
Adaptively Secure Consensus with Linear

Complexity and Constant Round under Honest

Majority in the Bare PKI Model, and Separation

Bounds from the Idealized

Message-Authentication Model

Abstract. We consider the mainstream model in secure computation
known as the bare PKI setup, also as the bulletin-board PKI. It allows
players to broadcast once and non-interactively before they receive their
inputs and start the execution. A bulletin-board PKI is essentially the
minimum setup known so far to implement the model known asmessages-
authentication, i.e., when P is forwarded a signed message, it considers
it to be issued by R if and only if R signed it. It is known since [Lam-
port et al, 82] that BA under honest majority (let alone secure compu-
tation) would not be possible without messages-authentication. But as
further highlighted by [Borcherding, 96], messages-authentication cannot
not simply be implemented with digital signatures, without a bulletin-
board of public keys. So the bulletin-board PKI setup and the messages-
authentication model seem very close: this raizes the question whether
there is a separation between them. In the bulletin-board PKI setup,
the most communication-e�cient synchronous BA is the one of [Boyle-
Cohen-Goel, Podc'21 & J. Cryptol.'24], which has O(n.polylog(n)) bit
complexity, f < n(1/3 − ε) resilience and tolerates an adversary which
cannot adaptively corrupt after the setup. Our main upper-bound is a
BA (and also a VBA) in this same model with strictly better parameters:
quasi-optimal resilience f < n(1/2 − ε), with an expected bit complex-
ity of communications which is linear in n, and tolerance to an adaptive
rushing adversary (but which unavoidably cannot remove messages sent).
As [BCG'21], it has constant expected latency. All previous BAs or VBAs
achieving the same metrics as our upper bound, are either in the static
adversary model: Sleepy [Pass-Shi, Asiacrypt'17], Snow White [Daian-
Pass-Shi, FC'19], or assume more than a bare PKI setup: (i) The model
of Thunderella [Pass-Shi, EC'17], Algorand [Gilad et al, SOSP'17], Praos
[David et al, EC'18], [Goyal et al, FC'21] and [Momose et al, CCS'22
and CCS'23] assumes a public random seed which is unpredictable until
strictly after all players published on the bulletin board; (ii) [Abraham
et al, Podc'19] assume a trusted entity which honestly samples the keys
of all players; (iii) All known implementations of the setups (i) and (ii),
as well as the setup of [Blum et al, TCC'20], require interactions, fur-
thermore in the form of BAs. (iv) [Garay-Kiayas-Shen EC'24] assume
that honest players work more than the adversary, or, [Eckey-Faust-Loss
et al '17 '22] at least as fast.
Of independent interest, our tool is a very simple non-interactive mech-
anism which sets-up a self-sortition function from non-interactive publi-



cations on the bulletin board, and still, guarantees an honest majority in
every committee up to probability exponentially small in both ε and in
the multicast complexity. We provide the following further results.

- Optimality. We show that resilience up to a tight honest majority f <
n/2 is impossible for any multicast-based adaptively secure BA with
subquadratic communication, whatever the setup.

- Separation. We show impossibility of subquadratic multicast-based BA
in the messages-authentication model. Our model for this lower bound is
even stronger, since it onboards other assumptions at least as strong as
all popular implications of a bulletin-board PKI setup: secure channels,
a (possibly structured) random string, NIZK.

- Partial synchrony. Given that the multicast lower-bound holds a for-
tiori, and that the upper-bound adapts seamlessly (for f < n(1/3− ε)),
the separation also holds. We show a second separation, which holds for
general BAs, non-necessarily multicast-based: any partially-synchronous
BA in the messages-authentication model, if it has linear message com-
plexity, then it has latency at least logarithmic in f .

- Extension to VBA. We extend to VBA the logarithmic latency lower
bound. This is the �rst communication lower bound for randomized VBA
to our knowledge. It shows that the separation under partial synchrony
also holds for VBA. Along the way, we close the characterization of [Civit
et al, Podc'23] of validity conditions in authenticated consensus, by ap-
parently new results on VBA: both BA and VBA are infeasible under
partial synchrony beyond f < n/3, whatever the setup and even ran-
domized; whereas synchronous VBA is feasible up to f = n−1 (contrary
to BA).

A high level introduction is provided by the abstract. Due to the number of
results, we cut the introduction in three: Section 1 for the results under syn-
chrony, Section 2 for those under partial synchrony and Section 3 for those re-
lated to external validity. Section 1 is self-contained since in Section 1.1 we give
the model, then in Section 1.2 we give brief motivations then state the results,
then in Section 1.3 we explain the techniques. Finally in Appendix A we discuss
the impact of both the results and techniques, by putting them in perspective
of previous works, which we hope will give further intuition. Sections 2 and 3
follow the same outline, although they build on the model of Section 1.1.

1 Introduction for the results under synchrony

1.1 Model and main driving questions

We state the model which holds for all our results stated under synchrony. Then,
result-by-result, we will comment on the assumptions which can be modi�ed so
as to make the results further stronger. Let n be an integer. We consider a set
P = (P1, . . . , Pn) of n probabilistic polynomial time (PPT) machines denoted
players, and a PPT machine called the adversary A.
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1.1.1 Communication. Players are connected by pairwise public authenti-
cated channels, i.e., the adversary A reads the content of all messages sent. In
our lower bounds the channels will be upgraded to secure, i.e., only the lengths
of messages are leaked to A, which thus makes the bounds stronger. We consider
the classical synchronous round-based model of [42, 29, 28], which we now recall.
Players have access to a global clock ticking every ∆, where ∆ is a �xed public
duration. To ease the notation, we set the unit of time equal to ∆. Hence, when
we note time t = 1, this actually means t = ∆. For r a positive integer, the time
interval [r−1, r] is called the r-th round. Players send messages at the beginning
of every round, these messages are delivered before the end of the round. Players
are assumed to have the time to process all the messages received before the next
round starts. �To multicast a message means to send it to all players, hence this
does not come with any consistency nor delivery guarantee when the sender is
corrupt.

1.1.2 Corruptions. Let f ≤ n be an integer, A can corrupt up to a total
of f players in the execution. A can corrupt any player at any point in time,
up to the following limitations. As in [27, 37, 1, 10], A cannot corrupt a player
in the middle of sending a batch of messages, possibly with di�erent contents
to possibly di�erent receivers. Moreover, as in [27, 37, 10], players are able to
securely erase part of their memory, or the totality of it, just after they sent a
batch of messages and before the adversary can corrupt them. Upon corrupting a
player P , A learns all its current state and has full control over it. It can possibly
instruct P to send one or more messages in the same round in which it has been
corrupt. The adversary is rushing, in the sense that it can use its knowledge of
the messages sent by honest players in a given round to determine the messages
of corrupted players in this same round. However, unlike in [1, Thm 1], the
adversary cannot retract messages which have been sent. At any time, players
that remain honest so far are referred to as so-far-honest, and the ones which
remain honest until the end of the protocol are referred to as forever-honest.

1.1.3 Model for upper-bounds: the bare / bulletin-board PKI setup.
This model is singled-out in [CGGM00], and is also known as �bare PKI�. Denote
t = 0 the time at which parties receive their inputs and start the protocol execu-
tion. Parties can publish any string strictly before t = 0. Players are instructed
to publish once and non-interactively, in particular, independently of the strings
already published (otherwise, this would allow the MPC implementation of any
setup). On the other hand, the adversary can wait that all honest players pub-
lished their strings, before adaptively choosing the strings which corrupt players
will publish. The bulletin-board PKI model is equivalent to allowing players to
register the string of their choice to the ideal certi�cation authority of FCA [17]
which we recall in Appendix B.3. Then during the execution, players can retrieve
to FCA the keys published by other players. Note that by de�nition, FCA does
not accept two di�erent strings from the same player P , thus it shows the same
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string from P to all honest players (otherwise FCA would have little power, as
noticed in [11]).

1.1.4 Consensus protocols.

De�nition 1 (BA). A consensus with strong unanimity ([30]) up to probability
of failure η, also known as Byzantine agreement and shortened as η-BA, is a
protocol Π such that every player starts at time t = 0 with one input value,
outputs at most one value, and such that the following holds. For any �xed
adversary A, and any �xed input assignment, then we have with probability at
least 1− η that an in�nite execution satis�es simultaneously:

• Consistency. if two honest players P, P ′ output x and x', then x = x';

• Strong unanimity. if all forever honest players have the same input, x, then
this is the only possible output;

• Termination. all honest players output.

De�nition 2 (Latency and communication). We say that an execution of
a BA has latency of R rounds, also known as the round complexity, if all players
output by time t = R + 1. The bit complexity of communications is the total
number of bits sent by honest players, while the (smaller) message complexity is
the number of messages which they sent.

We denote κ the security parameter. In our lower bounds, we call �world�
a probabilistic set of executions of a given consensus protocol, under a given
adversary and a given assignment of inputs.

1.1.5 The idealized message authentication model, and Main driving
question 1. Following [42, 28, 29], most works on consensus implicitly assume
what we call the idealized message-authentication functionality. It is formalized
in [17, Figure 2], under the name FCERT. Informally, each player P can submit
any message m of its choice to FCERT, then is returned a bitstring σ called a
signature on m. Anyone can query FCERT to verify if some bitstring σ is a signa-
ture of any given player P on any given message m. In particular, the de�nition,
recalled in Appendix B.4, makes it impossible for A to forge a signature σ which
would be recognized as valid on a message m for a player P , if P did not submit
m to FCERT in the �rst place. A bulletin-board PKI is essentially the minimum
setup known so far to implement messages-authentication. The implementation
(used explicitely in some works on consensus [50, 54]) is that each player gener-
ates a signature key pair, then publishes the public key on the bulletin board,
then signs all its messages in the subsequent protocol. This is further formalized
in [17, Claim 3]. It is known since [42] that BA under honest majority (let alone
secure computation) would not be possible without messages-authentication.
More precisely, as further highlighted by [11], message-authentication cannot
not simply be implemented with digital signatures, without a bulletin-board of
public keys. So the bulletin-board PKI setup and the message-authentication
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model seem very close: this raizes the question whether there is a separation
between them.

So this calls for lower bounds in the message-authentication model. This is
a new challenge since, as further detailed in Section A.0.5, all previous existing
lower bounds for randomized consensus assumed only authenticated channels
(or, alternatively, an adversary which can delete messages sent). Notice that in
the consensus literature, the FCERT model is called the authenticated one. To be
sure, what is authenticated here are messages, not just channels which guarantee
only the identity of the person at the other side.

1.1.6 Model for the (separation) lower-bounds (Theorem 4 and The-
orem 7): idealized message-authentication (FCERT) and more. To ad-
dress the Main driving question 1 even more tightly, we now de�ne an even
stronger model than message-authentication for our lower bounds. Our lower
bounds Theorem 4 and Theorem 7 hold under the FCERT model, added with
the following bonus assumptions which are at least as strong as all popular im-
plications of the bulletin-board PKI setup: privacy of the content of messages
sent, as formalized in the end of Appendix B.1; a public random string fairly
sampled from any speci�ed distribution, but possibly known to the adversary
before corrupt players publish their keys; and non-interactive zero-knowledge
([39]).

1.1.7 Main driving question 2. All works on consensus achieving a com-
munication complexity linear in n under honest majority (some of them also
achieve constant expected latency) are either in the static adversary model [26,
52, 6], and/or, use a mechanism known as self-sortition. Namely, for a player to
be allowed to multicast a message in a given round, it must append to the mes-
sage a publicly veri�able proof of eligibility to speak in the round. Players reject
messages which are not appended with such a valid proof. However, all existing
works implement this mechanism from a setup which is strictly stronger than
the bulletin-board PKI: (i) [37, 19, 27, 53] assume a public random seed which
is revealed (Slide 7: by Verdi) after players published their keys; (ii) [1, 2, 40,
18, 10, 9] assume a trusted entity (Slide 6: Beethoven) which honestly samples
the keys of all players; (iii) Some works propose to implement the setups of (i)
or (ii) using interactions [37, 26, 27], which is also the case of the related setups
of [10, 6]. Furthermore, all these interactive setups consist of consecutive BA
instances, but no BA under honest majority with linear complexity is known in
the bulletin-board PKI setup model. (iv) [36] is in the ressource-restricted cryp-
tography model and [31, 5] in the related time-based cryptography model (see
Section A.0.8 for many other non-constant round BAs in these models). This
raizes the question whether strict linear communication complexity and con-
stant expected latency are achievable under a bare bulletin-board PKI setup.
The best known consensus in this setup so far is [12, 13], which has communica-
tion O(npolylogn) messages, f < n(1/3− ε) corruption tolerance and does not
resist adaptive corruptions after the setup.
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1.2 Results and technical overview of the upper bound Theorem 3

We �rst answer the main driving question 2 by a feasibility result in Section 1.2.1
under the bulletin-board PKI setup, which is of independent interest. In Sec-
tion 1.2.3 we state a lower bound showing that its corruption tolerance is close to
optimal. In Section 1.2.2 we answer the main driving question 1 by a quadratic
lower bound on the communication complexity in the message-authentication
model (further strenghtened as in Section 1.1.6).

1.2.1 Main upper bound under synchrony, and technique

Theorem 3. Using the de�nitions of Section 1.1, consider: synchronous au-
thenticated channels with public content, a bulletin-board PKI setup and an adap-
tive rushing adversary. Let ε ∈ ]0, 1[ and λ < n be �xed parameters.
Then there exists a BA tolerating any number f < (1/2−ε)n of corruptions, and
such that, except with probability η exponentially small in both λ, every execution
satis�es:

{
Consistency, Strong unanimity, Termination within a �xed number of

rounds R independent from n, at most λ(1 + ε) honest players send (multicast)
messages in each round, and each message is of bitsize O(λ(1 + ε))

}
.

(a) It applies to arbitrary values if assuming the secure erasures model (b) There
exist a variant for binary values without the secure erasures model.

