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Introduction - Computer Vision
• Deep learning (e.g., CNN or ViT) is a lazy and inefficient statistical method that needs
millions if not billions of exemples to learn a precise task→ data hungry
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Introduction - Computer Vision

• Many specific tasks in Computer Vision, such as object detection1 (e.g., YOLO), image
classification2 (e.g., ResNet-50), or semantic segmentation (e.g., U-Net), have reached
astonishing results in the last years.

• This has been possible mainly because large (N > 106), labeled data-sets were easily
accessible and freely available

1T.-Y. Lin et al. “Microsoft COCO: Common Objects in Context”. In: ECCV. 2014.
2J. Deng et al. “ImageNet: A Large-Scale Hierarchical Image Database”. In: CVPR. 2009.
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Introduction - Medical Imaging

• In medical imaging, current research datasets are:

▶ small: N < 2k for common pathology and N < 200 for rare pathology

▶ biased: images are acquired in a precise hospital, following a specific protocol with
a particular machine (nuisance site effect)

▶ multi-modal: many imaging modalities can be available as well as text, clinical,
biological, genetic data.

▶ anonymized, quality checked, accessible, quite homogeneous

• Clinical datasets are harder to analyze since they are usually not anonymized, not
quality checked, not freely accessible, highly heterogeneous.

• In this talk, we will focus on researchmedical imaging datasets
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Introduction - Transfer Learning

• When dealing with small labelled datasets, a common strategy is Transfer Learning:

1. pre-training a model on a large dataset and then

2. fine-tuning it on the small target and labelled dataset
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Introduction - Transfer Learning

• When dealing with small labelled datasets, a common strategy is Transfer Learning:

1. pre-training a model on a large dataset and then

2. fine-tuning it on the small target and labelled dataset

• Supervised pre-training from ImageNet is common. Its usefulness (that is, feature
reuse) increases with3456:

▶ reduced target data size (small Ntarget)

▶ visual similarity between pre-train and target domains (small FID)

▶ models with fewer inductive biases (TL works better for ViTs than CNN)

▶ larger architectures (more parameters)

3B. Mustafa et al. Supervised Transfer Learning at Scale for Medical Imaging. 2021.
4C. Matsoukas et al. “What Makes Transfer Learning Work for Medical Images”. In: CVPR. 2022.
5B. Neyshabur et al. “What is being transferred in transfer learning?” In: NeurIPS. 2020.
6M. Raghu et al. “Transfusion: Understanding Transfer Learning for Medical Imaging”. In: NeurIPS. 2019.
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Introduction - Transfer Learning

• Natural11 and Medical12 images can be visually very different !→ Domain gap

• Furthermore, Medical images can be 3D. ImageNet is 2D.

• Need for 3D, annotated, largemedical dataset

11J. Deng et al. “ImageNet: A Large-Scale Hierarchical Image Database”. In: CVPR. 2009.
12C. Matsoukas et al. “What Makes Transfer Learning Work for Medical Images”. In: CVPR. 2022.
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Introduction - Transfer Learning

• Natural11 and Medical12 images can be visually very different !→ Domain gap

• Furthermore, Medical images can be 3D. ImageNet is 2D.

• Need for 3D, annotated, largemedical dataset→ PROBLEM !

11J. Deng et al. “ImageNet: A Large-Scale Hierarchical Image Database”. In: CVPR. 2009.
12C. Matsoukas et al. “What Makes Transfer Learning Work for Medical Images”. In: CVPR. 2022.
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Introduction - Transfer Learning

• Supervised pre-training is a not a valid option in medical imaging. Need for another
kind of pre-training.

• Recently big,multi-sites international healthy data-sets have emerged, such as UK
Biobank13 (N > 100k) and OpenBHB14 (N > 10k)

13T. J. Littlejohns et al. “The UK Biobank imaging enhancement of 100,000 participants:” in: Nature Communications
(2020).

14B. Dufumier et al. “OpenBHB: a Large-Scale Multi-Site Brain MRI Data-set for Age Prediction and Debiasing”. In:
NeuroImage (2022).
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Introduction - Transfer Learning
• How can we employ an healthy (thus unlabeled) data-set for pre-training ?
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Introduction - Transfer Learning
• How can we employ an healthy (thus unlabeled) data-set for pre-training ?→
Self-Supervised pre-training !
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Introduction - Transfer Learning

• Self-supervised pre-training: leverage an annotation-free pretext task to provide a
surrogate supervision signal for feature learning.

• Pretext task should only use the visual information and context of the images

• Examples of pretext tasks:

▶ Context prediction15

▶ Generative models’16’17

▶ Instance discrimination18

▶ Teacher/Student19

▶ Information Maximization20

15C. Doersch et al. “Unsupervised Visual Representation Learning by Context Prediction”. In: ICCV. 2015.
16K. He et al. “Masked Autoencoders Are Scalable Vision Learners”. In: CVPR. 2022.
17J. Donahue et al. “Large Scale Adversarial Representation Learning”. In: NeurIPS. 2019.
18T. Chen et al. “A Simple Framework for Contrastive Learning of Visual Representations”. In: ICML. 2020.
19J.-B. Grill et al. “Bootstrap your own latent: A new approach to self-supervised Learning”. In: NeurIPS. 2020.
20A. Bardes et al. “VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning”. In: ICLR. 2022.
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Self-supervised Learning - Preliminaries

• Pre-text tasks should produce image representations that are:

1. Transferable: we can easily reuse/fine-tune them in different downstream tasks
(e.g., segmentation, object detection, classification, etc.)

2. Generalizable: they should not be specific to a single task but work well in several
different downstream tasks

3. High-level: representations should characterize the high-level
semantics/structure and not low-level features (color, texture, etc.)

4. Invariant: image representations should be invariant to geometric or appearance
transformations that do not modify the information content of the image (i.e.,
irrelevant for downstream task)

5. Semantically coherent: semantically similar images should be close in the
representation space
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Context prediction - Pair of patches

• Given an image, we can divide it into patches and predict their relative position

Given a central patch (blue), predict the relative position of the other patch among the 8
possible connected neighbor positions.21

• Or we could use all neighbor patches...

21C. Doersch et al. “Unsupervised Visual Representation Learning by Context Prediction”. In: ICCV. 2015.
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Context prediction - Jigsaw puzzle

First randomly shuffle all 9 patches and then learn to solve a Jigsaw puzzle. Considering all
patches together remove ambiguities since placement is mutually exclusive. See central patch
and top two left patches.22

22M. Noroozi et al. “Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles”. In: ECCV. 2016.
19/144



Context prediction

• To avoid trivial shortcuts, low-level trivial signals such as boundary patterns or texture
continuing between patches:

▶ Add gaps between patches

▶ Randomly crop each patch

▶ Shuffle several times same image (for jigsaw)

▶ Shift color channels and/or use grayscale images

▶ Add random shifts to each patch

▶ Downsample and then upsample images (robustness to pixelation)
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Transformation prediction

• Instead than predicting the relative position between two patches of an image,
predict the geometric transformation applied to the entire image

• Which transformation?→ Need for transformations that:

▶ force the network (usually CNN) to recognize all objects depicted in the image and
learn high-level semantic features (e.g., class, location, size, pose, etc.)

