, then queries again

Mick and obtains 0, equal to the signed bitstring “go”.

3.6 Easy Tools: Lemmas 12 and 13

Lemma 12. Consider n = 4 = 3 + 1 players executing the protocol, and an execution ℋ in which GST = 0, one player is

corrupt, e.g. P4, and such that P4 has the initial state of a honest player, and has honest behavior in the first 2 rounds. Then,

in the 3rd round, P4 sends a strict subset ℳ ′ ⊂ℳ of the n = 4 messages that it would have been meant to send in the 3rd

round if it were honest. Consider any messagem ∈ℳ \ℳ ′ not sent by P4, e.g. of which the recipient should have been P1.

Then, the execution ℋ is equivalent to the execution ℋ ′ which differs from ℋ by the fact that P4 furthermore sendsm in

the 3rd round.

Proof. We consider the most difficult case, which is when P1 is the leader. In ℋ the leader is honest and GST = 0,

thus all honest players output by the end of the 3
rd

round. Let us consider the honest player P2. He has same state at

the end of the 3
rd

round in both ℋ and ℋ ′
, thus it also outputs in ℋ ′

, and outputs the same value. □
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Lemma 13. Consider 7 = 5 + 2 players executing the protocol, and an execution 𝒢 in which GST = 0, one single player,

e.g., P7, is corrupt, and such that P7 has the initial state of a honest player, and has honest behavior in the 1st round; then

in the 2nd round P7 sends a strict subset ℳ ′ ⊂ℳ of the n = 7 messages that it would have been meant to send in the 2nd

round if it were honest. Then it is silent in the 3rd round. Consider any messagem ∈ℳ \ℳ ′ not sent by P7, e.g. of which

the recipient should have been P6. Then, the execution 𝒢 is equivalent to the execution 𝒢 ′ which differs from 𝒢 by the fact

that P7 furthermore sendsm in the 2rd round.

Proof. We consider the most difficult case, which is when P6 is the leader. In 𝒢 the leader is honest and GST = 0,

thus all players output by the end of the 3
rd

round.

𝒢1: GST = 0. P6 is now also corrupt. P7 now sendsm to P6 in the 2
rd

round. Then, in the 3
rd

round, P6 behaves

honestly towards all players except P1, to which it sends a message corresponding to its state as if it had not receivedm.

Both executions are equivalent from the point of view of P1 at the end of the 3
rd

round, who thus still outputs. Also,

we have P2 who outputs in 𝒢1 since from its perspective the leader P6 is honest.

𝒢 ′: GST = 0 and the leader is honest. Thus all players output at the end of the 3
rd

round. 𝒢 ′ differs only from 𝒢1

by the leader sending also a honest message to P1. In particular, 𝒢1 and 𝒢 ′ are equivalent for P2 at the end of the 3
rd

round. □

3.7 Main technical tool: Lemma 14

Lemma 14. Consider 7 = 5 + 2 players executing the protocol, and an execution ℰ1 in which GST= 0, one single player,

e.g. P1, is corrupt, and such that P1 has the initial state of a honest player. In the 1st round, P1 sends a strict subset ℳ ′ ⊂ℳ

of the n = 7 messages that it would have been meant to send in the 1st round if it were honest. Then it is silent forever from

the 2rd round. Consider any messagem ∈ℳ \ℳ ′ not sent by P1 in the 1st round, e.g. of which the recipient should have

been P4. Then, the execution ℰ1 is equivalent to the execution ℰ7 which differs from ℰ1 by the fact that P1 furthermore

sendsm in the 1st round.

Proof. We consider the most difficult case, which is when P4 is the leader. Throughout the executions the leader

will remain P4. In ℰ1 the leader is honest and GST = 0, thus all players output by the end of the 3
rd

round.