In particular, the expected bit complexity is linear in n.

plain Bulletin board PKI model erasures-free

[40, 18, 10, 9] 7(trusted PKI) 7

[1, 2] (binary values) 7(trusted PKI) 3

[37, 19, 27, 53] 7(unpredictable URS)

[31, 5] [36] 7(resp. TLP, VDF, PoW)

Theorem 3 (a) 3 7

Theorem 3 (b) (binary values) 3 3

Table 1: Synchronous adaptive consensus with linear communication complexity

We prove Theorem 3 by instantiating a protocol which we call genericBA.
genericBA is obtained from the adaptively secure synchronous BA protocol of
[1, �5.2], by making some simpli�cations. In particular, we now assume memory
erasures (which shows the (a) of the Theorem) and do not specify a termination
mechanism, so that we will measure latency and communication only until the
point where all players have output. We refer to Appendix C.6 for how to remove
these simpli�cations (note that the only known technique [1, 2] to remove secure
erasures, yielding (b), �lters depending on the content of the message: hence, it
is applicable only to binary values).
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In every round r of genericBA, every player P is instructed to conditionally
multicast a speci�ed round-r message. The latter means that P multicasts the
message only if allowed by an ideal functionality, which we call Feligib. In detail:
the player queries Feligib.speak-request(r), then Feligib returns a binary value
called coin[P, r] (the same coin value is delivered again in subsequent identical
requests Feligib.speak-request(r)). If the coin is 1 then we say that P is eligible to
speak in round r. If so, then it multicasts the round-r message with its signature,
then updates its signing key to round-(r+1), and �nally erases its old (round-r)
signing key. In turn, upon receiving a round-r message from some P , a player
Q queries Feligib.verify(P, r) to check if P did query Feligib.speak-request(r) and
was made eligible, i.e., obtained a coin equal to 1. If so then Q processes the
message, else, it ignores it. Importantly, and contrary to [1, �5.2], in Figure 2 we
purposedly specify Feligib as only an interface, leaving unspeci�ed the internal
computations which it does.

The Feligib-interface

Request to speak in round r On receive speak-request(r) from player P for the
�rst time:
do some internal computations, and return coin[P, r].

Verify On receive verify(P, r): if speak-request(r) was queried by P , return
coin[P, r]; else return 0.

Figure 2: Interface of an ideal functionality for eligibility to speak in a given
round. It is obtained from the ideal functionality Fmine of [1, 2] (adapted into
round-based eligibility) by leaving unspeci�ed its internal computations.

In [1, �5.2], the Feligib-interface is instantiated by an ideal functionality which
they call Fmine and which we recall in Figure 3. It has the ideal behavior that
all round-r coins are tossed with some speci�ed public probability called p(r).
Let us recall how Fmine is implemented in [2, �9.4], omitting some re�nements.
They consider any public veri�able random function (VRF): vrf . In the setup, a
trusted entity fairly samples, for each player P , a VRF key-pair (sk, vk). The en-
tity gives sk to P and publishes the public key vk. When being instructed to con-
ditionally multicast a round-r message, a player P evaluates vrf .evalProve(sk, r)
and obtains an evaluation y with a proof π of correct evaluation. We normal-
ize y ∈ [0, 1] for convenience. If y is lower than a publicly speci�ed target value
p(r), then we say that P is eligible to speak in round r. In this case, it appends
(y, π) to its multicast message. In turn, upon receiving a round-r message from
P appended with some (y, π), players check it vrf .verify(vk, r) = accept and if y
is low enough. If the checks do not pass then they ignore the message.

In Properties 16 we state some conditions on the sole outputs of the Feligib

interface in a given execution of genericBA, which automatically imply that
the execution has safety, consistency, termination within a speci�ed number of
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Fmine instantiates the Feligib-interface

It is parametrized by a function p : r ∈ {1, 2, ..., } −→ [0, 1] which maps each round
number r to a probability to be eligible to speak in r.
Request to speak in round r On receive speak-request(r) from player P for the
�rst time:
toss coin[P, r] $←− Bernoulli(p(r)) and return coin[P, r] to both P and A.

Verify On receive verify(P, r):
leak (P, r) to A; then: if speak-request(r) was queried by P then return coin[P, r],
else, return 0.

Figure 3: The Ideal functionality of [1, 2] (adapted into round-based eligibility),
for eligibility to speak in a given round. For technical reasons we added that all
requests and outputs are leaked to the adversary.

rounds and constant bit complexity of communications per round. Remarkably,
these conditions are independent from the execution of genericBA, and (by def-
inition) are not linked to any speci�c implementation of the Feligib-interface.
These conditions are matched with overwhelming probability by the instanti-
ation of Feligib done by [2, �9.4], called Fmine and recalled above. In order to
downgrade to the bulletin-board PKI setup, we are going to provide a less e�-
cient instantiation of the Feligib-interface, which we call Fbias

eligib, but which still
matches the conditions of Properties 16 with overwhelming probability. So in
a nutshell, our main technical contribution to obtain Theorem 3 is a mecha-
nism implementing (fair-enough) self-sortition from a single bulletin-board PKI
setup. It is of independent interest, since it applies to all other BAs mentioned
in Sections A.0.1&A.0.3, as well as to the partially-synchronous ones [2, 8]. To
convey its idea, we �rst describe its implementation, which is very simple, then
formalize the ideal functionality which it implements.

In our implementation, every request to the VRF is pre-pended by a public
seed denoted σ. In the idealized random oracle model of a VRF, by domain-
separation, every new pre�x σ reinitializes afresh the VRF. However the σ must
not be learned by the adversary A before A is committed to the VRF evaluation
keys of corrupt players. Otherwise this would allow the well-known one-by-one
adversarial key picking attack, as recalled in Section A.0.1. Since our setup allows
only one non-interactive publication on the bulletin-board, and since the adver-
sary can see the publications of honest players before choosing the publications
of corrupt players, the objective seems infeasible.

Our solution is as simple as follows. Let vk1, ..., vkn the VRF keys of players
published on the bulletin-board, then de�ne σ as the hash of their list:

(1) σ = H
(
(vk1, . . . , vkn)

)
where H is any collision-free function, e.g., the identity. The condition for eligi-
bility for a player P to speak in a given round r is unchanged, i.e., i� the VRF
queried by P on r returns a value lower than the same threshold (p(r)) as before.
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Interestingly, the proof of Theorem 3 is less obvious than in previous models
which assumed an unpredictable seed revealed after publication of keys (Section
A.0.1). In our model, we cannot reason anymore on the eligibilities of corrupt
players one-by-one. Let us consider only a �xed given round r for simplicity, and
let us denote p(r) = λ/n, so that (λ/2 + ε) is the expected number of honest
players eligible to speak in round r. The adversary observes all keys published by
the (1/2+ ε)n honest players: (vki)i ∈H , then its goal is to �nd a vector of keys
for corrupt players: (skj)j ∈ [n]\H so that at least λ/2 of them grant eligibility.
So the adversary picks such a vector, then it must query the VRF to learn the
eligibilities of all corrupt players in round r w.r.t. this vector (we model the VRF
as a random oracle). But since our mechanism automatically changes the seed for
evey change of key, we see that the new trial by the adversary will in any case be
with a new seed. With this new seed, the VRF is completely reinitialized, so all
eligibilities of corrupt players are re-sampled afresh, in particular the eligibility
of j1.

1 Hence, every time the adversary queries the VRF with a new vector
of keys, it is as if it pressed a button which re-sampled afresh all eligibilities
of corrupt players. The adversary can repeatedly press this button during the
time-frame in which it can rush the publication of its keys after seeing the ones
of honest players. Let us call q this polynomial number of times it can press this
button: it follows that its advantage is q times larger than in the works in which
a trusted entity presses the button once [1, 2, 40, 18, 10, 9, 37, 19, 27, 53].

For the reader which would not be familiar with these works, and would
not see why their (and our) security bound follows from the Cherno� bound,
which our proof will use, let us give further intuition. We see that it takes
only a few trials (n/λ in expectation), until the adversary �nds a vector of keys
(skj)j ∈ [n]\H such that the �rst corrupt player, call it j1, is eligible. By contrast,
the adversary did not have such power in previous stronger setups (Sections
A.0.1&A.0.3): this is what makes less obvious the analysis of our mechanism.
But the added power of the adversary essentially stops there. Indeed, let us say
that the adversary now wants to also make the second corrupt player also eligible,
call it j2. So from there (unless it was already lucky), it will have either to try
another key for j2, and/or, another seed. In conclusion, if the adversary wants to
�nd a vector of keys of corrupt players: (skj)j ∈ [n]\H which makes both j1 and j2
eligible, it will have to try (n/λ)2 vectors of keys in expectation. More generally,
if the adversary wants to �nd a vector of keys such that all the λ/2 �rst corrupt
players are eligible, then it will need (n/λ)λ/2 trials in expectation before it �nds
one. Hence, the probability that it wins for a �xed q is exponentially small in
λ, as claimed by Theorem 3. Of course the previous argument is too optimistic,
since the adversary actually wins as soon as any set of λ/2 corrupt players is
eligible, not necessarily the λ/2 �rst ones. So our actual argument uses instead
the Cherno� bound.

More formally, in our proof we show the intermediary step that our mecha-
nism implements Fbias

eligib, de�ned in Figure 4. Roughly, Fbias
eligib o�ers to the ad-

versary a setup phase, in which the adversary can try di�erent seeds. For every

1 This is further illustrated Slide 8 at the end of Appendices
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new seed σ, the adversary is o�ered a fresh instance of Fmine, called Fmine[σ]. At
time t = 0 the setup phase times-out: Fbias

eligib freezes forever to the same behavior
as the last instance, Fmine[σ], queried by the adversary.

Fbias
eligib instantiates the Feligib-interface

It is parametrized by a function p : r ∈ {1, 2, ..., } −→ [0, 1] which maps each round
number r to a probability to be eligible to speak in r. All instances of Fmine below
have parameter p.
Setup. - Launch an instance of Fmine, called Fmine[0]. Set Fmine ← Fmine[0],

called the current instance.

- On receive (re-seed, σ) from the adversary:
if received after t = 0, ignore it. If this is the �rst re-seed request for σ, then
launch a new instance of Fmine called Fmine[σ]. In any case, set the current
instance Fmine ← Fmine[σ].

Requests to speak & Verify are answered by the current instance Fmine.

Figure 4: Ideal functionality for eligibility to speak in a given round, with setup
biasable by the adversary.

1.2.2 Separation between the bulletin-board PKI setup and the ide-
alized message-authentication model + more ([2]) In a large-scale peer-to-
peer network, it is usually much cheaper for a node to multicast the same message
to everyone [24, 45, 46], than to unicast n di�erent messages, even though the
two have identical communication complexity in the standard pair-wise model.
Indeed, all known consensus protocols deployed in a decentralized environment
(e.g. Bitcoin [51], Ethereum [58], Algorand [8]) work in the multicast fashion.
This is also the case for the protocol underlying Theorem 3. The following im-
possibility implies that the asymptotic complexities of Theorem 3, for multicast-
based protocols, cannot be achieved when downgrading the bulletin-board PKI
to message-authentication (even with CRS, secret channels etc.). At the end of
the proof in Section 1.3.1, we will explain how adding a bulletin-board PKI setup
defeats the proof strategy of Theorem 4 (as expected from Theorem 3).

Theorem 4. Consider the model de�ned in Section 1.1.6, i.e., message-authentication
(and any CRS, secure channels and NIZK) and an adaptive rushing adversary
which cannot remove messages after they were sent. If a BA guarantees simulta-
neously {Termination + Consistency + Strong Unanimity and 6 f players send
messages in the execution}, except with probability η, then necessarily η > 1/6.

In particular, this rules-out multicast-based BA with subquadratic communica-
tion complexity in the message-authentication model.
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1.2.3 Impossibility of a tight corruption tolerance with a sublinear
multicast complexity under any setup The following lower bound shows
that the corruption tolerance of Theorem 3, i.e., honest-majority-plus-ε, is opti-
mal, in the sense that ε > 0.

Theorem 5. Consider any setup. Consider a BA with a (tight) corruption tol-
erance of f corruptions out of n = 2f + 1 players, and such that executions
satisfy simultaneously: {termination, consistency, strong unanimity and at most
C distinct honest players send messages}, excepted with at most probability η,
where C 6 f/4 is any integer. Then η > (1− 4C

f+1 )/(7−
4C
f+1 )> (1/7)(1− 4C

f+1 ).

In particular, this rules-out BA with tight corruption tolerance with < n2/8
messages complexity in which players only multicast. Note that the proof uses a
speci�c adversary, which is proven to exist in a total set of O(exp(n)) adversaries,
but does not give a method sub-exponential in n to construct this adversary.

1.3 Technical overview for the synchronous lower bounds

1.3.1 Proof of Theorem 4. We detail the proof, because it is useful to
understand why it would not hold under the bulletin-board PKI setup. The
proof technique is a variant of the one of [1, Thm 3], which shows that in an
f -resilient synchronous broadcast protocol, without the message-authentication
model, then there are at least f+1 which speak in a given execution. Let us �rst
recall their argument (with our notation).

Warmup: the unauthenticated multicast lower bound of [1, Thm 3] for broad-
cast. Let S be the designated broadcast sender and let p ∈ P be any �xed player,
e.g., p = P1. We consider four worlds:Wc,0 ↔Wh,0 ↔Wh,1 ↔Wc,1, where each
↔ denotes an identical distribution of views, in some nonnegligible events, for
some honest player(s).

• world Wc,b: only p is corrupt, sender S is honest with input b. In addition
to playing the real execution honestly, p also simulates an execution in its
head where S would have input 1− b. In every round, in addition to receiving
messages from honest players in Wc,b, p simulates the receipt of messages
multicast by all other players in worldWc,1−b, until f multicasts have occurred
in the simulated execution. The corrupt player p treats the received messages
(from both the real world Wc,b and the simulated world Wc,1−b) as if they are
from the same execution. When p multicasts a message in the real execution,
the message arrives in both the real as well as the simulated execution.
Hence, p looks somehow �schizophrenic� to the other players. Note that simu-
lation of messages from S without corruption of S, are possible due to absence
of message-authentication.