▶ do not leave easily detectable low-level visual artifacts when applied to images

▶ are well-posed, namely there should not be ambiguity about the original image.

• Proposed solution: Image rotations by 0, 90, 180, 270 degrees23

23S. Gidaris et al. “Unsupervised Representation Learning by Predicting Image Rotations”. In: ICLR. 2018.
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Transformation prediction
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Transformation prediction
• No easily detectable low-level visual artifacts: implementation of rotations only use
transpose and flip operations. No interpolations are used which might produce
artifacts (note that choice of angles is important !)

Effect of 10 successive rotations of 36 degrees to the original image (left) using Nearest
Neighbor interpolation (middle) or Linear interplation (right). Credits:
http://bigwww.epfl.ch/demo/jaffine/index.html

• Well-posed transformations: we assume that all images have a usual and standard
position. For instance, when using natural images all objects should be “up-standing”

• Detect objects and focus on high-level semantic features: CNN networks need to
focus on high-level features to correctly retrieve the rotation

23/144
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Transformation prediction

Attention maps (sum of feature activations raised to the power of 1,2,4 respectively).24

24S. Gidaris et al. “Unsupervised Representation Learning by Predicting Image Rotations”. In: ICLR. 2018. 24/144
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Generative models

• Generative models use as pretext task the reconstruction of the
modified/corrupted/partially observed original image

• The main differences between the methods in the literature are:

▶ how you modify/corrupt the original image

▶ regularization losses (adversarial loss, sub-networks, etc.)

▶ neural network architectural choices (CNN, ViT, etc.)

Here, we will see:

1. Denoising-based autoencoders

2. Colorization-based autoencoders

3. Gan based methods (ALI/ BiGAN / BigBiGAN)
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Denoising-based autoencoders

• Usual autoencoders25 are constituted of an encoder f() and a decoder g() and they
are trained to minimize the reconstruction error ||x− g(f(x))||22, which amounts to
maximizing a lower bound on the mutual information between input x and learnt
representation f(x)26

• To avoid trivial solutions (i.e., g(f(·)) = I identity mapping), the representation f(x) is
usually of lower dimension than x (bottleneck), thus compressing the information

• To extract more useful features (i.e., representations), different methods were
proposed to reconstruct a “repaired” version of a corrupted original image. The key
question is, how do we corrupt/modify the original image ?

25G. E. Hinton et al. “Reducing the Dimensionality of Data with Neural Networks”. In: Science (2006).
26P. Vincent et al. “Stacked Denoising Autoencoders: Learning Useful Representations ...”. In: JMLR (2010).
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Denoising-based autoencoders
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Denoising-based autoencoders

▶ Denoising autoencoders27: learn to restore a corrupted image where
Gaussian/salt-and-pepper noise (or others) has been applied.

Problem: localized and low-level corruption, no semantic information needed to
repair image

▶ Context Encoder/ Inpainting28: learn to regress pixel values of a large, single
missing region using CNN, L2 reconstruction and adversarial losses.

Problem: 1) image synthesis quality is difficult to evaluate, 2) domain gap between
training set (images with holes) and test set (full images), 3) if the mask is not big,
no high-level reasoning, just copy low and mid-level neighboring structures

▶ Masked image modeling29: randomly mask some patches of the image and predict
the masked patches from the visible ones using Transformers (e.g., ViT).

27P. Vincent et al. “Extracting and composing robust features with denoising autoencoders”. In: ICML. 2008.
28D. Pathak et al. “Context Encoders: Feature Learning by Inpainting”. In: CVPR. 2016.
29K. He et al. “Masked Autoencoders Are Scalable Vision Learners”. In: CVPR. 2022.
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Masked image modeling

• Many methods took inspiration from Causal language modeling, such as GPT30, where
masked tokens are predicted using only previous (left) tokens, andMasked language
modeling, such as BERT31, where masked tokens are recovered using both previous
(left) and following (right) tokens

• A direct translation of GPT and BERT from language to vision works well but 1) it is
computationally too demanding and 2) it under-performs wrt other contrastive
methods32

• Recent works (BEiT33, SimMIM34 andMAE35) found that the use of ViT, great masking
portion and lightweight decoder resulted in SOTA performance.

30A. Radford et al. Language Models are Unsupervised Multitask Learners.
31J. Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.
32M. Chen et al. “Generative Pretraining From Pixels”. In: ICML. 2020.
33H. Bao et al. “BEiT: BERT Pre-Training of Image Transformers”. In: ICLR. 2022.
34Z. Xie et al. “SimMIM: a Simple Framework for Masked Image Modeling”. In: CVPR. 2022.
35K. He et al. “Masked Autoencoders Are Scalable Vision Learners”. In: CVPR. 2022.
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Masked Autoencoders

Masked Autoencoders36: encoder ViT takes as input only visible patches. Lightweight decoder
takes as input the encoded visible patches and the masked patches (as shared, learned,
constant representations) with their positional embeddings.

36K. He et al. “Masked Autoencoders Are Scalable Vision Learners”. In: CVPR. 2022.
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Generative models

1. Denoising-based autoencoders

2. Colorization-based autoencoders

3. Gan based methods (ALI/ BiGAN / BigBiGAN)
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Colorization-based autoencoders
• Another way to extract useful features in autoencoders is through colorization: the
encoder takes as input only one channel of the original image (e.g., grayscale/intensity)
and the decoder needs to predict the original colors (e.g., RGB/Lab channels)

Choices of training set, color channels, architecture and optimization are important.37’38’39

37R. Zhang et al. “Colorful Image Colorization”. In: ECCV. 2016.
38G. Larsson et al. “Learning Representations for Automatic Colorization”. In: ECCV. 2016.
39G. Larsson et al. “Colorization as a Proxy Task for Visual Understanding”. In: CVPR. 2017.
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Colorization-based autoencoders

Pros
▶ systematic, and not stochastic, corruption of image remove the pre-training and

testing domain gap.

▶ Denoising/Inpainting/Masking may use only textural/positional information.
Predicting color requires object-level reasoning and thus higher semantic
representations.

Cons
▶ color does not always carry important semantic information, as in medical imaging

▶ Different channels of the input data are not treated equally
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Colorization-based autoencoders

Pros
▶ systematic, and not stochastic, corruption of image remove the pre-training and

testing domain gap.