ℰ2 : GST = 0. Both P1 and P2 are corrupt. P1 has same behavior, P2 has honest behavior, except that in the 3
rd

round it does not send the message to P7 that it was intended to. Since the leader is honest, all players output by the

end of the 3
rd
round. ℰ2 is equivalent to ℰ1 for honest players {P3, P4, P5, P6} at the end of the 3

rd
round.

ℰ3 : GST=TBQ + 1, where TBQ will be defined from execution ℰ4. P3 and P4 are corrupt. All messages of P1 in

ℳ \{ℳ ′ ∪ {m}} are delayed to the 4
th

round. All messages of P7 sent from the 3
rd
round are delayed to GST. All

messages of P2 are timely delivered, except the one sent to P7.

P4 has honest behavior in the 1
st
round. Then in the 2

nd
, P4 delivers honest messages to {P1, P2, P3}, in particular,

compatible with its reception ofm. Denote rec the content of these messages, which we can assume to be identical,

which stands for “Received”. In the 2
nd

, P4 delivers messages to {P3, P5, P6, P7} which are compatible with its state as if

it had not receivedm. Denote nr the content of these messages, which we can assume to be identical, which stands for

“Non Received”. In particular, P3 is provided with both rec and nr. In the 3
rd
round, P4 delivers a message to P7 only,

compatible with nr, and is otherwise silent forever.

P3 behaves honestly in the first two rounds. Then in the 3
rd
round it equivocates, in that it delivers to P7 a message

compatible with reception of rec, whereas it delivers to all other players a message compatible with reception of nr.



12 Elena Berardini and Matthieu Rambaud

Denote BQ B {P1, P2, P3, P5, P6}, which stands for “backup quorum”. All players in BQ execute the protocol honestly

after the 3
rd
round. In particular, P3 acts is if having received rec. All messages sent by BQ after the 4

th
round are

timely delivered.

ℰ4 : P4 and P5 are corrupt. GST = TBQ + 1. P7 has honest behavior in the two first rounds, then goes silent forever

from the 3
rd
round. P4 behaves honestly in the 1

st
round, then in the 2

nd
it sends rec to {P1, P2, P3}, and sends nr to

{P5, P6}. Honest players, i.e. BQ, output at a time which we denote asTBQ . Set GST = BQ+1. The execution is equivalent

to ℰ3 for all honest players in BQ, i.e. {P1, P2, P5, P6}.

ℰ5 : GST = TBQ + 1. P4 and P5 are corrupt. All messages of P7 sent from the 3
rd
round are delayed to GST. P4

behaves honestly in the 1
st
round, then in the 2

nd
it sends nr to P5, and rec to all players. In particular, P5 is provided

with both rec and nr.

P5 behaves honestly in the first two rounds. Then in the 3
rd
round it equivocates, in that it delivers to P7 a message

compatible with reception of rec, whereas it delivers to all other players a message compatible with reception of nr.

All players in BQ execute the protocol honestly after the 3
rd
round. In particular, P5 acts as if having received rec.

All messages sent by BQ after the 4
th

round are timely delivered.

Thus, ℰ5 is equivalent to ℰ4 for the honest players in BQ, i.e. {P1, P2, P3, P6} at the time TBQ when they output.

ℰ6 : GST = 0. P1 and P6 are corrupt. P1 sends messages ℳ ′ ∪ {m} in the 1
st
round then is otherwise silent. P4

delivers only rec to P5. P6 behaves honestly, except that it does not send its message to P7 in the 3
rd
round. Since the

leader is honest, all players output in the 3
rd
round.

Thus, ℰ6 is equivalent to ℰ5 for P7 at the end of the 3
rd
round, by when they have output.

ℰ7 : GST = 0. Only P1 is dishonest, as in the statement of Lemma 14, i.e. it sends only messages ℳ ′ ∪ {m} in the

1
st
round then is silent forever. ℰ7 is equivalent to ℰ6 for {P2, P3, P4, P5} at the end of the 3

rd
round, by when they have

output.

□

4 PROOF OF THEOREM 5

4.1 Data structures and Terminology

We consider the model of §1.2.2. We consider in addition a special value denoted ⊥ < 𝒱 . By convention ⊥ is never valid.