• world Wh,b: all players are initially honest, including p. The sender is corrupt,
it behaves honestly as if having input b. The adversary A initiates a simulated
execution where the sender S would be honest and have input 1 − b. At the
start of each round, the adversary simulates this round for all players except
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p in the simulated execution Wh,1−b in its head, and checks to see which
players will send a message in this round of the simulated execution. For
such a simulated player Q, if there have not been f multicast messages from
players other than p in this execution, the adversary adaptively corrupts the
real player Q (unless it is already corrupt) in world Wh,b. When p multicasts
a message in the real execution, the message arrives in both the real as well
as the simulated execution. Upon being corrupt, a player Q:

- keeps its internal state and keeps following the protocol as if it had never
been corrupt: we will call this the honest thread of Q;

- in addition, the adversary makes Q follow a parallel thread of actions,
which denote Q: the corrupt thread of Q. Q (run by Q) sends the mes-
sages to p in the real execution, that the simulated Q sends to p in the
simulated execution Wh,1−b; note that these messages are sent to player
p only and not to anyone else.

We now brie�y recall the indistinguishabilities leading to a consistency violation,
the intersection bounds between probabilities being formalized in Appendix D.

- For each b ∈ {0, 1}, the joint view of all forever honest players other than p
has the same distribution in worldsWh,b andWc,b. Indeed: the corrupt p inWc,b

behaves exactly like the honest p in Wh,b [in particular, the simulated execution
stops in both worlds in the event where a (f+1)-th simulated player would need
to multicast.] Corrupt players in Wh,b behave honestly towards forever-honest
players other than p.

- Wh,1 and Wh,0 are indistinguishable to p, up to the event where the real
or the simulated execution would have more than f multicast complexity (in a
sense to be made precise in Appendix D).

In conclusion (omitting intersection bounds): forever honest player must out-
put b in Wh,b to ensure validity of broadcast, and since they must also output
b in Wc,b by indistinguishability, it follows from Consistency that p must also
output b in Wh,b, which contradict indistinguishability between Wh,1 and Wh,0.

Our proof, for BA in the message-authentication model. We consider a BA sat-
isfying the assumptions of Theorem 4. Since our complexity measure does not
count the bitsize of messages, we can assume without loss of generality that
all messages are signed. Hence when we write �message m�, we implicitely mean
thatm carries a signature We now describe the two slight changes to the warmup
proof described above. The �rst di�erence is that we now consider BA, so there
is no more designated sender S but instead input bits:

- In both Wc,b and Wh,b, for b ∈ {0, 1}, we assign input bit b to all honest
players other than p.

- In both Wh,0 and Wh,1, p is given the same �xed input bit B. We leave
B unspeci�ed, in order to make clear that its actual value plays no role in
the proof.

Brie�y, the second change is that in Wc,b, simulated players which speak also
get adaptively corrupt, and follow the same strategy as in Wh,b. In more detail,
recall that in both worldsWh,b b ∈ {0, 1}, the messages multicast by p potentially
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contain forwarded messages from all corrupt threads Q which talked to p so
far. Under our model, these forwarded messages may now be authenticated, i.e.,
contain an idealized digital signature of Q. Thus we must ensure that in the
messages sent by p in both Wc,b b ∈ {0, 1}, whenever the contain a forwarded
message m of some simulated Q, then m also carries the signature of the real
Q. The only possibility to obtain such a signature is to corrupt Q in the real
execution. Hence, our second change to the warmup strategy is that, in both
Wc,b b ∈ {0, 1}, playersQ which multicast in the simulated execution are now also
adaptively corrupt. Upon being corrupt inWc,b, a player Q behaves following the
same strategy as in Wh,b, i.e., continues its honest thread, and in addition opens
a corrupt thread Q which sends to p the (signed) messages that the simulated
Q sends to p.

The indistinguishabilities are unchanged. The formal di�erence is that, while
in the warmup strategy so far honest players had to output b in Wc,b to respect
broadcast validity, now the reason why they have to output b in Wc,b is instead
to guarantee strong unanimity.

Comments: why the proof would fail under a bulletin-board PKI setup (and why it
would also fail for authenticated broadcast) To argue indistinguishability between
Wh,b, b ∈ {0, 1} we must argue that, in each Wh,b up to multicast complexity
f , then the simulated execution in indistinguishable from p from the real one.
In presence of a bulletin board, the adversary would not be anymore able to
correctly simulate an execution. The best counter-example is Theorem 3: each
real player Q secretly generates a VRF secret key sk and publishes the public
key vk on the bulletin board. Then, Q speaks in round r only if its evaluation
vrf .eval(sk, r) is lower than a threshold number. In conclusion, the set of rounds
r in which the real Q speaks is correlated to the private randomness sk of Q,
hence, correlated to vk. Since the adversary ignores sk, it is unable to reproduce
the correlation between the speaking pattern of Q and the published vk.

The proof would also fail for broadcast in the message-authentication model.
Indeed, in Wh,b, in order to make p forward signed messages from a simulated
S claiming to have a con�icting input 1 − b, we would have to corrupt S, so
we could not use anymore broadcast validity to conclude that so honest players
must output b. Hence, our contribution over [1, Thm 3] is to observe that, by
switching the problem to BA, then the strategy can be successfully adapted.

1.3.2 Outline of the Proof of Theorem 5

Warump: the impossibility of Fitzi. The strategy is somehow to bring back the
situation to the impossibility proof of randomized BA beyond f < n/2 cor-
ruptions whatever the setup, shown in [33, Prop 3.1], which we now recall. It
considers two players, which we call S ,S ′, and three worlds, which we callWHA,
WHH and WAH . In all three worlds, S and S ' behave honestly as if having in-
puts 0 and 1. However the corruptions formally change as follows: in WHA S is
honest and S ' is corrupt; in WHH both are honest; while in WAH : S is corrupt
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and S ' is honest. Assume a BA with probability of failure η < 1/3. Then in
WHA, by strong unanimity S must output 0 with probability > 2/3. Since its
view is equally distributed as in WHH , it must do so in WHH with the same
probability. But symetrically, S ' must output 1 with probability > 2/3 in WHH ,
thus breaking consistency with probability > 1/3.

Proof of Theorem 5 (Illustrated in Slide 9). We assume a η-BA. Since there is
one more honest player than corrupt players, we are going to ensure that one
honest player often does not speak, in order to restablish the symmetry of the
argument of Fitzi. Let us consider any partition of players into three disjunct
subsets: P = S ∪ {h} ∪ S ′, with |S | = |S ′| = f , to be carefully chosen later.
Given this partition, let us de�ne the three worlds WHA, WHH and WAH as
follows. All players behave honestly in all worlds, and h is never corrupt.

• WHA: assign input 1 to S and {h}, they are honest. The adversaryA corrupts
S ′ and have them play honestly as if they had input 0.

• WHH : assign input 1 to S , and 0 to both {h} and S ′. All players are honest.
• WAH : assign input 0 to both {h} and S ′, they are honest. A corrupts players
in S and have them play honestly as if having input 1.

Denote XHA and XHH the events in worlds WHA and WHH where h never
sends any message. Then by the important Lemma 19, proven in Appendix E,
it is possible to choose the partition P = S ∪ {h} ∪ S ′ such that each of XHA

and XHH have a probability at least as high as some 1− ph, of which the actual
value will be used below. We now assume such a choice of partition.

By strong unanimity in WAH , both h and S ′ output 0 with at least 1 − η
probability. The views of both h and S ' being identically distributed in WHH

and WAH , we have:

(2) P
(
both S and h output 0 in WHH

)
> 1− η .

On the other side, by η-termination and strong unanimity in WHA,

(3) P
(
S outputs 1 in WHA

)
> 1− η .

Seeking a consistency failure in WHH , we thus aim at showing that S also
output 1 in WHH with high probability. However it would be fallacious to state
that the view of S has the same distribution under events XHA and XHH :
indeed, since h has di�erent inputs in those two worlds, its silence is possibly
not triggered by the same events. To repair the problem, the idea is to use
indistinguishability of the views of S in the intersection event where h stays
silent whatever its input. Formally, make the mental experiment that h opens
a parallel thread in its head in WHH , called h, in which it would have input 1.
When h wants to send a message for the �rst time, then h kills it (so h never
takes any real action based on h). Consider the event XHH of WHH where h is
never killed. Then, the view of S in XHH ∩XHH is identically distributed as in
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XHA ∩XHA, where the event XHA is de�ned in a symmetric way. Let us argue
that

(4) P(XHA ∩XHA) = P(XHH ∩XHH) > 1− 2ph .

The equality is because the only di�erence between these two events is formal:
in the left one we call h-with-input-1 the real thread and h-with-input-0 the
simulated thread, while in the right one it is on the contrary h-with-input-0
which we call real thread and h-with-input-1 the simulated one. The inequality
on the right is by Lemma 19 and an intersection bound.

By intersecting Equation (4) with Equation (3), we obtain P
(
XHA ∩XHA ∩

(S outputs 1 in WHA)
)
> 1− 2ph − η.

In conclusion, since the view of S is equally distributed in XHH ∩XHH and
XHA ∩XHA, we deduce from Equation (4) again that

(5) P
(
XHA ∩XHA ∩ (S outputs 1 in WHH)

)
> 1− 2ph − η

Intersecting with Equation (2), we obtain a consistency failure in WHH with
probability > 1 − 2ph − 2η. By the η-BA assumption, this probability must
be smaller than η. Replacing ph by its value given by Lemma 19: ph(η, C) :=

2
( (1−η)C

t+1 + η
)
, a straightforward computation shows that this implies the lower-

bound on η claimed by Theorem 5 (in detail: 3η > 1 − 4
( (1−η)C

f+1 + η
)
thus

7η − 4C
f+1η > 1− 4C

f+1 ).

2 Introduction to the second separation, under partial

synchrony

2.1 Model and upper bound The model is as is Section 1.1, except the
communication model, which is now the one de�ned in [30, �2.3 3)] under the
name �∆ holds eventually�. Let us recall it. In every execution the adversary
initially sets a �nite round number, denoted global stabilization time (GST),
such that from GST the execution is synchronous as in the previous model
of Section 1.1. Players are never aware when GST happens: indeed, nothing
distinguishes an execution where GST = 0, from one in which GST is very high
but the adversary synchronously delivers messages from the beginning. A can
delay until GST + 1 all messages which were sent before GST, in particular,
it cannot erase them. The latency and communication complexity are then
measured only after GST. We now make the simple but possibly new observation
that, with this de�nition, no protocol can o�er any guarantee if players are
PPT machines. Indeed, the adversary could just set GST = 2κ, so that players
exhaust their polynomial budget and halt before GST. So we propose a �x to
the model, consisting in restricting ∆ to be a polynomial value. In Appendix B.2
we formalize this in UC, by forcing the adversary to set GST in unary notation.
This formalism is a straightforward adaptation of [23].

On the one hand, the bulletin-board PKI-based setup mechanism of The-
orem 3 obviously holds under partial synchrony. Applying it to the partially
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synchronous BA of [2, �6.2] (or a simpli�cation of, as done in genericBA), imme-
diately yields:

Theorem 6 (Theorem 3 adapted to partial synchrony). Using the de�-
nitions of Sections 1.1 and 2, consider: partially synchronous authenticated chan-
nels with public content, a bulletin-board PKI setup and an adaptive rushing
adversary. Let ε ∈ ]0, 1[ and λ < n be �xed parameters.
Then there exists a BA tolerating any number f < (1/3 − ε)n of corruptions,
and such that, except with probability η exponentially small in both λ, every
execution satis�es: Consistency, Strong unanimity, Termination within an ex-
pected constant number of rounds after GST, at most λ+ ε honest players send
(multicast) messages in each round, and each message is of bitsize O(λ+ ε).

2.2 Lower bound and the second separation On one hand, the lower
bound on the multicast complexity of Theorem 4, under synchrony, a fortiori
holds under partial synchrony. Together with Theorem 6, this shows a separation
between the bulletin-board PKI setup and the message-authentication model
under partial synchrony, for the class of multicast-based consensus protocols.
We are now going to show another separation between those two models under
partial synchrony, which applies to consensus protocols with any communication
pattern. We obtain it from the following lower bound, of which the proof is the
most technical one. Precisely, Theorem 7 states that if a partially synchronous
BA in the message-authentication model has linear communication complexity,
then it has round complexity at least logarithmic in f . So this draws a separation
with the constant round complexity provided by the Theorem 6 under a bulletin-
board PKI.

Theorem 7. Consider partial synchrony, and the model of Section 1.1.6, i.e.,
message-authentication (and secure channels, any CRS, NIZK) and an adaptive
rushing adversary which cannot remove messages sent. If there exists a BA with
f corruption tolerance such that:
(6)

P

[
Consistency, Strong Unanimity, Termination within R(f, λ) rounds after GST
where R(f, λ) 6 Ω(log f/ log λ)(to be precised) and λf message complexity

]
>1−η

Then η > (1− (f/2n))/3 > 1/3− 1/18.

2.3 Warmup: unauthenticated quadratic communication lower bound.
The proof strategy of Theorem 7 builds on the the strategy of the following
warmup result. It states that, without even the message-authentication model,
then partially synchronous BA has quadratic communication complexity.

Theorem 8. Using the de�nitions of Section 1.1, consider: partially synchronous
secure channels (and any CRS, NIZK), and an adaptive rushing adversary which
cannot remove messages sent. Suppose that there exists a BA protocol with f
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corruption tolerance such that:
(7)

P
[
Consistency, Strong Unanimity, Termination and 6 εnf message complexity after GST

]
>1−η

Then η > (1− ε)/3.
Furthermore one can assume secret channels and any CRS, which both make
the bound stronger.

The proof adapts the impossibility argument of [28, Thm 1] to randomized pro-
tocols, by using the two additional tools at our disposal: (i) partial synchrony
enables to delay the messages sent to the isolated player p, and (ii) adaptive
corruptions enable to produce on-the-�y a faithfully sampled parallel view to
p (which we will call blue) without knowing in advance to whom p will send
messages to.

Proof. For any �xed world, up to replacing η by any arbitrarily close value η−µ,
we can consider that Equation (7) is strenghtened with: [all players output within
R(n) rounds], where R(n) is some �xed function in n, µ (and taking poly(κ)-
bounded values). For ease of notation we will call R(n) an �essential upper-bound
on the round complexity� in the given world.