▶ Denoising/Inpainting/Masking may use only textural/positional information.
Predicting color requires object-level reasoning and thus higher semantic
representations.

Cons
▶ color does not always carry important semantic information, as in medical imaging

▶ Different channels of the input data are not treated equally→ Possible
architectural solution: use multiple sub-networks trained on different but
complementary channelsa

aR. Zhang et al. “Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel Prediction”. In: CVPR. 2017.
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Colorization-based autoencoders

Use L channel to predict ab channel and viceversa. Concatenate X̂1 and X̂2 to obtain X̂40.

40R. Zhang et al. “Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel Prediction”. In: CVPR. 2017. 35/144



Generative models

1. Denoising-based autoencoders

2. Colorization-based autoencoders

3. Gan based methods (ALI/ BiGAN / BigBiGAN)
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Gan based methods

• Autoencoders (AE) and Variational Autoencoders (VAE)41 are easy to train but tend to
produce blurry images

• Other generative models have emerged such as Generative Adversarial Network
(GAN)42 where a generator model G learns a mapping from random variables to input
data and a discriminator model D learns to distinguish the real data from the fake ones
produced by G. The models are trained in a minimax game where G tries to fool D.

• GAN models are known for potentially unstable training and less diversity in generation
due to their adversarial training nature. For this reason, other models have been
proposed such as Normalizing flows43 and Diffusion models44.

41D. P. Kingma et al. “Auto-Encoding Variational Bayes”. In: ICLR. 2014.
42I. Goodfellow et al. “Generative Adversarial Nets”. In: NIPS. 2014.
43D. J. Rezende et al. “Variational Inference with Normalizing Flows”. In: ICML. 2015.
44J. Ho et al. “Denoising Diffusion Probabilistic Models”. In: NeurIPS. 2020.
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Gan based methods
• However, GANs can not be used to learn rich feature representations in an
unsupervised way since they “just” generate images and do not have a bottleneck
representation, as in AE/VAE→ How can we use GAN to learn a representation?

Image from45.

45S. Thalles Santos. A Short Introduction to Generative Adversarial Networks. UrL: https://sthalles.github.io.
38/144

https://sthalles.github.io


Gan based methods
• However, GANs can not be used to learn rich feature representations in an
unsupervised way since they “just” generate images and do not have a bottleneck
representation, as in AE/VAE→ How can we use GAN to learn a representation?

• Two methods, Adversarially Learned Inference (ALI)45 and bidirectional GAN (BiGAN)46,
concurrently proposed to add an encoder E which maps real data to latent
representations, the inverse of the mapping learned by the generator G

ALI on the left and BiGAN on the right.

45V. Dumoulin et al. “Adversarially Learned Inference”. In: ICLR. 2017.
46J. Donahue et al. “Adversarial Feature Learning”. In: ICLR. 2017. 38/144



Gan based methods
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Gan based methods
• BiGAN used a simple generator (DCGAN47) which can’t produce high-quality images and
thus can not capture all visual information→ poor representation

• BigBiGAN48 uses BigGAN49 as generator producing SOTA representation results

D has three submodules: two unary F(x), H(z) and a joint one J(F(x),H(z)).

47A. Radford et al. “Unsupervised Representation Learning with Deep Convolutional GAN”. In: ICLR. 2016.
48J. Donahue et al. “Large Scale Adversarial Representation Learning”. In: NeurIPS. 2019.
49A. Brock et al. “Large Scale GAN Training for High Fidelity Natural Image Synthesis”. In: ICLR. 2019.
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Gan based methods
• BiGAN used a simple generator (DCGAN47) which can’t produce high-quality images and
thus can not capture all visual information→ poor representation

• BigBiGAN48 uses BigGAN49 as generator producing SOTA representation results→ More
powerful generator can improve the representation quality

D has three submodules: two unary F(x), H(z) and a joint one J(F(x),H(z)).

47A. Radford et al. “Unsupervised Representation Learning with Deep Convolutional GAN”. In: ICLR. 2016.
48J. Donahue et al. “Large Scale Adversarial Representation Learning”. In: NeurIPS. 2019.
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Instance discrimination

• Usual supervised classification models look for discriminative features that
characterize and correctly separate classes of objects

• Can we learn a representation where we correctly separate single instances (i.e.,
images) and not classes ?

We’ll see four methods:

1. Exemplar-CNN50

2. Learning with a non-parametric classifier from a memory bank51

3. Learning to count52

4. Contrastive Learning53

50A. Dosovitskiy et al. “Discriminative Unsupervised Feature Learning with Exemplar CNNs”. In: IEEE TPAMI (2016).
51Z. Wu et al. “Unsupervised Feature Learning via Non-parametric Instance Discrimination”. In: CVPR. 2018.
52M. Noroozi et al. “Representation Learning by Learning to Count”. In: ICCV. 2017.
53T. Chen et al. “A Simple Framework for Contrastive Learning of Visual Representations”. In: ICML. 2020.
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Exemplar-CNN
• Given a set of different images (or patches) xi, we first randomly transform K times
each image xi producing a set of transformed images Sxi

54

• Each set Sxi is then considered as a surrogate class with label i and we minimize the
classification loss:

L(X) =
∑
i

∑
k

l(i, Tkxi) (1)

• where Tk is the k-th transformation applied to image xi and l(i, Tkxi) is the
cross-entropy (or negative log-likelihood).

54A. Dosovitskiy et al. “Discriminative Unsupervised Feature Learning with Exemplar CNNs”. In: IEEE TPAMI (2016).
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Exemplar-CNN
• The classification loss of Exemplar-CNN ensures that different images can be
distinguished and it enforces invariance to (specified) transformations

• Number of training data: classification accuracy increases until an optimum after
which it is likely to draw very similar training images that can be hard to discriminate

• Influence of Transformations: classification accuracy varies depending on the used
transformations and on the data-set
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Instance discrimination

1. Exemplar-CNN55

2. Learning with a non-parametric classifier from a memory bank56

3. Learning to count57

4. Contrastive Learning58

55A. Dosovitskiy et al. “Discriminative Unsupervised Feature Learning with Exemplar CNNs”. In: IEEE TPAMI (2016).
56Z. Wu et al. “Unsupervised Feature Learning via Non-parametric Instance Discrimination”. In: CVPR. 2018.
57M. Noroozi et al. “Representation Learning by Learning to Count”. In: ICCV. 2017.
58T. Chen et al. “A Simple Framework for Contrastive Learning of Visual Representations”. In: ICML. 2020.

45/144



Parametric Vs non-parametric classifier

• In Exemplar-CNN we use a parametric classifier based on a softmax.