We abuse notations, in that we denote non-valid values as ⊥, and players in the protocol consider non-valid values as ⊥.

4.1.1 Protocol Overview.

In the first three rounds of the protocol, every player essentially forwards to all players, including to itself, the set

of all messages received in the previous round, appended with its signature on the whole. For the sake of clarity and

message-efficiency, we do not instruct players to send messages in some cases, to be detailed. These cases are when

where they received messages from 3 or less issuers in the previous round, of which one of them was openly corrupt.

Indeed this implies that GST > 0 and thus that no output within a specific delay (3 rounds) is required.

Explicitely: each player sends to all a message denoted Report in the 1
st
round, which by definition consist in its

input, appended with its signature; sends to all a message denoted Forward in the 2
nd

round, which by definition consist

in the set of reports received in the 1
st
round (including the one sent to itself), with its signature on the whole; and

sends to all a message denoted Set of Forwards (SoF) in the 3
rd
round, which by definition consists in the set of forwards

received in the 2
nd

round (including the one sent itself), with its signature on the whole.
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P1 P2 P3 P4 P5 P6 P7 GST

E1 C nr nr nr nr nr nr 0

E2 C C nr nr nr nr nr 0

E3 rec rec C C nr nr nr TBQ + 1

E4 rec rec rec C nr nr C TBQ + 1

E5 rec rec rec C C rec rec TBQ + 1

E6 C rec rec rec rec C rec 0

E7 C rec rec rec rec rec rec 0

equivalent for P3, P4, P5, P6 at t=3

equivalent for P7 at t = 3

equivalent for P1, P2, P5, P6 at t = TBQ

equivalent for P1, P2, P3, P6 at t = TBQ

equivalent for P7 at t=3

equivalent for P2, P3, P4, P5 at t = 3

Fig. 1. C stands for Corrupt, t = 3 is the end of the 3rd round. We write rec as soon as the player has been forwarded the messagem,
even if being forwarded conflicting declarations from P4 not to have receivedm. This happens, e.g. for honest players in BQ after
t = 4, in the case where they would share together what they received from P4 in previous rounds before they output.

A set Q of 3 players is denoted as a Quorum. We then give a name to the specific SoFs satisfying the property which

could be roughly phrased as: being compatible with an execution in which GST would be 0 and some quorum Q would

be the honest players. We then say that such SoF is a Forwardings from the Honest-Looking Quorum Q (Fhlq). Three

identical Fhlqs issued by the three players inQ constitute a Decision Certificate. It triggers a Decision for a value, as soon

as at the end of the 3
rd
round, in the executions denoted “normal”, i.e., where GST=0. The decided value is determined

from 3 or 4 values extracted from the Reports, forwarded by members of Q, contained in the Fhlqs , as specified in

§4.1.5.

From the beginning of the 4thround, players do the following additional tasks. They enable to catch up players which

would not have output by then, due to possibly GST > 0. Each player P repeatedly sends, to all players, a message

denoted “Testimony”, in which it includes the most recent message sent in the 3 first rounds. Namely, it includes in the

Testimony: a Decision certificate, if it sent any; else: a Fhlq, if it sent any; else: simply includes the report of its input.

Each player P , upon receiving testimonies from any three players, checks if the possibly many enclosed Fhlqs vouch

for different values. If the case, then we will show that it must be the case that the testimonies contain contradictory

signed messages from some given player Q , thereby constituting a Proof of Corruption of Q .