We consider three worlds: still ↔ real ↔ blue, where the ↔ denotes an
indistinguishability between the views of some players.

- World blue: GST = 0, all players are honest and are assigned input 0.

- World still: GST = 0. Only p is corrupt, it never sends messages. All
other players are honest and are assigned input 1.

- World real: GST = max(Rblue(n), Rstill(n)) + 1, where R(n)blue and
Rstill(n) denote essential upper-bounds on the round complexities in the blue
and still worlds. All players are initially honest. The adversary A selects a player
p uniformly at random, it is assigned input 0. All other players are assigned
input 1. A acts according to the following strategy, of which the e�ect is to pro-
vide to p a view distributed as in blue until GST, and to forever-honest players
other than p a view distributed as in still until GST. A initiates in its head a
simulated execution of the blue world. In more detail, it initializes a simulated
copy of all players other than p, assigns to them input 0 and sets GST = 0 in
this simulation. Then at the start of each real round, the adversary simulates
this round for every player other than p in the simulated execution. For a real
player Q, we denote Q its counterpart in the simulated execution. The adversary
A interacts with the real players as follows:
• If a real honest player, or honest thread (see below): Q sends a message m
to p, then: delay the delivery of m until GST + 1;

• If a simulated player Q sends a message to p in the simulated blue exe-
cution, if there have not been f corruptions yet, the adversary adaptively
corrupts the real player Q (unless it is already corrupt) in the real execu-
tion;

• If p sends a message m to a real player Q, then A makes m delivered to
the counterpart of Q in the simulation.
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• Upon being corrupt, a player Q:

- keeps its internal state and keeps following the protocol as if it had
never been corrupt: we will call this the honest thread of Q;

- in addition, the adversary makes Q follow a parallel thread of actions,
which denote Q: the corrupt thread of Q. Q (run by Q) sends the
messages to p in the real execution, that the simulated Q sends to p
in the simulated blue execution; note that these messages are sent to
player p only and not to anyone else.

Indistinguishability between the real and still world. The view of so-far honest
players other than p in the real world, is equally distributed to their view in still.
Indeed, in real they interact only with honest threads, of which the behavior
does not depend on the corruptions. We further formalize this in Lemma 14 of
Section 5.1. As a result, so-far honest players other than p in the real world
output 1 with (high) probability > 1− η.

Indistinguishability between the real and blue worlds, for p. Intuitively, since p
outputs 0 with (high) > 1− η probability in the blue world, it thus also outputs
0 in the real world as long as the simulation fairly follows the blue world. This
happens when there are no more than f distinct players in the simulation which
ever send messages to p. By the Markov bound, this has probability > 1−η− ε.
Thus, p outputs 1 with (high) probability > 1− η− ε in the real world. Making
rigorous the previous hand-waiving argument is done in Lemma 15 of Section 5.1.
The proof is not completely trivial due to a circular dependency: the simulation
depends on the messages of the real p, which themselves depend if less or more
than f simulated players talk to p. We solve this apparent problem by a series of
hybrid distributions, in particular in one of them we consider > f corruptions.
We believe this proof technique might be of independent interest, since it may
apply to rigorously proving all lower bounds which follow a strategy as in [1,
Thm 3], i.e., where adaptive corruptions depend on simulation(s) made by the
adversary.

Conclusion. Intersecting the two previous events in the real world, i.e., p outputs
0 and the other honest players 1, we obtain a consistency violation with proba-
bility > 1− 2η− ε. So the latter probability must by 6 η, yielding the claimed
η > (1− ε)/3.

2.4 Sketch proof of Theorem 7 We de�ne more precisely

(8) R(f, λ) :=
log f − log 2

log λ+ log 2

and aim at exhibiting a consistency failure in real, following the warmup argu-
ment. However, the upgrade to the message-authentication model imposes the
following two changes.
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First change: corrupting all issuers of signatures received by p. In the blue exe-
cution, the messages sent to p may contain signatures of other players. To enable
A to create these signatures in the simulated execution, A now also corrupts all
players which potentially issued signatures sent of forwarded to p. We call the
set of such players as those which reached to p, denoted RT(p) and which we
de�ne precisely as follows. Let Q be any player, we call RT1(Q) the set of players
from which Q received messages in the �rst round. Then we de�ne recursively,
for every round number r: RTr(Q), called the set of players which reached to Q
within the �rst r rounds, as equal to:

(9) RTr(Q) = RTr−1(Q) ∪
⋃

P→rQ

RTr−1(P )

where the subscript P→rQ denotes the union over all P from which Q received
a round-r message. Hence, our �rst change is formalized as follows:

- Modi�cation to world real: If a simulated player Q sends a message
to p in some round r the simulated blue execution, the adversary adaptively
corrupts all the set RTr−1(Q) (unless those already corrupt) in the real execution.
It raizes a �RT (p) over�ow� �ag upon being required to corrupt more than f/2
players for this reason.

Second change: corrupting all �popular� players in the blue world, in order to keep
small the number of signatures received by p. We now need to control the size
of RT(p). This is our main technical contribution: we modify the blue execution
(and, accordingly, the blue simulation in the real execution!) as follows:

- Modi�cation to {world blue } & {simulated execution in world real }:
At the end of each round r, de�ne the �popular� players as those which received
more than c := (2n/t)λ messages in the round. A immediately corrupts them
and makes them silent forever. The adversary A corrupts up to f/2 popular
players. If their number gets larger, then it raizes a �popular over�ow�-�ag and
gives up. So A does not raize the �ag in good executions, since there the com-
munication complexity in these is 6 fλ. Recall that those good executions have
probability > 1− η.

An easy recursion on r shows that, with this strategy and in every execution
where the �ag is not raized, we have that for each so-far honest player Q and
round r:

(10) RTr(Q) 6 cr+1 .

Deriving the probability that p is forever honest and its view is fairly sampled
as in blue. On the one hand, in those good executions, a player p sampled at
random has probability > 1 − (f/2)/n not to be popular, and thus to be left
forever honest. To ease notation, we set ε := (f/2)/n. In particular, equation
Equation (10) holds for any such forever honest player; note that we did not
need to apply anymore the Markov bound, as we did in the proof of Theorem 8
(hence the ε appearing in its statement).
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Moreover, in those good executions, the precise choice of R (in Equation (8))
ensures that the adversary never raizes a �RT(p) over�ow�-�ag. This follows
from taking the logarithm of Equation (10).

In conclusion, a randomly sampled p stays forever honest and outputs 0 in
the real execution, with probability > (1− η)(1− ε) > 1− ε − η.

Conclusion: probability of consistency failure and round complexity. Since the
forever honest players other than p output 1 with probability 1−η, as follows from
indistinguishability with still, it follows a consistency failure with probability
> 1− ε− 2η. Since the latter probability must be smaller than η, we obtain the
claimed bound by replacing ε by its value (f/2)/n.

Related works under partial synchrony, novelty. Notice that [1, 2] con-
sider the variant of partial synchrony with an unknown ∆. All our bounds also
hold in this variant, up to adapting the de�nitions of complexities, with more
protocol-speci�c de�nitions of latency and communication.

To our knowledge, Theorem 7 is the �rst communication lower bound for
partially synchronous randomized consensus.

The unauthenticated warmup Theorem 8 can be seen as an upgrade to partial
synchrony of the lower bound of [10, �7]. In addition, our proof strategy simpli�es
the one of [10, �7] (in which our concurrent bound is kindly mentioned).

3 Model and results for external validity

Following [47] we denote as external validity predicate any e�ciently computable
function of the form ext-valid : {0, 1}∗ → {accept or reject}. Note that all
our bounds hold unchanged in the further generality of the original de�nition
[CKPS01], where validity of values is checked against validity certi�cates.

De�nition 9. A validated Byzantine agreement (VBA, also known as MVBA)
is the following variant of the De�nition 1 of a BA. Now, Π also takes as pub-
lic parameter an external validity predicate ext-valid; and Strong unanimity is
replaced by:

• External Validity. if a player P outputs x, then ext-valid(x) = accept.

Then, the probability to have simultaneously Consistency, External Validity and
Termination, is measured in the worst-case over: all adversaries, plus all ef-
�ciently computable external validity predicates, plus all assignments of valid
inputs to honest players.

A number of use-cases of VBA use validity predicates which we call state-
dependent. This means that ext-validmay not by publicly veri�able, and that the
time taken by a player to evaluate ext-valid may depend on its state, e.g., w.r.t.
a higher-level protocol. Most such use-cases [57, 56, 34] are more or less equal to
agreement on a common (or �core�) subset (ACS). Roughly, a vector of 2f+1
values (xi)i is considered valid by a player P as soon as, for each i, P has output
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xi from the reliable broadcast from Pi. In what follows we implicitely restrict to
such state-predicates, which we call converging. Namely, if some x is considered
valid by one player, then all players ultimately consider x as valid. Indeed, any
VBA in the narrow sense automatically solves VBA for converging predicates,
but otherwise it is easy to �nd counterexamples where this fails. Thus, our feasi-
bility results Theorems 11 and 13 also hold for state-dependent (and converging)
predicates. Whereas, our impossibility results Theorems 10 and 12 hold for the
most mainstream non-state-dependent predicate, i.e., validity of a signature of
some external entity, so this makes them stronger. Note that they hold only
for polynomially-bounded honest players, since otherwise VBA would be trivial:
brute-force the smallest valid value, then output it.

We measure the latency of a VBA as a worst-case over all validity predicates,
from the point in the execution where each honest player received at least one
valid value (this precision is important for state-speci�c predicates, for which
players take variable times until they obtain valid values).

3.1 Elementary-but-new results on VBA Theorem 10 shows impossibil-
ity of partially synchronous randomized VBA or BA beyond f < n/3 corrup-
tions, whatever the setup.

Theorem 10. Consider partial synchrony with known ∆, as de�ned above.
Consider any setup, PPT honest players (for BA: they can even be assumed
in�nitely powerful), a static adversary. If f > n/3 players are corrupt, then
any partially synchronous VBA or BA (De�nition 1) has probability of failure
η > 1/3.

The proof is an easy adaptation of the impossibility proof of [30, �4.3] for deter-
ministic partially synchronous BA. The novelty consists in choosing the validity
predicate equal to validity of the signature of some external entity. Hence, play-
ers cannot forge valid values which they did not see, let alone output them.
Note that the latter guarantee is weaker than strong unanimity, but it will be
su�cient to carry out the proof. The details are provided in Appendix F.

Theorem 11. Under synchrony and assuming message-authentication, then VBA
is feasible for any number f 6 n− 1 of corruptions

Proof. The following protocol is a VBA: every player broadcasts its input using
the Dolev-Strong [29] protocol, which we recall terminates within f + 1 rounds,
whatever the sender. After all instances terminate, denote (x1, . . . , xn) the list
of outputs. Note that some of them may be invalid, e.g., equal to ⊥. Output the
valid xi with the smallest index i.

3.2 Variants of our bounds for consensus with external validity (VBA)

Theorem 12. Theorem 8 and Theorem 7 also hold for VBA.
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The modi�cations to the proofs are the same as described for Theorem 10,
namely: in place of strong unanimity, use the weaker guarantee that honest
players cannot output valid values which they did not see (provided a suitable
ext-valid). Let us give the details for Theorem 7.

Proof. Consider an entity E controled by the adversary, and such that players
can verify its signatures (via FCERT). Set ext-valid the validity predicate which
accepts a value if and only if it is a signature of E. In the proof of Theorem 7,
replace the inputs 0 and 1 by signatures of E: σ0 and σ1 on 0 and 1. Replace
the application of strong unanimity by the application of external validity, as
follows.

Since in the blue execution p �sees� only σ0, i.e., its view is generated without
using any other signature of E than σ1. Thus by unforgeability, it cannot forge
any other valid value. So the only possible output of p is σ0. Likewise, in the still
execution, honest players see only σ1, so their only possible output is σ1.

Theorem 13. Theorem 3 and Theorem 6 also hold for VBA.

The result follows from adding external validity checks in genericBA.

3.3 Novelty of the results To our knowledge ([20]), Theorem 12 is the �rst
communication and latency lower bound for randomized VBA. To our knowl-
edge, no corruption lower bound was previously stated for any form of partially
synchronous randomized consensus (synchronous BA being dealt with in [33]).
To our knowledge ([22, 21]), we are not either aware of any corruption bound
for VBA, neither under synchrony nor partial synchrony.

4 Model

The model provided in Sections 1.1, 2 and 3 is enough for the understanding
of the results and their comparison with related works. However for the inter-
ested reader, in Appendix B we further formalize it with ideal functionalities,
following the standard literature [16, 41]. Two small contributions which we
make are: in Appendix B.2, emulating partial synchrony in the UC model; and,
in Appendix B.3: formalizing, in the UC model, the bulletin board PKI setup
essentially as a synchronous broadcast.

5 Details for Theorems 7 and 8

5.1 Details for Theorem 8

Lemma 14. The view of so-far honest players other than p in real, is equally
distributed to their view in still until GST.

22



Proof. Consider since the set S in real consisting of (1) so-far honest players, (2)
and of for each other player Q than p: {the initially honest Q then its honest
thread}. Their initial inputs are as in still. They honestly follow the protocol,
their internal states evolve according to an honest protocol execution, and the
messages which they receive are exactly those sent to each-other, which are
delivered within GST. In conclusion, the distribution of the views of honest
players in S is the same as in the still world.

In the blue world, consider the �good� event:

(11) Gblue :=
[
Strong unanimity and Consistency

and Termination and
(
Total number of messages sent 6 εfn

)]
.

Since GST = 0 in the blue execution, the total number of messages sent is equal
to the message complexity, since we recall the latter is the number of messages
sent by honest players after GST. Thus, by assumption we have P[Gblue] > 1−η.
In the real word, consider the �good� event:

(12) Greal :=
[
the simulated (�blue �) execution has Strong unanimity

and Consistency and Termination and
(
Total number of messages sent 6 εfn

)]
.

For a �xed player P , denote

(13) RT(P ) resp. RT′(P ) the sets of players which send messages to P in

the real, resp. blue world.