• CallingW the weights of the last linear layer and f(x) the input to the last linear layer
(i.e., representation features of image x), the output of the last linear layer (before
softmax) is their matrix productWf(x)

• The loss of Exemplar-CNN is the cross-entropy, namely l(i, x) = −⟨yi, log(g(x))⟩, where
yi is the one-hot binary vector ([0, 0, 1, ..., 0] where 1 is at position i) and
g(x) = softmax(Wf(x))

• Each row wi of the matrixW is a classifier of class (here training sample) i. It can be
seen as a template/prototype of class i. The softmax function g(x) gives the probability
of image x to be the i-th training sample:

P(i|f(x);W) =
exp(wT

i f(x))∑
j exp(w

T
j f(x))

(2)
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Parametric Vs non-parametric classifier

P(i|f(x);W) =
exp(wT

i f(x))∑
j exp(w

T
j f(x))

(3)

• is a parametric classifier since it depends onW. Can we remove it ?59

P(i|f(x)) = exp(f(xi)Tf(x)/τ)∑
j exp(f(xj)Tf(x)/τ)

s.t. ||f(xt)||2 = 1 ∀t (4)

• It thus become a non-parametric classifier where:

▶ it does not depend onW→ no need to compute and store gradient wrtW

▶ we directly compare pair of instances instead than template/prototype

▶ the temperature τ controls the concentration of instances on the unit
hyper-sphere→ important hyper-parameter

59Z. Wu et al. “Unsupervised Feature Learning via Non-parametric Instance Discrimination”. In: CVPR. 2018.
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Non-parametric classifier
• The loss function is defined as the negative log-likelihood over the training set:

L(X) = −
∑
i

log P(i|f(xi)) (5)

The optimal feature embedding is learned via instance-level discrimination, which tries to
maximally scatter the features of training samples over the unit sphere. A memory bank is used
to limit computations. At each iteration, only the representation f(xi) and the network
parameters are optimized. The representations f(xj) of the other samples are kept fixed.60

60Z. Wu et al. “Unsupervised Feature Learning via Non-parametric Instance Discrimination”. In: CVPR. 2018. 48/144



Instance discrimination

1. Exemplar-CNN61

2. Learning with a non-parametric classifier from a memory bank62

3. Learning to count63

4. Contrastive Learning64

61A. Dosovitskiy et al. “Discriminative Unsupervised Feature Learning with Exemplar CNNs”. In: IEEE TPAMI (2016).
62Z. Wu et al. “Unsupervised Feature Learning via Non-parametric Instance Discrimination”. In: CVPR. 2018.
63M. Noroozi et al. “Representation Learning by Learning to Count”. In: ICCV. 2017.
64T. Chen et al. “A Simple Framework for Contrastive Learning of Visual Representations”. In: ICML. 2020.
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Learning to count

• An image contains a certain number of visual primitives that describe and
characterize its information content→ their number should not vary when applying
geometric transformations (scaling, rotation, translation, etc.)

• Instead, when dividing the image into half or more parts, the number of visual
primitives should decrease

• We look for a representation (i.e., model) f that correctly counts the number of visual
primitives of an image

• If we consider as transformations the down-sampling operatorD and the tiling
(regular crop) operator Tj, we look for a representation f where65

f(D ◦ x) =
∑
j

f(Tj ◦ x) (6)

65M. Noroozi et al. “Representation Learning by Learning to Count”. In: ICCV. 2017.
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Learning to count

• In66 authors propose to use a Siamese architecture, initially proposed in 1992/1993
in67’68, where the same network fmaximizes agreement between f(D ◦ x) and

∑
j f(Tj ◦ x)

by using as loss L(X) = ||f(D ◦ x)−
∑

j f(Tj ◦ x)||22.
Do you see any problem ? Trivial solution?

66M. Noroozi et al. “Representation Learning by Learning to Count”. In: ICCV. 2017.
67S. Becker et al. “Self-organizing neural network that discovers surfaces in random ...”. In: Nature (1992).
68J. Bromley et al. “Signature Verification using a ”Siamese” Time Delay Neural Network”. In: NIPS. vol. 6. 1993.
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in67’68, where the same network fmaximizes agreement between f(D ◦ x) and

∑
j f(Tj ◦ x)

by using as loss L(X) = ||f(D ◦ x)−
∑

j f(Tj ◦ x)||22.
Do you see any problem ? Trivial solution?

• It may produce the trivial solution f(x) = 0 ∀ x, which results in the global minimum 0
66M. Noroozi et al. “Representation Learning by Learning to Count”. In: ICCV. 2017.
67S. Becker et al. “Self-organizing neural network that discovers surfaces in random ...”. In: Nature (1992).
68J. Bromley et al. “Signature Verification using a ”Siamese” Time Delay Neural Network”. In: NIPS. vol. 6. 1993.
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Learning to count
• To this end, a possible solution is using a pairwise contrastive loss where we enforce
that the number of visual primitives should be different between two different images x
and y:
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Learning to count
• In the pairwise contrastive loss, we force:

1. transformations of x, that should preserve the number of visual features, to be
mapped to the same point in the representation space

2. transformations of different samples, x and y, to have a distance greater than a
positive margin ϵ (ϵ ≥ 0) in the representation space: ||f(D ◦ y)−

∑
j f(Tj ◦ x)||22 > ϵ

arg min
f
L(x, y) =

{
||f(D ◦ x)−

∑
j f(Tj ◦ x)||22

max(0, ϵ− ||f(D ◦ y)−
∑

j f(Tj ◦ x)||22
(7)

• Problems:
▶ Why just using the down-sampling operatorD and the tiling operator Tj ?
▶ Why using a single “negative” sample y ?

• Take-home message: information preserving transformations, instance
discrimination (without class/prototype), contrastive loss are three important
ingredients
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Contrastive Learning
• Contrastive learning methods outperform the other pretext tasks69

69T. Chen et al. “A Simple Framework for Contrastive Learning of Visual Representations”. In: ICML. 2020. 55/144



Contrastive Learning
• And recently there has been a plethora of works about it that is closing the
performance gap with supervised pretraining70’71’72

70J.-B. Grill et al. “Bootstrap your own latent: A new approach to self-supervised Learning”. In: NeurIPS. 2020.
71M. Caron et al. “Unsupervised Learning of Visual Features by Contrasting Cluster Assignments”. In: NeurIPS. 2020.
72J. Zhou et al. “Image BERT Pre-training with Online Tokenizer”. In: ICLR. 2022.
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Contrastive Learning - A bit of history
• Goal: given a set of images xk ∈ X , learn a mapping function fθ : X → F such that:

if xa and xb are semantically similar → f(xa) ≈ f(xb)

if xa and xb are semantically different → f(xa) ̸= f(xb)