In this case, if Q was one of the issuers of the three testimonies received, then P waits for the testimony of the

fourth player. In such a situation, since t = 1, P is guaranteed not to wait indefinitely. Indeed we must have

that the fourth player is honest. Recall instead that, in the proof of impossibility, in the execution ℰ4, despite players

{P1, P2, P3, P5, P6} observe conflicting Fhlq, constituting a Proof of Corruption of P4, they cannot tell if P7 is corrupt

and thus silent forever, or, if they will hear from it after GST. But our proof shows that players cannot safely decide
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silent silent silent

GST

P1

P2

P3

P4

P5

P6

P7

(a) Execution ℰ1

silent silent silent

GST

P1

P2

P3

P4

P5

P6

P7

(b) Execution ℰ2

GST=TBQ+1

P1

P2

P7

P3

P4

P5

P6

P7

(c) Execution ℰ3

GST=TBQ+1

P1

P2

P3

P4

P5

P6

P7 silent

(d) Execution ℰ4

without hearing from P7, since P7 could possibly be honest and possibly have decided, either based on one Fhlq with nr

only (as in ℰ2), or, based on a Fhlq with rec only (as in ℰ6).

Backup Decision. P assembles the testimonies, and appends its signature on the whole, which forms what we denote

as a Collective Narrative. Then, players reach consensus on one unique collective narrative, denoted cN. Either all Fhlq

contained (possibly none) in cN vouch for the same value v , in which case players decide it. Otherwise, it means that
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P1

P2

P3

P4

P5

P6

P7

(e) Execution ℰ5

GST

P1

P2

P3

P4

P5

P6

\
P7 output

(f) Execution ℰ6

GST

P1

P2

P3

P4

P5

P6

P7

(g) Execution ℰ7

Fig. 1. A half circle oriented to the right denotes sending a message to all which, unless further specification, are all timely delivered.
However, when there is also a crossed arrow out of the circle, then it means that no message is sent to this specific player, e.g. in ℰ6
player P6 deliberately does not send a message to P7 in the 3rd round. Arrows with a perpendicular head denote messages delayed
until GST, e.g. in ℰ3, we have specifically that the message from P2 to P7 is delayed, although all other messages, depicted by the red
half circle to the right from P2, are timely delivered. The red color denotes messages following, and reporting, reception ofm by P4,
i.e. rec. For instance, in ℰ3, we have P3 send rec messages to all, except to P7, depicted by a black line, to which it sends a nr message.
Let us be concrete, only for illustration. In all rec messages , since we assume wlog a full information protocol, we have in particular
m which is attached. Messages of type rec are either sent directly to P4 or indirectly, forwarded, as a declaration of P4 reporting
having receivedm, with the signedm enclosed in the forwarded report.
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cN exhibits a proof of corruption of some player Q , and that cN contains testimonies from all three honest players.

Players thus can trust each other’s testimonies, thus can trivially extract from them a value which is safe to decide.

4.1.2 Choice Functions. We consider any public predetermined function f : 𝒱 3 ∪ 𝒱 4 → 𝒱 , denoted “(Strong

Unanimity) Choice Function”, satisfying that, for any v ∈ 𝒱 , we have f (vi1 ,vi2 ,vi3 ) = v as soon as two inputs vi j ∈ 𝒱

are equal to v , and such that f (v1,v2,v3,v4) = v as soon as three inputs are equal to v . In particular, we have that if f

is applied to 3 or 4 values reported by 3 or 4 players as their input, then, in the situation where all 3 honest players have

the same input value v ∈ 𝒱 , then f outputs this value, even if one out of the (three or four) input values to f is issued

by a malicious player. We abuse notations such that, if, e.g. v2 = ⊥, then we denote f (v1,v2,v3,v4) := f (v1,v3,v4).

We consider any public predetermined function д : 𝒱 3 → 𝒱 , denoted “(Weak Unanimity) Choice Function”,

satisfying that when all three inputs are equal, to some v ∈ 𝒱 , then д outputs v . In particular, we have that if д is

applied to 3 values reported by the three honest players to be their input, then, in the situation where all 3 honest

players have the same input value v ∈ 𝒱 , then д outputs this value. Notice that д could be set as f , we juste define it

separately to highlight the weaker property required by д.