RT(P ) is read �reached to p�. Technically, RT(P ) is a random variable in the
real world, while RT′(P ) is a random variable in the blue world. Note that by
construction, RT(P ) are exactly the corrupt players. By construction, these are
also equal to the players of which the counterpart in the blue simulation sent a
message to p.

Likewise, we de�ne the events Xblue (resp. X real) that a uniformly sampled p
receives messages from at most f players in the blue world (resp. in the simulated
execution in the real world). By the Markov bound, (Appendix B.5) we have
P
[
Xblue |Gblue

]
> 1− ε thus P

[
Gblue∩Xblue

]
> 1− ε−η. By de�nition, p outputs

0 in Gblue. Towards exhibiting consistency failure in real, we would like to show
that the same holds in Greal ∩X real, and furthermore that the later has as high
probability. This is the purpose of the following lemma.

Lemma 15. P
[
Greal ∩X real

]
= P

[
Gblue ∩Xblue

]
. Thus, the former is also > 1−

ε − η. Moreover, the view of p is distributed in Greal ∩ X real identically as in
Gblue ∩Xblue.

Proof. We start from the real execution. We �rst make the change that the
adversary corrupts all players other than p since the beginning. Their behavior
is as speci�ed, i.e., then keep their honest thread and open a corrupt thread
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towards p only. This change is purely formal since the corrupt threads do not send
messages to p until their counterpart does. In particular, both the distributions
and probabilities of the Greal ∩ X real event obtained stay the same. In what
follows we shorten this last sentence as �this does not impact the Greal ∩ X real

event obtained�.
We then make the change that honest threads never send messages. This

does not impact the Greal ∩X real event obtained.
We make the formal change that all players are initially honest with input 0.

This does not impact the execution, in particular, does not impact theGreal∩X real

event obtained. What we obtained is the blue world, in particular the Greal∩X real

event obtained coincides with Gblue ∩Xblue.

6 Formalizing the proof of Theorem 3

6.1 Building blocks

The �rst ingredient is the BA called genericBA and further formalized in Ap-
pendix C.1. Let us brie�y recall from Section 1.2.1 the following. genericBA is ob-
tained by simplifying [1, �5.2] by two non-essential aspects, and by generalizing it
to any ideal functionality-interface granting eligibility to speak in a given round.
We called Feligib such interface, and speci�ed it in Figure 2. In every round r
of genericBA, every player P is instructed to conditionally multicast a speci�ed
round-r message, denoted m. To this end, it queries Feligib.speak-request(r). If
returned 1, then we say that it is eligible to speak in round r. If so, then it mul-
ticasts the message m along with its signature on m, then rotates its signing key
to the new one of the next round r+1, then erases its old round-r signing key.
On receiving a round-r signed message from some player P , a player Q processes
it if and only if Feligib.verify(P, r) returns 1.

Only for convenience of the phrasing of Properties 16, we introduce the fol-
lowing terminology. The protocol runs in iterations v = 1, 2, .... The �rst iter-
ation consists of the two rounds r = 1, 2, which for convenience we dub vote
and commit. Higher iterations v > 2 consist of four rounds r = 2+ 4(v− 1) + j,
j ∈ {1, 2, 3, 4}, which we dub respectively status,propose,vote, and commit. We de-
fer the speci�cation of genericBA to Appendix C.1, because they are not needed
if one believes in the following claim: our main message is that all its guarantees,
which we single-out in Properties 16, solely follow from the outputs of the Feligib

interface. Since every player queries Feligib(r) in every round r, independently
of the execution, this shows that the guarantees below depend solely on how
Feligib will be instantiated. The conditions below involve a parameter λ, and a
threshold number of corruptions equal to f 6 n(1/2−ε), where ε is a parameter.

Properties 16. Consider the protocol genericBA described in Appendix C.1 (a
simpli�cation of [1, �5.2]). Denote V luck the smaller iteration number (possibly
∞) for which both conditions hold:

committees. in both the vote and commit rounds: > λ/2 honest players eligible
to speak, and < λ/2 corrupt players are eligible to speak;
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leader. if furthermore V luck > 2, then: there exists exactly one player eligible
to speak in the propose round, and this player is furthermore honest;

then all players terminate by the �rst round of iteration V luck + 1.
If furthermore for all iterations v 6 V luck we have: (i) at least one honest player
is eligible to speak in the status round, and (ii) in both the vote and commit
rounds we have: > λ/2 honest players eligible to speak, and < λ/2 corrupt
players eligible to speak; then, the execution satis�es Consistency and Strong
unanimity.

The proof is obtained by compiling the one given in [2, �5.3], which is sim-
pli�ed by our two simpli�cations. The compilation essentially consists in replac-
ing every occurence of �By Lemma 1 / By Cherno�, except for exp(−Ω(λ))
probability� by: �by de�nition of V luck � or �by condition (i)/(ii)�, depending
on the case. We provide more details in Appendix C.2, and also explain in Ap-
pendix C.3 how to adapt the statement and the proof to when the termination
mechanism is reincorporated.

From Properties 16, it follows that the only ingredient needed to obtain
Theorem 3 is an instantiation of Feligib in the bulletin-board PKI model, such
that: V luck is independent of n, and such that conditions (i) and (ii) hold, for a
given ε, up to exponentially small probability in λ the number of players which
speak. All the ideas to implement Fbias

eligib in the bulletin-board PKI model were

conveyed in Section 1.2.1, we now formalize them as protocol Πbias
eligib, which we

give in Figure 5. To describe it, we borrow the ideal functionality called FVRF of
a veri�able random function (VRF) from [27, Fig. 2], which we recall in Figure 10
of Appendix C. This FVRF model further simpli�es the syntax of a VRF which
we used in Section 1.2.1. Indeed, instead of manipulating secret keys, FVRF

directly ignores requests for provable evaluations if they do not come from the
same entity which generated the public key vk.

The proof that Πbias
eligib implements Fbias

eligib follows from a straightforward sim-
ulation, which is furthermore perfect. The only subtlety is when the simulator
S receives an FVRF-evaluation request from the adversary, for a key vk which
was not yet declared to FVRF as assigned to a corrupt player. Then S predicts
for which corrupt player vk will be used in conjunction with the given seed σ.
To do this, it looks at which position the key vk appears in the seed σ (or in
the preimage of the seed, in case H would not be the identity function but a
simulated oracle). We defer the details to Appendix C.5.

6.2 Deriving Theorem 3

In conclusion, it remains to prove the claimed asymptotic complexities of genericBA
instantiated with Fbias

eligib. Given Properties 16, we obviously specify Fbias
eligib with

the same probabilities to be eligible in a round as those in [2, �5.2], i.e.: p(propose) =
1/n and p(status/vote/commit) = λ/n. For simplicity we use a complexity model
where the adversary A can query Fbias

eligib on at most q distinct seeds. Then for
each seed, we consider that A can make an unlimited number of queries for all
eligibilities of all corrupt players in all rounds. We refer to [26, Lemma 1] for
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Πbias
eligib(p)

Setup. Before time t = 0: each player queries FVRF.keyGen, then upon receiving
a key vk, publishes it on the bulletin-board.
At time t = 0: players retrieve the keys published on the bulletin-board. Denote
their list as: σ ← (vk1, . . . , vkn) (unpublished keys are set to ⊥).

Request to speak in round r. Player P queries FVRF.evalProve((σ, r)). Upon be-
ing returned the provable evaluation (y, π): if y < p(r), then output 1, i.e., eligible
in r, then multicast (r, y, π). Else, output 0.

Verify(P, r). If no (r, y, π) was received from P , output 0. Else, let vk by
the public veri�cation key of P (retrieved from the bulletin-board). Query
FVRF.Verify((σ, r), y, π, vk), and output the response received from FVRF.

Figure 5: Protocol implementing Fbias
eligib. The two di�erences with the implicit

implementation of Fmine in [2, �9.4] are: the setup (there is no longer a trusted
party generating the keys) and for the publication on the bulletin board), and our
pre-pending of the seed σ to all VRF evaluations. To highlight these di�erences,
the rest is shaded-out. We further simpli�ed Section 1.2.1 by setting H equal to
the identity function. For convenience we normalize to [0, 1] the set of evaluations
of FVRF. As in [27, Fig. 2], recalled in Figure 10, the veri�cation key lengths are not

speci�ed. Recall that in the FVRF model, all public keys returned by keyGen are chosen

by the adversary, at the only condition that the keys of players are all distinct and

distinct from the ones registered directly by A in its name.

a thinner model and analysis (their functionality Fbias, which they implement
using a costlier setup, looks similar to Fbias

eligib).

We �rst prove that all criterions in Properties 16 of the type > λ/2 and
< λ/2, are matched with overwhelming probability. Then in the next paragraph
we will address the remaining [leader.] criterion. Consider a �xed seed σ which
was not queried before to Fbias

eligib. Then, by de�nition of Fbias
eligib, all eligibilities

of all players in all rounds are sampled independently from all previous queries
with other seeds, and also sampled independently from each other. In particular,
consider a �xed status/vote/commit round r. Then by the Cherno� bounds,
applied as detailed in Appendix B.5, the probability of the bad event badr,σ that
> λ/2 corrupt players are sampled eligible in round r is 6 exp(−ε2Ω(λ)). From
now on we drop the dependency in ε for simplicity, i.e., we consider a �xed ε. By
independence of the eligibilities in distinct rounds, for a given number of rounds
R, we obtain that the bad event badr,σ does not happen in any r ∈ [1, . . . , R]
with probability at least (1− exp(−Ω(λ)))R. By independence of the eligibilities
sampled over distinct seeds, we obtain that the bad event badr does not happens
in any round for any of the q seeds tried by A, with probability at least (1 −
exp(−Ω(λ)))qR. Notice that, by contrast, the probabilities of the other bad event:
existence of a round r ∈ [1, . . . , R] such that < λ/2 honest players are eligible
in r, stays equal to (1 − exp(−Ω(λ)))R whatever the number q of re-seedings
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in the setup. Indeed, the eligibility of each honest player in a given round r is
sampled only when it (privately) queries it to Fbias

eligib, and by de�nition is sampled
independently from the outcome of all previous queries of the adversary.

We now turn to upper-bound the probability that a given iteration v sat-
is�es the [leader.] criterion. Consider one �xed seed σ. Then the probability
that, in one given iteration v, there is no corrupt player eligible to propose, is
> ((n− 1)/n)n/2 ∼= e−1/2. Thus the probability that at least one corrupt player
is eligible to propose, is 6 1− e−1/2. By independence of eligibilities in distinct
iterations, the probability pbad(σ) that in each of the V �rst iterations there is
at least a corrupt player eligible to propose, is thus 6 (1− e−1/2)V . Taking the
union bound over the q di�erent seeds tried by the adversary, it follows that the
probability pbad that in each of the V �rst iterations there is at least a corrupt
player eligible to propose, is 6 q(1 − e−1/2)V . In conclusion, the probability
that the [leader.] condition fails in all V �rst iterations is exponentially decreas-
ing in V , which shows our constant round complexity claim. Note that in the
previous conclusion we neglected the event where one round may fail to match
the [committee.] condition, since this event has negligible probability in λ by
the previous paragraph. Note that in the previous conclusion we overlooked the
other requirement of [leader.] that exactly one honest player is eligible. So we
would have had to multiply the previous upper-bound by the probability that
exactly one honest player is eligible to propose in a given iteration. Neglecting

ε, the latter is roughly equal to n/2. 1n .
(
n−1
n

)n/2−1∼= 1/2.e−1/2. But this latter

detail is irrelevant with respect to the substantial optimization described in the
beginning of Appendix C.6 (imported from Algorand).
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A Related works

A.0.1 The post-publishing-of-keys-unpredictable-seed setup, and the
one-by-one adversarial key picking attack. Some consensus algorithms [37,
19, 27] [53, �4.2.1] assume a setup which fairly samples the seed σ of the VRF
used for self-sortition, then publicly reveals it after all participants published
their keys. In those works, the seed σ (called �nonce� in [26, 27]) appears in a so-
called �genesis block�. Note that in [53, �4.2.1], the VRF is implemented from a
fresh random oracle:H which appears after publication of keys. But as noticed in
[52], assuming a fresh random oracle trivially falls back to the fresh seed model:
simply use an old random oracle (in their case: a PRF) with inputs pre-pended
by the fresh seed. Let us recall why this model cannot be simply downgraded into
a seed which would be known the the adversary A before corrupt players publish
their VRF keys. Consider the scenario where this would happen. Let us consider
simultaneously the examples of: Thunderella, where an output can be reached in
2 rounds by [53, Thm 10] (propose, then 3/4 majority of votes); Algorand [37],
where it is reached in in 4 rounds (page 5, �E�ciency�); and [1, 2] (�5.1) which
take 3 rounds. So in order to break consistency of all those consensus protocols,
it is enough for the adversary to ensure that a corrupt player is eligible as leader
in the �rst round (in order to make equivocating proposals), and that > λ/2
corrupt players are eligible as voters of the subsequent rounds 2, 3 and 4. The
adversary A can easily achieve this objective in our σ-known-to-A scenario, by
choosing the VRF keys of corrupt players as follows. Denote λ the expected
number of eligible voters per round. For one �xed corrupt P , try on average n
key pairs (sk,vk) until the VRF.eval(sk, σ|1) returns a value eligible to be the
�rst leader. Then for every other corrupt player Q, one-by-one until λ/2 of them,
try on average (n/λ)3 keys pairs (sk,vk) until the VRF.eval(sk, σ|i) returns an
eligible value for all i = 2, 3, 4.

On the face of it, the VRF in the works [38, 49, 48] does not take any
public seed, and furthermore players are allowed to pick their VRF secret keys.
Note that they call �seeds� these secret keys. So a priori this allows the above
adversarial key picking attack. From [38]: �Due to the complexity of instantiating
VRFs when players may choose their own seeds, we model them as random
oracles, and direct readers to [Algorand] for a more in-depth treatment of the
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subject.�, our best guess is that their model is that a fresh ideal VRF appears
after players published their keys. Again, by domain-separation, this fresh ideal
VRF could be implemented as an old ideal VRF, of which the inputs would be
pre-pended with a fresh random seed implicitely assumed by the model.