• These conditions can be reformulated from a mathematical point using either a
geometric approach, based on a distance d(f(xa), f(xb)), or an information theoretic
approach, based on a statistical dependence measure, such as Mutual Information
I(f(xa), f(xb)).

if xa and xb are semantically similar →
arg minf d(f(xa), f(xb)) arg maxf I(f(xa), f(xb))

if xa and xb are semantically different →
arg maxf d(f(xa), f(xb)) arg minf I(f(xa), f(xb))
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Contrastive Learning - A bit of history

Geometric approach (Y. LeCun)

▶ Pairwise lossa

▶ Triplet lossb

▶ Tuplet lossc’d’e

aS. Chopra et al. “Learning a Similarity Metric
Discriminatively, with Application to Face Verification”.
In: CVPR. 2005.

bF. Schroff et al. “FaceNet: A Unified Embedding for
Face Recognition and Clustering”. In: CVPR. 2015.

cH. O. Song et al. “Deep Metric Learning via Lifted
Structured Feature Embedding”. In: CVPR. 2016.

dK. Sohn. “Improved Deep Metric Learning with
Multi-class N-pair Loss Objective”. In: NIPS. 2016.

eB. Yu et al. “Deep Metric Learning With Tuplet
Margin Loss”. In: ICCV. 2019.

Information theory approach (G. Hinton)

▶ Soft Nearest Neighbora’b

▶ Contrastive Predictive Coding (CPC)c

▶ Non-Parametric Instance Discriminationd

▶ Deep InfoMax (DIM)e

aR. Salakhutdinov et al. “Learning a Nonlinear Embedding by
Preserving Class ...”. In: AISTATS. 2007.

bN. Frosst et al. “Analyzing and Improving Representations with
the Soft Nearest Neighbor”. In: ICML. 2019.

cA. v. d. Oord et al. Representation Learning with Contrastive
Predictive Coding. 2018.

dZ. Wu et al. “Unsupervised Feature Learning via Non-parametric
Instance Discrimination”. In: CVPR. 2018.

eR. D. Hjelm et al. “Learning deep representations by mutual
information estimation ...”. In: ICLR. 2019.
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Contrastive Learning - A bit of history

Geometric approach (Y. LeCun)a

▶ Need to define positive (x, x+)
(semantically similar) and negative
pairs (x, x−) (semantically different)

▶ Need to define similarity measure (or
distance) that is maximized (or
minimized)

▶ No constraints/hypotheses about
negative samples

aS. Chopra et al. “Learning a Similarity Metric
Discriminatively, with Application to Face Verification”. In:
CVPR. 2005.

Information theory approach (G. Hinton)a

▶ Need to define pdf of positive
(x, x+) ∼ p(x, x+) and negative pairs
(x, x−) ∼ p(x)p(x−) where x− ⊥⊥ x, x+

▶ Maximize Mutual Information (I)
between positive pairs, given
independent negative pairs: I(x; x+) =
I(x; x+, x−) = Ex−∼p(x−)I(x; x+)b

▶ Need to define an estimator of I
aS. Becker et al. “Self-organizing neural network that

discovers surfaces in random ...”. In: Nature (1992).
bB. Poole et al. “On Variational Bounds of Mutual

Information”. In: ICML. 2019.
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Contrastive Learning - A bit of history

• The Information theoretic approach is mathematically sounded and well grounded on
the role of Mutual Information (I) estimation in representation learning.

• But ... Large I is not necessarily predictive of downstream performance. Good results
may depend on architecture choices and inductive biases rather than an accurate I
estimation73

• Furthermore, a geometric approach:

▶ is easy to understand and explain

▶ can easily formalize abstract ideas for defining new losses or regularization terms
(e.g., data biases)

▶ No need of implausible hypothesis (e.g., negative samples independence).

73M. Tschannen et al. “On Mutual Information Maximization for Representation Learning”. In: ICLR. 2020.
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Contrastive Learning - Geometric approach

▶ Let x ∈ X be a sample (anchor)

▶ Let x+i be a similar (positive) sample

▶ Let x−
j be a different (negative) sample

▶ Let P be the number of positive samples

▶ Let N be the number of negative samples

▶ Let f : X → Sd−1 be the mapping

▶ Let F = Sd−1, a (d-1)-sphere

Figure: From Schroff et al.a

aF. Schroff et al. “FaceNet: A Unified Embedding for
Face Recognition and Clustering”. In: CVPR. 2015.
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Contrastive Learning - Geometric approach

▶ Let x ∈ X be a sample (anchor)

▶ Let x+i be a similar (positive) sample

▶ Let x−
j be a different (negative) sample

▶ Let P be the number of positive samples

▶ Let N be the number of negative samples

▶ Let f : X → Sd−1 be the mapping

▶ Let F = Sd−1, a (d-1)-sphere

Figure: From Schroff et al.a

aF. Schroff et al. “FaceNet: A Unified Embedding for
Face Recognition and Clustering”. In: CVPR. 2015.

How can we define positive and negative samples ?
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Contrastive Learning - Semantic definition
• Most methods use a specific architecture:
▶ Siamese architecture, initially proposed in 1992/1993 in74’75, where two networks

(the same or related as Teacher/Student) maximize agreement between positive
samples and minimize agreement between negative samples

▶ Each network is usually divided into two parts: a representation f() and a
(non-linear) projector g() network, which improves performance. Why ?

74S. Becker et al. “Self-organizing neural network that discovers surfaces in random ...”. In: Nature (1992).
75J. Bromley et al. “Signature Verification using a ”Siamese” Time Delay Neural Network”. In: NIPS. vol. 6. 1993. 63/144



Contrastive Learning - Semantic definition

• Positive samples x+i can be defined in different ways:

▶ Unsupervised setting (no label): x+i is a transformation of the anchor x76 or a
nearest-neighbor from a support set77.

76T. Chen et al. “A Simple Framework for Contrastive Learning of Visual Representations”. In: ICML. 2020.
77D. Dwibedi et al. “With a Little Help from My Friends: Nearest-Neighbor Contrastive Learning”. In: ICCV. 2021.
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Unsupervised setting
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Contrastive Learning - Semantic definition

• Positive samples x+i can be defined in different ways:

▶ Unsupervised setting (no label): x+i is a transformation of the anchor x78 or a
nearest-neighbor from a support set79.

▶ Supervised classification setting (label): x+i is a sample belonging to the same
class as x.80

78T. Chen et al. “A Simple Framework for Contrastive Learning of Visual Representations”. In: ICML. 2020.
79D. Dwibedi et al. “With a Little Help from My Friends: Nearest-Neighbor Contrastive Learning”. In: ICCV. 2021.
80P. Khosla et al. “Supervised Contrastive Learning”. In: NeurIPS. 2020.
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Supervised setting

Figure: Image taken from81

81P. Khosla et al. “Supervised Contrastive Learning”. In: NeurIPS. 2020.
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Contrastive Learning - Semantic definition

• Positive samples x+i can be defined in different ways:

▶ Unsupervised setting (no label): x+i is a transformation of the anchor x82 or a
nearest-neighbor from a support set83.