4.1.3 Auxilliary Consensus with External Validity CEVcN. In order to reach consensus on one unique cN in the backup

decision, players use an auxiliary protocol. Precisely, they use any protocol for consensus with external validity under

partial synchrony, in the sense of Definition 1, e.g., [CL99]. The validity predicate of this consensus is specified to return

true, if and only if, the input bitstring is a Collective Narrative signed by one of the players. We denote CEVcN this

consensus protocol.

4.1.4 Normal Case: Types of Messages. For any P ∈𝒫 , we denote

(
report, P,v

)
Report issued by P a message consisting

of: the string of characters “report”, some valid value v ∈ 𝒱 , and appended with a signature of P on the whole.

For any P ∈ 𝒫 , we denote

(
forward, P, (r1, r2, r3, r4)

)
Forward issued by P a message consisting of: the string of

characters “forward”, and four objects (ri )i ∈[4], each of which is either ⊥ or a report

(
report, Pi ,vi

)
from Pi ; appended

with a signature of P on the whole.

For any P ∈ 𝒫 , we denote

(
sof, P, (f1, f2, f3, f4)

)
Set of Forwards issued by P a message consisting of: the string of

characters “sof”, and four objects (fi )i ∈[4], each of which is either ⊥ or a forward from Pi ; appended with a signature of

P on the whole.

4.1.5 Particular Case: (Set of) Forwardings from a Honest-Looking Quorum. Consider a SoF sP =
(
sof, P, (f1, f2, f3, f4)

)
issued by some P , that furthermore satisfies the following. We require that there exists at least one quorumQ, containing

P , which we assume for simplicity of the presentation Q = {P1, P2, P3}, such that:

(i) ∀i ∈ {1, 2, 3}, fi is a forward message from Pi , i.e., none of them is ⊥;

(ii) ∀Q ∈ Q, all three

(
r(i)Q ∈ fi

)
i ∈{1,2,3}

, are non-⊥ and equal (to a report from Q).

(iii) ∀Q ∈ Q we have furthermore that, if the fourth one r(4)Q ∈ f4 is non-⊥ (which implies f4 , ⊥), then it is also equal

to all previous three ones

(
r(i)Q ∈ fi

)
i ∈{1,2,3}

.

When the case, we make the following notations. For eachQ ∈ 𝒬, we denote vQ the common value in all three (or four,

in case (iii)) reports r(i)Q ∈ fi for i ∈ {1, 2, 3} (and possibly 4), as above. We now define the notation v4 (P4 < Q). If both

the following hold:

(α ) there is at least one forward fi for i ∈ {1, 2, 3} such that the r(i)
4
∈ fi is not ⊥, i.e., is a report from P4;

(β) among the

(
r(i)
4

)
i ∈{1,2,3} , the ones which are not ⊥, i.e., are reports of P4, are all equal;
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then we denote v4 the unique value in 𝒱 reported as input in all the

(
r(i)
4

)
i ∈{1,2,3} that are not ⊥. Else, we set v4 := ⊥.

Thus by definition, we have v4 := ⊥ when either [not-(α )]: all (r(i)
4
∈ fi )i ∈{1,2,3} are ⊥ or [not-(β)]: there exists two

indices i , j out of {1, 2, 3} such that (r(i)
4
∈ fi ) and (r

(j)
4
∈ fj ) are both non-⊥ and not equal.

Importantly, in (β), we do not put any condition on the r(4)
4
∈ f4. Indeed, making v4 dependent on the r(4)

4
∈ f4 would

have enabled a malicious P4 to provoke inconsistent Fhlqs between the members of Q.

Definition 15 (Fhlq). Consider any quorum, which we assume Q = {P1, P2, P3} without loss of generality. Consider
any P ∈ Q, and any set of forwards s =

(
sof, P, (f1, f2, f3, f4)

)
which satisfies the above conditions (i), (ii) and (iii). We

then say that s constitutes a (Set of) Forwardings from Honest-Looking Quorum Q (Fhlq) issued by P , or, equivalently

that “Fhlq from Q can be extracted from s”, and denote it as:

(1) s→ Fhlq[P](f1, f2, f3)(v1,v2,v3,v4) .