A.0.2 How our mechanism of Theorem 3, with a weaker setup, de-
feats this attack. For each new attempt of a new key pair (ski, vki) for
some corrupt Pi, since this modi�es vki, this modi�es the potential seed σ =
H
(
(vk1, . . . , vkn)

)
, so completely re-samples afresh the eligibilities of all other

corrupt players.

A.0.3 The Honestly-sampled-keys setup. Some feasibility results on con-
sensus [43, 2, 40, 18, 10, 9] assume a setup which is strictly stronger than the
bulletin-board PKI. There, the VRF secret keys of corrupt players are honestly
sampled (either by restricting the adversary, or, by assuming a trusted third-
party). So this model makes impossible, by de�nition, the above attack where
the adversary repeatedly samples the VRF secret key of each corrupt player P ,
until it chooses one which grants eligibility of P in su�ciently many committees.

A.0.4 Static adversaries. In both [26, 6], there is a public function which
returns if a given player is eligible to speak in a given round, e.g., in [6] for
dealing a coin. But the eligibility function takes only public inputs. Thus, the
adversary knows in advance all eligible honest players (and also the committees
of share-holders, in [6]). The model of [26] explicitely handles this limitation by
�xing the corruption delay equal at least as large as the delay to reach consensus,
on a so-called checkpoint. For our concern of a single consensus instance (not
a blockchain, as them), this is equivalent to a static corruptions. Turning to
[52], in �7.4 the proof for adaptive security does a reduction to static security
with 2n loss. So this is incompatible with our main concern, which is the regime
of asymptotic complexity in n. As regards complexity, the adaptively-secure
mechanism of [52, �6.1] is openly stated to be prone to a one-by-one adversarial
key picking attack. They give the example of a lazy adversary which picks the key
of each corrupt player P so as to grant P one leader slot (as noticed in ?? A.0.1,
o�ering v leader slots to P would take only nv trials of keys in expectation).
They deduce that the round complexity is linear in f , so this is incompatible
with our concern, which is constant round complexity.

The synchronous BA of [12, 13] is in the bulletin-board PKI model, however
their adversary cannot adaptively corrupt players after the setup. It has f <
(1/3− ε)n corruption resilience and O(npolylog(n) communication complexity.
With this respect, our upper-bound Theorem 3 has strictly better parameters:
f < (1/2− ε)n corruption resilience, O(n) complexity and tolerance to a rushing
adaptive adversary. Their BA is balanced, in that each player sends messages
to no more than polylog(n) peers. Since our protocol proceeds by simultaneous
multicasts, those can also be implemented by protocols in which players speak
only to a few peers [24, 45, 46].
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A.0.5 The lower bounds Theorems 4 and 5 are in stronger models
than previously. To our knowledge, all previous lower bounds for consensus
with an adaptive adversary are in strictly weaker models. Those of [10, �7], [12,
13, Thm 1.5] and [1, Thm 3] do not assume message-authentication. Whereas,
the one of [1, Thm 1] assumes that the adversary can remove messages which
were already sent in the round. We now compare more particularly to the one
of [1, Thm 3], since the technique is similar. It is stated for broadcast, instead
of for BA. As explained at the end of Section 1.3.2, their proof technique does
not provide a lower bound for broadcast in the message-authentication model.
Hence, our contribution consisted in observing that their proof technique, when
upgrading to the message-authentication model, can be successfully adapted
provided switching the problem to BA.

A.0.6 Are distributed samplers of any help? In [4] (followed by [3]) they
implement a functionality (Figure 5) which, upon being queried by the adversary,
(re-)samples from any prescribed distribution; then publishes the sample which
the adversary liked the most. So it would not enable to sample a seed in a
more fair way than [37, 26, 27, 19] (see below), nor than what we do. It is even
orthogonal to our needs, since if we had used instead their functionality instead
to set the public seed of the VRF, then this would have allowed the same attack
as above. Namely: the adversary would, all in the same round of publication on
the bulletin-board: observe the seed σ which will be output by the functionality
(it needs not even bias it), then choose the VRF secret key of each corrupt player
P in order to maximize its eligibility, and publish it.

A.0.7 Setups with interactions (and at least quadratic complexity).
If we had allowed two consecutive rounds of publication on the bulletin-board
followed by all-to-all messages, then this would have enabled to implement the
unbiased idealized self-sortition functionality Fmine of [1, 40, 18] as follows: 1.
players publish their VRF public keys, as well as public encryption keys, 2. each
player publishes a PVSS of a random value, 3. players open the published PVSSs,
and de�ne the VRF seed σ equal to the sum of the opened values. The setups
of [10, 6] are also interactive, since they proceed by such several consecutive
broadcasts or BA instances. Since before Theorem 3, no consensus with linear
complexity was known in the bulletin-board PKI model, a fortiori no algorithm
with linear complexity was either known to implement these setups. Likewise,
[37, 27, 19] consider an ever-growing chain of consensus (VBA) instances. The
VRF seed of later instances is determined by the output of older instances.
However this does not settle how the VRF seed of the �rst consensus instance
is set, which is what our work is addressing. Hence it is not apples-to-apples to
compare our single-shot instance with the performances of their later instances.

A.0.8 Ressource-restricted cryptography, and a failed attempt. This
model [GKOPZ20], initiated by the Bitcoin protocol [51], assumes that honest
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players are able to collectively spend more ressources than the adversary. It is
shown in [51, 35] how to implement BA under honest majority in this model,
using only plain synchronous authenticated channels, thereby circumventing the
f > n/3 impossibility of [42, 11]. Let us recall the technique of [7, GKLP18]
which removes the need for an unpredictable seed in the genesis block of Bitcoin.
To send a message in a given round r, a player must solve a challenge derived
from, roughly, a quorum of round-(r-1) messages. Then in its round-r message,
the player includes some randomness: as a result, as long as a quorum of round-r
messages contain at least one issued by an honest player, the challenge will be
fresh. In our setting, it was tempting to adapt this technique by using a quorum of
round-(r-1) randomnesses as a seed in the VRF evaluation. Unfortunately, VRF
evaluations are much cheaper than PoW challenges. So the adversary could, for
each corrupt player P one by one, try di�erent quorums of messages until one
yields a VRF seed granting eligibility to P . Hence, this falls back to the attack of
??A.0.2. A related model is time-based cryptography, in which honest players are
assumed to compute a function as fast as the adversary [55] (time-lock puzzles)
or [5] (VDFs).

B Additional details on modeling

Recall that the UC model [16] considers a PPT machine called the environment
Z , which controls the adversary and assigns their inputs to players. Moreover,
when de�ning external validity (De�nition 9), it should be formalized that Z
de�nes the predicate ext-valid. An example is that ext-valid checks validity of
signatures of an entity controled by Z . Another (generic) example is to formalize
ext-valid as an oracle controled by Z , to the extend that it always return the
same output when queried twice on the same input.

Moreover, Z controls the pace at which each player does its actions, in par-
ticular, can completely stall the execution. This latter limitation does not impact
our results since all our speci�cations, e.g., De�nition 1, apply only to in�nite
executions.

Notice that we do not require the UC implementation of BA as an ideal
functionality. Hence, we do not specify that the environment observes the outputs
of players and tries to distinguish the protocol from a dummy interaction with
an ideal functionality of BA Instead, we stay at the level of our property-based
De�nition 1 (which thus makes our impossibilities stronger). Requiring so is
orthogonal to our contributions.

B.1 Public authenticated channels FAUTH, and synchrony

We recall below the functionality of public authenticated message transmitting
of [16] and [25, �4.2.3].

The functionality of secure message transmitting, formalized as FSMT in [16]
and [25, �4.4.2], is the upgrade where the content of the message is kept secret.
Concretely, it leaks only (sent, ssid, |m[) to A, where |m| is the bitlength of m,
instead of (sent, ssid,m).
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FS→RAUTH

1. On input (send, ssid,m) from S, leak (sent, ssid,m) to A and store (ssid,m).
Ignore any later input of the form (send, sid, _).

2. Upon receiving (ok, ssid) from A, if some (ssid,m) is stored, then output (ssid,m)
to R and delete (ssid,m).

Figure 6: Public authenticated message transmitting. It is parametrized by a
sender S and a receiver R

Formalizing synchrony. Since the previous formalism does not capture syn-
chrony, since the adversary can block the output forever, we now describe the �x
proposed in [41, �3.3]. There, FAUTH (in their case: FSMT) is upgraded as fol-
lows. FAUTH is parametrized by a public integer∆. When the S inputs a message
(send, ssid,m), FAUTH initializes a counter D ← 1 which models the delivery de-
lay for the message id ssid. The adversary can make requests to FAUTH increase
D by +1, up to a total number of ∆− 1 requests. On the other hand, for every
message id ssid which the receiver R expects from the sender S, R can make
fetch requests to FAUTH which have for e�ect to decrease D by −1. When D
reaches 0, FAUTH delivers the message to R. Note that, in Section 1 and in the
paper in general, we set the unit of time equal to ∆. Hence, the notation time
t = 1 actually means t = ∆.

The other ingredient needed to emulate synchrony is the global clock, which
[41] emulate as follows. They introduce a clock functionality accessible by all
players, which roughly does the following. When a player has fetched ∆ times
all the messages of a round r that it expected to receive, and done all the
processing of messages that it needed to do, it noti�es the clock that it is ready.
Upon being noti�ed by all honest players that they are ready, the clock ticks
r + 1, i.e., allows them to proceed to sending their round r + 1 messages.

B.2 Partial synchrony

The bounds in Section 2 are stated in the model of partial synchrony de�ned as
�∆ holds eventually� in [30, �2.3 3)]. As explained in the beginning of Section 2, a
partially synchronous protocol can o�er meaningful guarantees only if we further
restrict GST to be polynomial. Let us propose a UC formalism of this restriction,
which parallels the one of [41, 23, 44] for asynchronous eventual delivery of
messages.

It is conveniently described by merging all FS→RAUTH into one single FAUTH

which accepts all senders and receivers. We enrich FAUTH with a counter D′,
initialized to 0. The adversary can set D′ equal to a value, denoted GST, which
it must input in unary notation before the protocol begins. Since the adversary
is polynomial, it follows that GST is polynomial. At the end of every round,
FAUTH sets D′ ← D′ − 1 by one. As long as D′ does not reach 0, FAUTH
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operates as asynchronous message transmitting with eventual delivery as in [41,
23, 44]. When D′ reaches 0 for the �rst time, FAUTH switches forever to the
mechanism of Figure 6. Moreover at this point, if some messages not delivered
yet has a current delay D> ∆, then their delay D is set to D = ∆.

B.3 Formalizing the bulletin-board PKI setup

Let us slightly more formalize the bulletin-board PKI setup, which we speci�ed
following [CGGM00]. We de�ned it as a setup protocol: Πs, played before the
time t = 0 at which players receive their inputs. Moreover, Πs has the following
form. Before t = 0, each player P has writing access to a public bulletin board.
The Πs instructs P to generate a string then write it on the bulletin board. The
Πs is non-interactive, i.e., the string does not depend on the other strings which
have possibly been written by other players. On the other hand, the adversary
learns instantaneously the strings written by honest players. Thus it can adap-
tively choose the strings on behalf of corrupt players, and is allowed to write
them after all honest players wrote. Then from t = 0, all players have read-only
access to the bulletin board. The closest formalization of such a bulletin-board
which we found in the litterature is the ideal functionality FCA introduced in
[17], and which we reproduce in Figure 7.

FCA

1. Upon receiving the �rst message (register, v) from a player P , send
(registered, P, v) to A; upon receiving ok from A, and if this is the �rst request
from P, then record the pair (P, v).
2. Upon receiving a message (retrieve, P ) from player Q, send (retrieve, P,Q) to
A, and wait for an ok from it. Then, if there is a recorded pair (P, v), output
(retrieve, P, v) to Q. Else output (retrieve, P,⊥) to Q.

Figure 7: The certi�cation authority functionality: FCA.

We found that FCA is equivalent to a broadcast channel. Hence, we give
below the ideal functionality of broadcast, adapted from [39]. It is parametrized
by a sender S and a set R of receivers. In our context of bulletin-board PKI:
there are n instances, in instance i the i-th player acts as the sender, and the
set of receivers is equal to all players P .

Formalizing delivery before t = 0 Whatever the formalism, FCA or FBC, the
formalism above does not yet capture the timing assumption that all players are
delivered an output by time t = 0. We now propose a mechanism to emulate
this timing assumption in UC model, following the mechanism of [41] which is
recalled above for point-to-point message transmitting. Namely: FCA or FBC

initialize a counter 1 ← DS←R for each pair of sender (S, receiver R). The
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FS,RBC

Upon receiving for the �rst time:
{
(v ∈ {0, 1}∗) from S if S honest

}
OR

{
(v ∈

{0, 1}∗ t {⊥}
)
from A if S corrupt

}
. Then hand v to A, and when A allows then

send (v) to every R ∈ R.

Figure 8: One broadcast instance, parametrized by a sender S and a set of
receivers R.

adversary can make up to ∆−1 requests to increase it by +1, while R can make
repeated fetch requests to decrease it by −1. Upon the event where, for the �rst
time, there is a receiver R ∈ P which made ∆ requests. Then, if A input nothing
on behalf of the corrupt sender S, we specify that FBC sets the output to ⊥.
Then it delivers ⊥ to R, as well as to every subsequent R which will reach a
number ∆ of fetch requests.

B.4 Ideal message-authentication functionality

We copy in Figure 9 the ideal message-authentication functionality of [17]. It is
parametrized by a player S, denoted signer.

FSCERT

Signature Generation: Upon receiving (sign-request, sid,m) from S, check
if sid = (S, sid′) for some sid

′. If not, then ignore the request. Send
(sign-request, sid,m) to A. Upon receiving (signature, sid,m, σ) from A, verify that
no entry (m,σ, 0) is recorded. If it is, then output an error message to S and halt.
Else, output (signature, sid,m, σ) to S, and record the entry (m,σ, 1).
Signature Veri�cation: Upon receiving a value (verify, sid,m, σ) from some
player P, hand (verify, sid,m, σ) to A. Upon receiving (verification, sid,m, ϕ) from
A, do:
1. If (m,σ, 1) is recorded then set b = 1.