▶ Supervised classification setting (label): x+i is a sample belonging to the same
class as x.84

▶ In regression85 or weakly-supervised classification86: x+i is a sample with a similar
continuous/weak label of x.

• The definition of negative samples x−
j varies accordingly.

82T. Chen et al. “A Simple Framework for Contrastive Learning of Visual Representations”. In: ICML. 2020.
83D. Dwibedi et al. “With a Little Help from My Friends: Nearest-Neighbor Contrastive Learning”. In: ICCV. 2021.
84P. Khosla et al. “Supervised Contrastive Learning”. In: NeurIPS. 2020.
85C. A. Barbano et al. “Contrastive learning for regression in multi-site brain age prediction”. In: IEEE ISBI. 2023.
86B. Dufumier et al. “Contrastive Learning with Continuous Proxy Meta-data for 3D MRI Classification”. In: MICCAI. 2021.
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▶ Supervised classification setting (label): x+i is a sample belonging to the same
class as x.84

▶ In regression85 or weakly-supervised classification86: x+i is a sample with a similar
continuous/weak label of x.

• The definition of negative samples x−
j varies accordingly.

How can we contrast positive and negative samples from a mathematical point of view ?
82T. Chen et al. “A Simple Framework for Contrastive Learning of Visual Representations”. In: ICML. 2020.
83D. Dwibedi et al. “With a Little Help from My Friends: Nearest-Neighbor Contrastive Learning”. In: ICCV. 2021.
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Contrastive Learning - ϵ-margin metric

• We propose to use an ϵ-margin metric learning point of view87.

• If we have a single positive x+ and several negatives x−
j

(e.g., tuplet loss), we look for f such that:

d(f(x), f(x+))︸ ︷︷ ︸
d+

−d(f(x), f(x−
j ))︸ ︷︷ ︸

d−
j

< −ϵ ⇐⇒ s(f(x), f(x−
j ))︸ ︷︷ ︸

s−
j

− s(f(x), f(x+)︸ ︷︷ ︸
s+

≤ −ϵ ∀j

• where ϵ ≥ 0 is a margin between positive and negative, s(f(a), f(b)) = ⟨f(a), f(b)⟩2.

87C. A. Barbano et al. “Unbiased Supervised Contrastive Learning”. In: ICLR. 2023.
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Contrastive Learning - ϵ-margin metric

• We propose to use an ϵ-margin metric learning point of view87.
• If we have a single positive x+ and several negatives x−

j , we look for f such that:

d(f(x), f(x+))︸ ︷︷ ︸
d+

−d(f(x), f(x−
j ))︸ ︷︷ ︸

d−
j

< −ϵ ⇐⇒ s(f(x), f(x−
j ))︸ ︷︷ ︸

s−
j

− s(f(x), f(x+)︸ ︷︷ ︸
s+

≤ −ϵ ∀j

• where ϵ ≥ 0 is a margin between positive and negative, s(f(a), f(b)) = ⟨f(a), f(b)⟩2.

• Two possible ways to transform this Eq. in an optimization problem are:

arg min
f

max(0, {s−
j − s+ + ϵ}j=1,..,N) arg min

f

N∑
j=1

max(0, s−
j − s+ + ϵ)

• when these losses are= 0, the condition is fulfilled. Second is lower-bound of first.
87C. A. Barbano et al. “Unbiased Supervised Contrastive Learning”. In: ICLR. 2023.
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Contrastive Learning - ϵ-margin metric

LogSumExp operator LSE
The LogSumExp operator LSE is a smooth approximation of themax function. It is
defined as:

max(x1, x2, ..., xN) ≤ LSE(x1, x2, ..., xN) = log(
N∑
i=1

exp(xi))

• Using LSE with the first problem, we obtain the ϵ− InfoNCE loss88:

arg min
f

max(0, {s−
j − s+ + ϵ}j=1,...,N) ≈ arg min

f
− log

(
exp(s+)

exp(s+ − ϵ) +
∑

j exp(s
−
j )

)
︸ ︷︷ ︸

ϵ−InfoNCE

88C. A. Barbano et al. “Unbiased Supervised Contrastive Learning”. In: ICLR. 2023.
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Contrastive Learning - ϵ-margin metric

• When ϵ = 0, we retrieve the InfoNCE89, whereas when ϵ→∞ we obtain the InfoL1O (or
Decoupled loss90)..

• It has been shown91 that these two losses are lower and upper bound of I(X+, X):

log
exp s+

exp s+ +
∑

j exp s
−
j︸ ︷︷ ︸

InfoNCE

≤ I(X+, X) ≤ log
exp s+∑
j exp s

−
j︸ ︷︷ ︸

InfoL1O

(8)

• Changing ϵ ∈ [0,∞) can bring to a tighter approximation of I(X+, X). The exponential
function at the denominator exp(−ϵ)monotonically decreases as ϵ increases.

89A. v. d. Oord et al. Representation Learning with Contrastive Predictive Coding. 2018.
90C.-H. Yeh et al. “Decoupled Contrastive Learning”. In: ECCV. 2022.
91B. Poole et al. “On Variational Bounds of Mutual Information”. In: ICML. 2019.

72/144



Contrastive Learning - ϵ-margin metric

• The inclusion of multiple positive samples (s+i ) can lead to different formulations
(see92). Here, we use the simplest one:

s−
j − s+i ≤ −ϵ ∀i, j∑

i

max(−ϵ, {s−
j − s+i }j=1,...,N) ≈ −

∑
i

log

(
exp(s+i )

exp(s+i − ϵ) +
∑

j exp(s
−
j )

)
︸ ︷︷ ︸

ϵ−SupInfoNCE

(9)

• Another formulation is the SupCon loss93, which has been presented as the “most
straightforward way to generalize” the InfoNCE loss with multiple positive. However...

92C. A. Barbano et al. “Unbiased Supervised Contrastive Learning”. In: ICLR. 2023.
93P. Khosla et al. “Supervised Contrastive Learning”. In: NeurIPS. 2020.
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Contrastive Learning - ϵ-margin metric

• ... it actually contains a non-contrastive constraint94 on the positive samples:
s+t − s+i ≤ 0 ∀i, t.

s−
j − s+i ≤ −ϵ ∀i, j and s+t − s+i ≤ 0 ∀i, t ̸= i

1
P

∑
i

max(0, {s−
j − s+i + ϵ}j, {s+t − s+i }t̸=i) ≈ ϵ− 1

P

∑
i

log

(
exp(s+i )∑

t exp(s
+
t − ϵ) +

∑
j exp(s

−
j )

)
︸ ︷︷ ︸

ϵ−SupCon

• when ϵ = 0 we retrieve exactly Lsupout
95.