With the (vi )i ∈[4] defined as above. Finally, we say that the values (v1,v2,v3,v4) are associated to Fhlq, and that Fhlq

Vouches for the value f (v1,v2,v3,v4).

Notice that the same set of forwards sP =
(
sof, P, (f1, f2, f3, f4)

)
can possibly constitute a Forwardings from a Honest-

Looking Quorum for both two different quorums Q , Q′. When the case, then Lemma 18 will guarantee that the four

values (vi )i ∈{1, ...,4} are the same in both Fhlq.

4.1.6 (Normal-Case) Decision Certificates.

Definition 16. Consider any quorum Q, which we assume for simplicity Q = {P1, P2, P3}. Consider the data of sets
of forwards (SoFi )i ∈{1,2,3} issued by all three players in Q, satisfying furthermore the following conditions:

(iv) each of them is furthermore a Forwardings from Honest-Looking Quorum Q (Fhlq) (Definition 15);

(v) to all those three Fhlq are associated the same values (v1,v2,v3,v4).

In particular, all three Fhlqs vouch for the same value v = f (v1,v2,v3,v4). We say that the whole constitutes a Decision

Certificate for v .

4.1.7 Backup Decision: Testimonies, (Honest-Looking) Collective Narrative and Proofs of Corruption. For any P ∈𝒫 , we

denote

(
testimony, P, ∗

)
Testimony issued by P a message consisting of: the string of characters “testimony”, and of an

object ∗ which is either a report issued by P , a Fhlq issued by P , or a decision certificate; appended with a signature of

P on the whole.

For any player Q ∈ 𝒫 , we denote as a Proof of Corruption of Q , the data of two different reports from Q or two

different forwards from Q or two different Fhlqs issued by Q .

Definition 17 (cN). We denote as a (Honest-Looking) Collective Narrative (cN) the data of testimonies issued at least

three players, such that, if they come from three players only, then Either no two Fhlq present in them (if any) vouch for

different decision values, Or the three Testimonies together exhibit a proof of corruption for the fourth player not in cN.

4.2 Protocol

1st round Every P ∈𝒫 , on input v , sends
(
report, P,v

)
to all players.

2nd round Every P ∈𝒫 , if it received reportmessages from at least 3 distinct players in the 1
st
round, sends

(
forward, P, (r1, r2, r3, r4)

)
to all, ri is the report received from π or ⊥ if no report was received from π .
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3r d round Every P ∈𝒫 , if there exists at least one quorumQ ∋ P such that, assuming without loss of generalityQ = {1, 2, 3}:
P received forward messages (fi )i ∈{1,2,3} from all players in Q in the 1

st
round, and these messages constitute a

Fhlq forQ, i.e. conditions (i), (ii) and (iii) are satisfied. Then P sends to all one unique message:

(
sof, P, (f1, f2, f3, f4)

)
,

where the (fi )i ∈{1,2,3,4} are the Forwards received, or possibly f4 = ⊥ if no forward was received from P4.

End of 3rd round Every P ∈𝒫 , upon receiving any three sets of forwards (SoFi1 , SoFi2 , SoFi3 ) constituting a decision certificate for

some value v , outputs v .

We now describe an additional set of instructions, which start from the beginning of the 4
th
round. They enable players

to output even if GST > 0.

Testimonies Every P ∈ 𝒫 forms te =
(
testimony, P, ∗

)
, where ∗ is: a decision certificate, if P received some in the Decision

step; else: a set of forwards, if P sent some in the 3
rd
round; else ∗ = rP the report that P sent in the 1

st
round. P

repeatedly sends te to all in every round until instructed to stop, below.

Collect testimonies P waits until it receives enough testimonies to form a collective narrative, denoted cNP , which it then inputs into

CEV.