2. Else, if the signer is not corrupted, and no entry (m,σ′, 1) for any σ′ is recorded,
then set b = 0 and record the entry (m,σ, 0).

3. Else, if there is an entry (m,σ, b′) recorded, then set b = b
′.

4. Else, set b = ϕ, and record the entry (m,σ′, ϕ).
Output (verification, sid,m, b) to P.

Figure 9: Ideal digital signature functionality, dubbed as �signing oracle�, for
player S.

On the face of it, a corrupt P can possibly query (verify) on many triples
(sid,m, σ) and then A forces FCERT to record (m,σ, 0), preventing the subse-
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quent use of these parameters by the signer S. But actually, as explained in [17,
p 10], the (verify) requests are ignored if they do not come with a sid which was
used by the signer S in the �rst place.

Notice also thatAmay block the delivery of the signature, by never answering
(signature, sid,m, σ). Thus, the advancement of the BA protocol is stalled. This
is a formal problem since, on the other hand, the Environment Z allows players
to take an in�nite number of steps, so the execution is still considered as in�nite
and thus the Termination requirement of De�nition 1 should apply. This problem
could be easily �xed by specifying FCERT to issue a signature generated in a
prescribed distribution, in case A would take too much time to respond. The
mechanism in UC would follow the same fetch-and-delay mechanism as the one
of [41] for synchronous FAUTH, recalled above. Notice that this �x is enough,
thanks to the synchronous UC clock of [41] recalled above. Namely, whatever
�nite time it takes to FSCERT to deliver its output, the clock waits until S receives
it and �nishes its computations, before ticking the next round.

Notice that, without such a clock, so under asynchrony, nothing would pre-
vent FSCERT from taking more delay than a number of messages delays. This
artifact of the UC model is observed in [15], which point some failures in secu-
rity proofs due to it. For this reason, they propose a UC mechanism which forces
functionalities such as FCERT, i.e., modeling local computations, to deliver their
output in priority before other functionalities.

B.5 Probabilistic inequalities

Proposition 17 (Markov bound). Let X be a non-negative random variable.
Then for any a> 0,

P[X > a] 6
E[X]

a
.

Proposition 18 (Cherno� bounds). Consider X1, . . . , Xm Bernoulli vari-
ables, each of expected value p , i.e., P[Xi = 1] = p and P[Xi = 0] = 1 − p
∀i ∈ [m]. So µ := E

[∑
iXi

]
= pm. Then for every 0 ≤ δ < 1 we have:

P
[∑
i

Xi ≥ (1 + δ)µ
]
≤ e−δ

2µ/3(14)

P
[∑
i

Xi ≤ (1− δ)µ
]
≤ e−δ

2µ/2(15)

In our applications p := λ
n . Equation (14) will be applied to m := (1− ε)n/2 and

1 + δ = 1/(1 − ε), while Equation (15) will be applied to m := (1 + ε)n/2 and
1− δ = 1/(1 + ε)

C Extra details for Theorem 3

C.1 BA with uninstantiated self-sortition: genericBA

To obtain Theorem 3, we introduce a general setup mechanism which we are go-
ing to illustrate on the following protocol, which we call genericBA. It is obtained
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from [2, �5.2] as follows. We simpli�ed it by downgrading eligibility-to-send-a-
given-message, into eligibility to speak in a given round, and also by removing
the termination mechanism. Moreover, we generalized it by leaving it operate
from an ideal functionality for eligibility to speak, as long as it has the interface
Feligib-interface, which we speci�ed in Figure 2. All messages are signed. We
assume a key-evolving signature scheme as in [37, 27] (we refer to the formalism
of [27, Figure 1], and their proof in �B that it is implemented by the standard
de�nition). When being instructed to conditionally multicast a given round-r
message, a player P does the following. It queries Feligib.speak-request(r). If re-
turned 1, then we say that it is eligible to speak in round r. If so, then it multicasts
the message with its signature, then updates its signing key to round-(r + 1),
and �nally erases its old (round-r) signing key. Hence, even if it gets corrupt in
the same round r, the adversary cannot anymore make P issue signed round-r
messages.

On receiving a round-r message from some player P , a player Q processes it
if and only if Feligib.verify(P, r) returns 1.

The protocol runs in iterations v = 1, 2, .... The �rst iteration consists of
the two rounds r = 1, 2, while, higher iterations v > 2 consist of four rounds
r = 2 + 4(v− 1) + j, j ∈ {1, 2, 3, 4}. To ease the presentation, for each iteration
v > 2 we call status,propose,vote, and commit the round numbers corresponding
to j = 1, 2, 3, 4, while the �rst two round numbers r = 1, 2 are dubbed vote and
commit.

A collection of λ (signed and Feligib-eligible) iteration-v vote messages for
the same value x from distinct players is said to be a view -v certi�cate for x. A
certi�cate from a higher iteration is said to be a higher certi�cate. Below is the
protocol for an iteration. The protocol for the �rst iteration v =1 skips the �rst
two rounds (status and propose).

1. Status. Every player conditionally multicasts a status message of the form
(status, r, x, c) containing the highest certi�ed value x it has seen so far as
well as the corresponding certi�cate c.

2. Propose. Every player P conditionally multicasts a propose message of the
form (propose, r, x, c) where x is a value with a highest certi�cate known to
P , denoted c. Ties between two highest ranked values are broken arbitrarily.
To unify the presentation, we say that a value without any certi�cate has an
iteration-0 certi�cate and it is treated as the lowest ranked certi�cate.

3. Vote. In the �rst iteration v = 1, a player conditionally multicasts (vote, v =
1, x) where x is its input value.
For all iterations v > 2, if a (signed and Feligib-eligible) (propose, v, x, c) mes-
sage has been received with a certi�cate c for x, and if the player has not
observed a strictly higher certi�cate for a con�icting value x' 6= x, it condi-
tionally multicasts an iteration-v vote message for x, of the form (vote, v, x),
attached with the above iteration-v propose message.
//Importantly, even if the player has observed a certi�cate for a con�icting value

x' 6= x from the same iteration as v, it will still vote for x.
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4. Commit. If a player has received λ/2 iteration-v (Feligib-eligible and signed)
votes for the same x from distinct players (which form an iteration-v certi�cate
for x) and no iteration-v vote for a con�icting value x' 6= x, it multicasts an
iteration-v commit message for x of the form (commit, v, x) with the certi�cate
c attached.

∗ output - without termination. (This step is not part of the iteration and can
be executed at any time.) If a player has received λ/2 commit messages for
the same x from the same iteration from distinct player, it outputs x. This
last message will make all other honest player conditionally multicast the same
terminate message, output x and terminate in the next round.

C.2 Proof of Properties 16

[Round complexity to output.] In the proof of their [2, Corollary 1] it is used
that, if an iteration v satis�es both conditions [leader] and [committees], then
all players output by the end of v. This shows that all players output by the end
of V luck. Notice that they call �good� an iteration are soon as it satis�es [leader],
thus con�icting with our terminology.

[Consistency.] In the proof of [2, Thm 5] it is shown that consistency holds
if both conditions (i) and (ii) hold.

[Strong unanimity.] In the proof of [2, Thm 6] it is shown that strong una-
nimity (which is called �validity�) holds if both conditions (i) and (ii) hold.

Notice that all probabilities of success stated in [2, �5.3] are implicitely expo-
nentiated by the (constant) expected number of rounds before all players output.

C.3 Adding termination to genericBA

Now, in addition, there is one type of message which players may be instructed to
conditionally multicast at anytime, called terminate. To unify the presentation,
we say that it is a �round-⊥ message�. In turn, Feligib is updated to allow ⊥
round numbers as input.

∗ output - with termination. (This step is not part of the iteration and can be ex-
ecuted at any time.) If a player has received λ/2 commit messages for the same
x from the same iteration from distinct players, it conditionally multicasts a
termination message of the form (terminate, x) with the λ/2 commit messages
attached. The player then outputs x and terminates. This last message will
make all other honest player conditionally multicast the same terminate mes-
sage, output x and terminate in the next round.

Since players can terminate, the upper-bound V luck on the round complex-
ity is not good anymore for some executions. Indeed, it could be the case that
half of the honest players terminate before V luck happens, then from this point
there will not be enough honest players querying Feligib to become eligible, hence
V luck may well never happen. For this reason we now bound the round complex-
ity by V := min(V term, V luck), where V term is the �rst iteration from which
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enough players have terminated. Precisely, we de�ne a parameter εterm < ε
such that, when a threshold fraction of players εtermn2 have terminated, hence,
queried Feligib.speak-request(⊥), then with overwhelming probability at least one
of them was eligible, hence has made all other players terminate. In [1, �5.3] it
is implicitely set εterm = ε/2. Moreover, for all rounds before V term, ε must
be set large enough such that, despite up to < εtermn honest players having
terminated, the remaining (ε − εterm)n are numerous enough to guarantee the
conditions [committees.], (i) and (ii) of Properties 16 with overwhelming proba-
bility.

C.4 Reminder of the idealized VRF of [27]
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FVRF

FVRF interacts with all players P ∈ P and the adversary A. Session identi�ers (sid)
are omitted.
Key generation Upon receiving (keyGen) from a player P , hand (keyGen, P ) to
A. Upon receiving (verificationKey,P , vk) from A, if P is honest, verify that
no pair of the form (·, vk) is already stored, store the pair (P, vk) and return
(verificationKey, vk) to P . Initialize the table T (vk, ·) to empty.

Malicious key generation Upon receiving (keyGen, vk) from A, ignore if vk is al-
ready stored. Initialize the table T (vk, ·) to empty and record the pair (A, vk).

VRF evaluation Upon receiving a message (eval,m) from P , verify that some pair
(P , vk) is recorded. If not, then ignore the request. Then, if the value T (vk,m)
is unde�ned, pick a random value y $←− {0, 1}κ and set T (vk,m) = (y,∅). Then
output (eval, y) to P , where y is such that T (vk,m) = (y, S) for some S.

VRF evaluation and proof Upon receiving (evalProve,m) from a player P , ignore
if no pair (P, vk) is recorded. Else, send (evalProve, P,m) to A. Upon receiving
(evalProve,m, π) from A, if value T (vk,m) is unde�ned, verify that π is unique,
pick a random value y $←− {0, 1}κ and set T (vk,m) = (y, {π}). Else, if T (vk,m) =
(y, S), set T (vk,m) = (y, S ∪ {π}). In any case, output (eval, y, π) to P .

Malicious VRF evaluation Upon receiving (eval, vk,m, S)∗ from A for some vk, do
the following. First, if

{
(A, vk) or (P, vk) for P corrupt

}
is recorded and T (vk,m)

is unde�ned, then choose a random value y $←− {0, 1}κ and set T (vk,m) = (y, S)
and output (eval, y) to A. Else, if T (vk,m) = (y, S′) for some S′ 6= ∅, union S
to S′ and output (eval, y) to A, else ignore the request.

Veri�cation Upon receiving (verify,m, y, π, vk) from some player P , send
(verify,m, y, π, vk′) to A. Upon receiving (verification,m, y, π, vk′) from A do:

1. If vk′ = vk for some stored (·, vk) and the entry T (vk,m) equals (y, S) with
π ∈ S, then set b = accept.

2. Else, if vk′ = vk for some stored (·, vk), but no entry T (vk,m) of the form
(y, S 3 π) is stored, then set b = reject.

3. Else, initialize the table T (vk′, ·) to empty, and set b = reject.

Output (verification,m, y, π,b) to P .

∗ The π in [27, Fig. 2] obviously seemed to be an S.

Figure 10: VRF, idealized as an ideal functionality, following [27, Fig. 2].

C.5 Proof of implementation of Fbias
eligib by Πbias

eligib

We describe a simulator in Figure 11.
The comments in the description make it clear that the evaluations y ∈ [0, 1]

returned by the simulated FVRF are compatible with the eligibility bits sampled
by Fbias

eligib (both for simulated corrupt players and for dummy honest players). It
remains to show that these evaluations are uniformly independently distributed
distributed in [0, 1], each conditioned on the corresponding output bit. This fact
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follows from the way the y ∈ [0, 1] are sampled, since each of them is sampled
equal to:

(18) y ← 1y 6 p.1 +1y > p.0 .

C.6 Optimizations, and removing the simpli�cations made in
genericBA

In Algorand [37], there is a much more e�cient self-sortition of a leader than
the one of [1], which we imported in genericBA. The implementation is that, in
a propose round r, a player multicasts as soon as its VRF evaluation is below
the threshold: 20/n. The number 20 is from [8] but can be adapted, the idea
is that it is larger than the threshold which we speci�ed so far following [1],
i.e., 1/n. Thus 10 honest players in expectation are eligible to propose. Each
player considers as the proposer the one with the smallest VRF evaluation (and
ignore the other propose messages). So with this re�ned mechanism, the [leader.]
condition fails if the VRF evaluation of a corrupt player is smaller than the
smallest one of all honest players. Although the adversary can try q di�erent
seeds during the setup, the interesting point is that it doesn't know the VRF
evaluations of honest players corresponding to each seed. So it could be the case
that, over the q di�erent seeds tried, it adopts one σ such that a honest player
will turn out to have a lower VRF evaluation in one of the V �rst iterations,
whereas this would not have happened with another seed σ′ tried. So intuitively,
there is hope to obtain an upper-bound on the probability of failure which is
strictly better than the union bound over all q tried seeds. We leave it for future
work.

We furthermore believe that there may exist a tighter upper-bound for the
round complexity of genericBA than the one given by Properties 16, in particular
in the case of binary BA. Concretly, it is possible that players terminate in an
iteration with an honest player eligible to propose, despite some corrupt players
concurrently multicasting propose. For instance, we could optimize the protocol
by specifying that, if in a given iteration v+1, players are reported an iteration-v
certi�cate c (likely: from an honest player eligible to speak in the status round),
then they consider c as a propose. From there, assuming ties to vote between
two con�icting iteration-v certi�cates are in favour of c, we thus have that all
players terminate in v+ 1.