• One tries to align all positive samples to a single point in the representation space.
Thus losing intra-class variability.

94C. A. Barbano et al. “Unbiased Supervised Contrastive Learning”. In: ICLR. 2023.
95P. Khosla et al. “Supervised Contrastive Learning”. In: NeurIPS. 2020.
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Supervised Contrastive Learning - Results

Table: Accuracy on vision datasets. SimCLR and Max-Margin results from96. Results denoted with * are
(re)implemented with mixed precision due to memory constraints.

Dataset Network SimCLR Max-Margin SimCLR* CE* SupCon* ϵ-SupInfoNCE*

CIFAR-10 ResNet-50 93.6 92.4 91.74±0.05 94.73±0.18 95.64±0.02 96.14±0.01

CIFAR-100 ResNet-50 70.7 70.5 68.94±0.12 73.43±0.08 75.41±0.19 76.04±0.01

ImageNet-100 ResNet-50 - - 66.14±0.08 82.1±0.59 81.99±0.08 83.3±0.06

Table: Comparison of ϵ-SupInfoNCE and ϵ-SupCon on ImageNet-100 in terms of top-1 accuracy (%).

Loss ϵ = 0.1 ϵ = 0.25 ϵ = 0.5

ϵ-SupInfoNCE 83.25±0.39 83.02±0.41 83.3±0.06

ϵ-SupCon 82.83±0.11 82.54±0.09 82.77±0.14

96P. Khosla et al. “Supervised Contrastive Learning”. In: NeurIPS. 2020.
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Unsupervised Learning

• In a supervised o semi-supervised setting, one can use class labels to define positive
and negative samples

• In an unsupervised setting, most methods use a Siamese architecture, the (previously
presented) InfoNCE loss97 and the fact that positive samples are defined as
transformations of the anchor. Methods mainly differ for implementation choices as:

▶ Kind of transformations

▶ Negative/Positive selection

▶ Prototypes/Dictionaries

97A. v. d. Oord et al. Representation Learning with Contrastive Predictive Coding. 2018.
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Kind of transformations
• In Contrastive Predicting Coding (CPCv2)98 authors combines context prediction and
causal modeling by predicting features of patches using only features from patches
that lie above. All images are divided into (overlapping) patches in the same way.

98O. Henaff et al. “Data-Efficient Image Recognition with Contrastive Predictive Coding”. In: ICML. 2020.
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Kind of transformations

• In PIRL98 authors use Rotation and Jigsaw as transformations.

98I. Misra et al. “Self-Supervised Learning of Pretext-Invariant Representations”. In: CVPR. 2020.
78/144



Kind of transformations

• In SimCLR98, authors propose a much simpler and more effective (still SOTA) solution
using only random cropping, cutout and color distortion (when needed).

98T. Chen et al. “A Simple Framework for Contrastive Learning of Visual Representations”. In: ICML. 2020.
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Kind of transformations
• Using multiple cropping (multi-crop98’99) with different sizes increases the number of
positives without computational over-head

98M. Caron et al. “Unsupervised Learning of Visual Features by Contrasting Cluster Assignments”. In: NeurIPS. 2020.
99C. Zhao et al. Multi-crop Contrastive Learning for Unsupervised Image-to-Image Translation. 2023.
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Unsupervised Learning

▶ Kind of transformations

▶ Negative/Positive selection

▶ Prototypes/Dictionaries
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Negative selection

• Negative selection in an unsupervised setting is very important. Negative samples are
usually selected among the other images in the data-set or batch. However, they could
actually belong to the same latent class100’101

100P. Khosla et al. “Supervised Contrastive Learning”. In: NeurIPS. 2020.
101C.-Y. Chuang et al. “Debiased Contrastive Learning”. In: NeurIPS. 2020.
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Negative selection

• To limit this issue, since we don’t have labels, authors in SimCLR102 proposed to use
very large batch size (and thus very large computational resources) thus increasing the
chance of having actual negatives

102T. Chen et al. “A Simple Framework for Contrastive Learning of Visual Representations”. In: ICML. 2020.
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Negative selection

• Largememory bank: representations of all samples102 in the data-set or a subset103

(FIFO queue: old batches replaced by new batches).
• At each iteration, a batch is randomly sampled and updated. The representation of a
sample in the bank is updated only when it is in the batch, otherwise is kept fixed.
Representations updated at different moments are not consistent !
102I. Misra et al. “Self-Supervised Learning of Pretext-Invariant Representations”. In: CVPR. 2020.
103K. He et al. “Momentum Contrast for Unsupervised Visual Representation Learning”. In: CVPR. 2020.
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Negative selection

• Momentum encoder102: updating via back-propagation the representations of the
bank is intractable (too large). Use two encoders (siamese), one for the anchor fq and
one for the bank fk. The parameters of fq are updated via back-propagating the
gradients of the batch and the parameters of fk using a momentumm. Only parameters
and not representations are updated. More memory-efficient and scalable:

θk ← mθk + (1−m)θq (10)

102K. He et al. “Momentum Contrast for Unsupervised Visual Representation Learning”. In: CVPR. 2020. 81/144



Negative selection
• Importance sampling techniques (aka Debiasing), as in103’104, use an estimator of the
True Negatives (TN) based on (user defined) priors about False Negatives (FN) and on
several multiple positives (augmentations of the anchor)

• Decoupled Contrastive Learning (InfoL1O loss)105 removes the coupling term
(positive term) at the denominator of the InfoNCE loss which hampers performance
when:

1. a positive sample is very close to the anchor
2. negative samples are far away from the anchor
3. there is only a small number of negative samples (i.e., a small batch size)

log
exp s+

exp s+ +
∑

j exp s
−
j︸ ︷︷ ︸

InfoNCE

→ log
exp s+∑
j exp s

−
j︸ ︷︷ ︸

Decoupled InfoNCE

(11)

103C.-Y. Chuang et al. “Debiased Contrastive Learning”. In: NeurIPS. 2020.
104J. Robinson et al. “Contrastive Learning with Hard Negative Samples”. In: ICLR. 2021.
105C.-H. Yeh et al. “Decoupled Contrastive Learning”. In: ECCV. 2022. 82/144



Negative selection
• Hard negatives are samples that are mapped nearby the anchor, since they are
difficult to distinguish from it, but should be far apart106

• In metric learning107’108, it has been shown that knowing true hard negatives can help
guide a learning method to correct its mistakes more quickly