Backup Decision Upon receiving the output from CEV, denoted cN, P stops sending testimonies and decides as follows:

(a) If cN contains a decision certificate for some value v , then: decide v ;

(b) Else if cN contains no proof of corruption nor any Fhlq, then: consider the set of reports contained in cN: there

are at least three from distinct players, e.g., {1, 2, 3}. Denote (v1,v2,v3,v4) the input values which they report,

where for the fourth index we set v4 := ⊥ if no report from P4 is enclosed in cN. Output f (v1,v2,v3,v4).

(c) Else if cN exhibits a proof of corruption for a player, e.g., P4, then by definition of a cN it must contain reports

from the 3 remaining players. Output д(v1,v2,v3)

(d) Else, in particular it must be the case that cN contains at least a Fhlq. Then: choose any such Fhlq and decide

the value v that it vouches for.

4.3 Proof of Termination, and of Normal case termination in 3 rounds

4.3.1 Normal case termination in 3 rounds. Consider the quorum of the honest players, wlog. Q = {P1, P2, P3}. If
GST = 0, then at the end of round 3, each player receives (SoF1, SoF2, SoF3), which all must be forwardings from honest

lookingQ (Fhlq), sinceQ is honest. All we have to show is the remaining condition (v), i.e., that all three are associated

to the same set of values (v1,v2,v3,v4), as defined in Def 15. But this is guaranteed by the fact the the value v4 taken

in consideration in all three SoFs , does not depend on the possible forwarding(s), from P4, as stressed by the remark

below Definition 15. Thus, since all the forwardings from players in Q included in all three SoFs are identical, the sets

of values (v1,v2,v3,v4) associated to all three of them are the same.

4.3.2 Termination in finite time after GST. All we have to show is that every player P is ensured to collect enough

testimonies to form a cN. Indeed, if P receives only three testimonies, which exhibit a proof of corruption for some of

the three senders, then, P is guaranteed to receive a testimony from the fourth player Q , since Q must be honest since
t = 1.
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4.4 Proof of Strong Unanimity

Throughout, strong unanimity is guaranteed by the application of the choice function f on at least three reported

inputs. The only exception is in case (c), but there we are considering the inputs of three players which must necessarily

be the honest ones, so application of the “weak unanimity” choice function д is enough.

4.5 Proof of Consistency

First we prove that two honest players deciding by the Normal Case rule, decide the same value. We then show that two

honest players deciding by the Backup Decision rule, decide the same value. We finally show that two honest players,

one deciding by the Normal Case rule and the other one by backup, decide the same value.

Consistency Between any two (Normal Case) Decision Certificates. Consider any two decision certificates. Each of them

consists of three Fhlqs issued by distinct senders, each of them encapsulating one SoF. In particular, the six senders

of these SoFs (with repetitions) intersect in at least one honest player, which has issued a single SoF. Thus, all what

remains to show is:

Lemma 18. From any SoF, it cannot possibly be extracted two Fhlqs vouching for conflicting values.

Proof. Denote Q and Q′ the quorums corresponding to Fhlq and Fhlq’, and (v1,v2,v3,v4) and (v ′
1
,v ′

2
,v ′

3
,v ′

4
) the

values associated to them. IfQ′ = Q, then by definition, since the underlying SoF is the same, the same four values must

be associated. Thus in what follows we assume Q , Q′. Wlog. we assume that Q = {P1, P2, P3} and Q′ = {P1, P2, P4}
and that (at least) the player P1 in their intersection is honest. Let us show that all four values appear identically in both

Fhlqs.

- v1: Since P1 is honest, it issues only one report. Furthermore this report appears in both Fhlqs, since P1 ∈ Q ∩Q′.
-v2: Since P1 is honest, it issues only one forward, in particular both fowards from P1 corresponding to the two Fhlqs

are the same, thus they contain the same report r2 from P2. Since P2 is in both quorums, the value v2 associated to both

is thus non-⊥ in both (said otherwise, by condition (ii)). Thus the value v2 enclosed in r2, is associated to both Fhlqs.