We now turn to instantiations of the VRF. The idealized model of VRF which
we used, borrowed from [27] and de�ned in Appendix C.4, can be instantiated
as suggested by [37] and adopted in [53, �4.2.1]. Namely: sign the value to-be-
evaluated with a unique signature scheme, then apply a random oracle on the
signature. Turning to post-quantum VRFs, the most promising one is the one
introduced in [32], which realizes a weaker-but-su�cient primitive. Namely, they
allow a maximum number of evaluations �xed from the public key (which is the
root of a Merkle tree), and each proof of evaluation has logarithmic size in this
maximum number.
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We now explain how to possibly remove the use of secure memory erasures,
which we assumed in genericBA. To this end, let us recall the technique of [1,
�5.2], which applies only of the space of values is small, e.g., typically binary BA.
In [2, �5.2] Feligib checked eligibility to send every speci�c message content m,
instead of just the round number of the message, as we did. Hence in [2, �5.2],
even if a player P gets corrupt after eligibly multicasting a round-r message m,
the adversary may not be able to make P eligibly multicast a round-r con�icting
m′. So this removed the need for P to securely erase its round-r signing key from
its memory. Our mechanism for implementing Feligib is obviously compatible
with this re�nement. In turn, not to degrade too much the probabilities with the
union bound over all message contents m, the BA of [2, �5.2] applies to only a
small number of possible values (in their case: binary). That way, the number of
possible message contents m is limited (in their case: two). It seems to us that
secure memory erasure is regarded as a realistic, given the number of areas based
on it (forward secrecy, e.g., in TLS and Signal, and proactive security [14]).

We will explain in Appendix C.3 how to re-incorporate the termination mech-
anism of the BA of [1, �5.2], at the cost of a larger ε as in [1, �5.3]. Notice that
termination is unecessary in a chain-of-BA-instances regime, i.e., a blockchain
([37, 26, 27]).

It should be clear from the statement of Properties 16 that our mechanism
also applies to bootstrap the setup of other baseline BAs than [1, �5.2], e.g.,
those [37, 26, 27] in which players output an old-enough pre�x of their observed
chain of proposed blocks. Notice that those alternative BAs o�er a trade-o�: by
increasing the round complexity, they enable to reduce the corruption threshold
gap: ε, since they allow con�icting chains to be produced.
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Simulator S for Πbias
eligib

S initializes simulated honest players, simulated corrupt players, and internal copies
of a bulletin-board and of FVRF. In particular, in addition to its interfaces for
the simulated players, the simulated FVRF o�ers its adversary interface to the
environment Z . The simulated bulletin-board follows its intended behavior. The
simulated FVRF processes all FVRF.verify requests following its intended behavior.
Setup. - S makes simulated honest players follow the protocol, i.e., query
FVRF.keyGen, then publish on the bulletin-board the keys received. It makes
the simulated FVRF process the keyGen requests as speci�ed, in particular, it
forwards them to A then delivers the keys received from A to the simulated
honest players.

- eval(vk,m, π) during setup. Upon receiving such a request on behalf of FVRF

during the setup, so which comes from a corrupt player or A directly, check if m
is of the form:

(16) m = (σ′, r) s.t. σ′ = (vk′1, . . . , vk
′
n) and ∃i, vk = vk

′
i

and furthermore if it comes from a corrupt Pj , then: check if j = i. If not, then
FVRF processes the request following its intended behavior. Else, i.e., if all checks
pass:
//now, S must craft a VRF output value which is compatible with the output
bit which the environment will observe upon instructing a dummy honest player
to check if Pi is eligible to speak in round r.
send (re-seed, σ′) to Fbias

eligib then send speak-request(r) to Fbias
eligib on behalf of the

simulated corrupt Pi. Upon receiving the output, which we denote coin[σ′, Pi, r]:
if it is equal to 0, then set the evaluation as y $←− U([p, 1]), i.e., equal to a uniform
sample in [p, 1], else, set it as y $←− U([0, p]).
- Just before t = 0: denote σ ← (vk1, . . . , vkn) the list of keys published on the
bulletin-board. Send (re-seed, σ) to Fbias

eligib one last time.

Real honest request to speak. Upon being leaked by Fbias
eligib that one real dummy

honest player Pj was returned an output bit: coin[σ, Pj , r] to its request to speak
in some round r. //now, S must set a VRF evaluation which is compatible
with the output bit: coin[σ, Pj , r] which the environment observed output by the
dummy honest Pj .
Make the simulated honest Pj request FVRF.evalProve((σ, r)). Set the evaluation
T (vkj , (σ, r)) ← y as follows: if coin[σ, Pi, r] = 0, then set y $←− U([p, 1]), else,
set it as y $←− U([0, p]). Finally, make the simulated honest Pj multicast (r, y, π),
where π is the VRF proof received on behalf of the adversary from the environ-
ment.

Malicious eval(vk,m, π) after setup upon receiving such request from a corrupt
player or A directly, check if m is of the form:

(17) m = (σ, r) and ∃i, vk = vki

and furthermore if it comes from a corrupt Pj , then: check if j = i. If not, then
FVRF processes the request following its intended behavior. Else, i.e., if all checks
pass:
//now, S must craft a VRF output value which is compatible with the output
bit which the environment will observe upon instructing a dummy honest player
to check if Pi is eligible to speak in round r.
send speak-request(r) to Fbias

eligib on behalf of the simulated corrupt Pi. Upon
receiving the output, which we denote coin[σ, Pi, r]: if it is equal to 0, then set
the evaluation as y $←− U([p, 1]), i.e., equal to a uniform sample in [p, 1], else, set
it as y $←− U([0, p]).

Figure 11
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D Details for the proof of Theorem 4

Let us formalize the bounds on the probabilities of failure in Theorem 4, in order
to derive the claimed η > 1/6.

For each b ∈ {0, 1}, let us denote Xh,b and Xh,1−b the events in Wh,b that
the real execution, resp., the simulated one, satis�es simultaneously consistency
and multicast complexity at most f . Then by assumption and an intersection
bound, we have:

(19) P(Xh,b ∩Xh,1−b) > 1− 2η .

Furthermore, the distribution of the view of p is the same in both Xh,b ∩
Xh,1−b , b ∈ {0, 1}. So there is a bit B′ that p does not output in both Xh,b ∩
Xh,1−b, b ∈ {0, 1} with probability at least 1/2. Assume without loss of generality
that this bit B′ is 1. Combined with Equation (19), this yields in particular:

(20) P(Xh,1 ∩Xh,1 ∩ {p does not output 1}) > 1/2(1− 2η) .

On the other hand, recall that the view of so far honest players other than p
is equally distributed in Wc,b and Wh,b, and recall furthermore that in each Wc,b

they output b with probability at least 1− η. Hence, they output 1 in each Wh,b

with probability at least 1− η, in particular, output 1 in Wc,1 with probability
1 − η. Intersecting with Equation (20), we obtain a consistency violation with
probability at least 1/2(1 − 2η) − η = 1/2 − 2η. By assumption, this quantity
must itself be smaller than η. In conclusion, we obtain η > 1/6, as claimed.

E The important Lemma 19 for the proof of Theorem 5

Recall that the proof of Theorem 5 relied on the existence of a partition of
players: P = S0 ∪ {h0} ∪ S ′0, such that the player h0 often sends no message in
both worlds WAH and WHH . This is somewhat analogous to the proof of [28,
Theorem 1], which was based on existence of a player which sends few messages.
However, existence in [28, Theorem 1] is easily proven since they consider a �xed
world (in which all players are honest). By contrast, the additional di�culty
here is that the de�nitions of both worlds WAH and WHH themselves depend
on the choice of the partition of players P = S0 ∪{h0}∪S ′0. Thus, a standalone
averaging over players does not prove anymore existence of such a h0. Instead,
we must consider simultaneously many worlds, thus the following notations.

For I any set of players, we denote WHA(I) the world in which I is honest
and assigned input 1, while the adversary corrupts I := P\I and makes them
play honestly as if having input 0. For instance, with the previous notations of
Section 1.3.2, we have WHA =WHA(S ∪ {h}).

For S any set of players, we denote WHH(S) the world in which S is honest
with input 1, the remaining players S := P\S are also honest with input 0. For
instance, with the previous notations of �1.3.2, we have WHH =WHH(S).

Likewise, we denote PHA(I) and PHH(S), and EHA(I) and EHH(S) the prob-
ability laws and expectations in WHA(I) and WHH(S).
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Lemma 19. Let η ≥ 0 be such that, with probability at least 1 − η, at most C
distinct honest players send messages in the whole execution. Then there exists a
player h0 ∈ P , along with a subdivision of the set of players: S0∪{h0}∪S ′0 = P
with |S0| = |S ′0| = f , such that, denoting

(21) ph0
(η, C) := 2

( (1− η)C
f + 1

+ η
)

then in each world WHA(S0∪{h0}) and WHH(S0) it holds that, with probability
at least 1− ph0 , h0 sends no message.

Proof. For every h, we denote 1h the function equal to 1 when h sends at least
one message in the execution and 0 otherwise. For a �xed set S of cardinality
f not containing h, we denote ph(S) := EHA(St{h})

(
1h
)
+ EHH(S)

(
1h
)
. Then,

to prove the Lemma, it is enough to show existence of a S0 and h0, such that

ph0
(S0) ≤ 2

(
(1−η)C
f+1 + η

)
To this end, let us upper-bound the following double sum: Sum :=

∑
|S|=f

∑
h/∈S ph(S).

We replacing ph(S) by its expression. To sum the �rst summand: EHA(St{h})
(
1h
)
,

we make the change of variable I := S t {h}, i.e., we add h to the summa-
tion index set S . We leave unchanged the summation of the other summand
EHH(S)

(
1h
)
. We deduce:

(22) Sum =
∑
I

∑
h∈I

EHA(I)
(
1h

)
+
∑
S

∑
h/∈S

EHH(S)
(
1h

)
.

Let us consider the left double-sum. In each �xed I , we are summing, over honest
players h, the expectation of h to send at least one message in the execution.
By assumption,

∑
h∈I 1h ≤ C with probability at least 1 − η in WHA. On the

remaining events, this sum
∑
h∈I 1h over some f+1 honest players cannot exceed

f + 1 by de�nition. Overall, we deduce this upper bound on the left summand:∑
h∈I EHA(I)

(
1h
)
6 (1− η)C + η(f + 1).

Let us consider the right double-sum, and repeat the same argument. We
obtain the same upper-bound on the right summand:

∑
h/∈S EHH(S)

(
1h
)
6 (1−

η)C + η(f + 1).
Upper-bounding Equation (22) using the upper bounds just obtained, we

obtain two sums, over summation indices: I and S , which both vary in a set of
cardinality

(
n
f+1

)
=
(
n
f

)
. Overall, we deduce the upper-bound Sum ≤

(
n
f

)
2((1−

η)C+η(f+1)). But coming back to the de�nition of Sum, it consists of
(
n
f

)
(f+1)

summands (since it is summed over (S , h /∈ S)) which are all non-negative. From
this we deduce existence of one index, which we denote as (S0, h0), such that the
corresponding summand ph0(S0) is lower than or equal to the claimed ph0(η, C).

F Proof of Theorem 10: impossibility of partially

synchronous randomized consensus for f ≥ n/3

We show the result for n = 3 players: P0, P1, η of which at most f = 1 is
corrupt. The case of general n follows from the well-known reduction technique
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of [42, �2]. We show the result for VBA, then explain how to adapt the proof
to BA. We consider the classical validity predicate which returns accept on a
value σ if and only σ is a valid signature (on any message) of some prede�ned
external entity called E. For simplicity we consider idealized digital signatures,
as recalled in Appendix B.4. Concretely, we will consider a scenario (called real
below) where the honest player P0 saw only a signature σ0 on 0, so is unable to
forge any other valid value. In this same scenario, honest player P1 saw only a
signature σ1 on 1, so is unable to forge any other valid value

Let us formalize the assumption: there exists a VBA and a �xed probability
η such that for all adversaries and input assignment,

(23) P
[
Consistency, External validity and Termination

]
> 1− η .

We now use the same reduction as in Section 2.3. Namely, for any �xed world,
up to replacing η by any arbitrarily close value η − µ, we can consider that
Equation (23) is strenghtened with: [all players output within R rounds], where
R depends on µ (and which takes poly(κ)-bounded values). For ease of notation
we will call R an �essential upper-bound on the round complexity� in this given
world.

We consider three worlds: W0 ↔ real ↔ W1, where the ↔ denotes an indis-
tinguishability between the views of some players.

- World W0: GST = 0, P0 and P2 are honest and are assigned input σ0,

P1 is corrupt and forever silent.

- World W1: GST = 0, P1 and P2 are honest and are assigned input σ1,

P0 is corrupt and forever silent.

- World real: GST = max(R(0), R(1)) + 1, where R(0) and R(1) denote
essential upper-bounds on the round complexities in the W0 and W1 worlds. P0

and P1 are honest with inputs σ0 and σ1, while P2 is corrupt. All messages sent
between P0 and P1 are delayed until GST + 1. P2 runs two threads in parallel

denoted P
(0)
2 and P

(1)
2 . For each b ∈ {0, 1}, P (b)

2 follows honestly the protocol as if
starting with input σb, but ignores P1−b. A way to formalize this is that messages

from P1−b to P2 are delivered only to the thread P
(1−b)
2 , while messages in the

outgoing mailbox from P
(b)
2 to P1−b are destroyed by the adversary instead of

being sent.

Indistinguishability between W0 and real. The view of P0 in real until GST is
distributed as in W0. Thus, P0 ouputs a valid value in real before GST with
probability > 1− η. This output can only be σ0, since P0 did not see any other
valid value.

Indistinguishability between W0 and real. The view of P1 in real until GST is
distributed as in W1. Thus P1 ouputs a valid value in real before GST with
probability > 1− η. This output can only be σ1, since P1 did not see any other
valid value.
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In conclusion, the probability of a consistency violation in real is > 1 − 2η,
which must be smaller than η by assumption, hence η > 1/3 as claimed.

The proof carries unchanged over BA. The only di�erence lies in the argu-
mentation. Namely, P0 now outputs σ0 in W0 by strong unanimity, not anymore
by unforgeability of any other valid value than σ0. Likewise, P1 now outputs σ1
in W1 by strong unanimity.
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