- v4: Since P1 ∈ Q′, the unique forward issued by P1, included in the SoF, contains a report r4 from P4. In particular

(α ) is satisfied for P4 with respect to Q. Furthermore, since P4 is in Q′, we must have that v ′
4
is equal to the value

enclosed in this r4. Combining the two facts above, the only possibility for v4 , v
′
4
would be (β) be not satisfied for Q

(which would imply v4 = ⊥). Thus, we would have that the SoF contains one forward f(c) containing a report r(c) from

P4 different from r4 (the (c) stands for “conflicting”). Thus, by (ii) or (iii) applied toQ′ (depending on if the issuer of f(c)

is in Q′ or not), the SoF cannot constitute a Fhlq for Q′.
- v3: The argument is symmetrical to the one for v4. □

Consistency Between two Backup Decisions. Since the CEV returns the same cN for all players, all honest players

are in the same case: (a), (b), (c) or (d). In the first three cases, the decision does not depend on free choice, so no two

decisions can be different. It thus remains to show that in the last case (d), decision does not depend on the free choice

of the Fhlq.

Lemma 19. If some player is in the situation of the last item (d), in particular not in the situation of all previous items, in

particular not (c), then no two Fhlqs contained in cN vouch for conflicting values.

Proof. Let us prove the contraposite. Namely, consider two Fhlqs produced in the execution which vouch for

conflicting values, then, we Claim that, together, they constitute a proof of corruption for some player. The Claim
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implies that, if we are not in the situation of (a) nor (b), but cN contains conflicting Fhlqs, then we must be in case (c),

which concludes the Lemma.

Proof of the Claim:DenoteQ andQ′ the quorums corresponding to Fhlq and Fhlq’, and (v1,v2,v3,v4) and (v ′
1
,v ′

2
,v ′

3
,v ′

4
)

the values associated to them. Both quorums intersect at at least one honest player. Wlog we can assume this player to

be P1, and Q = {P1, P2, P3}.
First case: Q = Q′. Then, if we do not have (v1,v2,v3) = (v ′

1
,v ′

2
,v ′

3
), it must be the case that the two Fhlq contain

conflicting reports from some player in Q, constituting a proof of corruption. Suppose now that v4 , v ′
4
. The only

possibility for not having a proof of corruption of P4, is that condition (α ) is not satisfied for either Q or Q′. But this
would imply that some player Pi in {P2, P3} forwards a report from P4 in Fhlq but not in Fhlq′, which constitutes a

proof of corruption of Pi

Second case: Q , Q′, wlog. one can assume Q′ = {P1, P2, P4}. Since P1 is honest it issues a unique forward and,

since P1 ∈ Q ∩Q′, this forward contains reports from all four players. Thus, in particular, we are not in case (α ) for

neither P4 < Q nor P3 < Q′. Thus, the only possibility for not having (v1,v2,v3,v4) = (v
′
1
,v ′

2
,v ′

3
,v ′

4
) is the existence of

conflicting reports from some player, hence a proof of corruption. □

Consistency between a Normal Case Decision and a Backup Decision. Suppose that we are in case (a), then by unicity

of the Normal Case decision, proven above (essentially Lemma 18), the two decided values are the same.

Suppose that we are in case (b), then no Normal Case decision could have happened, since otherwise at least one

honest player in the three issuers of testimonies would have reported sending a Fhlq.

Suppose that we are in case (c), then the cN contains testimonies from all three honest players. None of them could

have decided in the normal case, since otherwise it would have exhibited a decision certificate in its testimony and thus

we would have been in case (a).

Suppose that we are in case (d). Consider v a value vouched by one of the Fhlqs present in the cNs. No other normal

decision could have happened for a value v ′ , v . Indeed, otherwise at least a Fhlq vouching for v ′ would have been

reported in one of the three testimonies in cN. This would then contradict the unicity of v , proven in Lemma 19.
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