106T. Jang et al. “Difficulty-Based Sampling for Debiased Contrastive Representation Learning”. In: CVPR. 2023.
107F. Schroff et al. “FaceNet: A Unified Embedding for Face Recognition and Clustering”. In: CVPR. 2015.
108H. O. Song et al. “Deep Metric Learning via Lifted Structured Feature Embedding”. In: CVPR. 2016.
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Negative selection

• Hard negatives can be selected using sampling strategies that are based on the
(estimated) similarity at each iteration and that take into account multiple positives109

• “Semi-hard negative” can be better since easy negatives (far away) do not help
learning and too hard negatives might be outliers/noisy110

• The use of a temperature parameter τ in the InfoNCE loss plays a role in controlling
the “hardness”111. Low τ : focus on the hard negatives. High τ : same importance.

log
exp (s+/τ)

exp (s+/τ) +
∑

j exp (s
−
j /τ)

(12)

• Adversarial training can produce more challenging positives and negatives112
109J. Robinson et al. “Contrastive Learning with Hard Negative Samples”. In: ICLR. 2021.
110C.-Y. Wu et al. “Sampling Matters in Deep Embedding Learning”. In: ICCV. 2017.
111F. Wang et al. “Understanding the Behaviour of Contrastive Loss”. In: CVPR. 2021.
112C.-H. Ho et al. “Contrastive Learning with Adversarial Examples”. In: NeurIPS. 2020.
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Positive selection
• In113, authors use the nearest-neighbour from a support set (FIFO queue) to sample
more positives (and not negatives as before).
• The support set must be big enough, is initialized as a random matrix and is updated
using the current batch (as a FIFO queue)

113D. Dwibedi et al. “With a Little Help from My Friends: Nearest-Neighbor Contrastive Learning”. In: ICCV. 2021.
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Positive selection

• Building upon the InfoNCE loss, they propose as loss114:

LNNCLRi = − log
exp (NN(zi,Q) · z+i /τ)∑
j exp (NN(zi,Q) · zj/τ)

(13)

• where Q is the support set, zi is the representation of the anchor, z+i is an
augmentation of the anchor, zj is an augmentation of a negative sample and NN(zi,Q) is
the nearest neighbour of the anchor in the (current) representation space:

NN(zi,Q) = arg min
q∈Q

||z− q||2 (14)

114D. Dwibedi et al. “With a Little Help from My Friends: Nearest-Neighbor Contrastive Learning”. In: ICCV. 2021.
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Unsupervised Learning

▶ Kind of transformations

▶ Negative/Positive selection

▶ Prototypes/Dictionaries
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Prototypes/Dictionaries

• Combining clustering and self-supervised learning has been lately studied in115’116

• They combine two steps:

1. Given pseudo-labels (cluster assignment Q), minimize cross-entropy
(classification)

2. Cluster data given features of encoder f

115M. Caron et al. “Deep Clustering for Unsupervised Learning of Visual Features”. In: ECCV. 2018.
116Y. M. Asano et al. “Self-labelling via simultaneous clustering and representation learning”. In: ICLR. 2020.
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Prototypes/Dictionaries

• We thus want to learn:

▶ an encoder f, that map data x to feature vectors

▶ a classification head h, which is usually a single linear layer followed by a softmax
operator to have class probabilities: softmax(h ◦ f(x))

▶ a cluster assignment matrix Q

• It can be seen as a EM optimization where we first fix Q and update the parameters of
h ◦ f and then fix h ◦ f and estimate Q

• In117 authors update Q using the K-means algorithm

117M. Caron et al. “Deep Clustering for Unsupervised Learning of Visual Features”. In: ECCV. 2018.
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Prototypes/Dictionaries

• We thus want to learn:

▶ an encoder f, that map data x to feature vectors

▶ a classification head h, which is usually a single linear layer followed by a softmax
operator to have class probabilities: softmax(h ◦ f(x))

▶ a cluster assignment matrix Q

• It can be seen as a EM optimization where we first fix Q and update the parameters of
h ◦ f and then fix h ◦ f and estimate Q

• In117 authors update Q using the K-means algorithm→ Problem: no well-defined
objective function and thus no convergence properties

• In118, authors propose to partition data in equally-sized subsets (optimal transport
problem)→ well defined mathematical framework
117M. Caron et al. “Deep Clustering for Unsupervised Learning of Visual Features”. In: ECCV. 2018.
118Y. M. Asano et al. “Self-labelling via simultaneous clustering and representation learning”. In: ICLR. 2020.
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Prototypes/Dictionaries

• Clustering methods have two main problems:

▶ They do not scale well with large datasets→ need a pass over the entire dataset to
obtain cluster assignment

▶ Number of features of penultimate layer of ConvNet is large→ need to be
PCA-reduced

• To solve this problem one can use prototypes c119’120. A code q is obtained for each
sample x by mapping its feature z = f(x) to a set of K trainable prototypes c→ the
dimension of q is K, which is much smaller than the one of z

119M. Caron et al. “Unsupervised Learning of Visual Features by Contrasting Cluster Assignments”. In: NeurIPS. 2020.
120J. Li et al. “Prototypical Contrastive Learning of Unsupervised Representations”. In: ICLR. 2021.
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Prototypes/Dictionaries

• In SwAV121, authors propose to compute the codes qs and qt of two augmentations of
the same image xis and xit and predict each code from the feature z of the other image.
Given zs = f(xis) and zt = f(xit), we obtain:

L(zt, zs) = ℓ(zt,qs) + ℓ(zs,qt) (15)

121M. Caron et al. “Unsupervised Learning of Visual Features by Contrasting Cluster Assignments”. In: NeurIPS. 2020.91/144



Prototypes/Dictionaries

L(zt, zs) = ℓ(zt,qs) + ℓ(zs,qt) (16)

• where ℓ(z,q) = −
∑

k q
k log(pk)measures the fit between the features z and the code

q, namely the cross entropy between the code qk, corresponding to prototype k, and
the probability pk that the feature z belongs to cluster k.
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Prototypes/Dictionaries

• The number of prototypes K is chosen by the user (hyper-parameter) and the soft
codes q (no binary assignment) are optimized as to maximize the similarity between the
features z and the prototypes c.
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Prototypes/Dictionaries

• The number of prototypes K is chosen by the user (hyper-parameter) and the soft
codes q (no binary assignment) are optimized as to maximize the similarity between the
features z and the prototypes c.

Wait a second... and the negatives !? Swav is actually a non-contrastive method ! We’ll
talk about that in the next section.
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Contrastive Learning - Weakly supervised

• The previous framework works well when samples are either positive or negative
(unsupervised and supervised setting). But what about continuous/weak labels ?

• Not possible to determine a hard boundary between positive and negative samples→
all samples are positive and negative at the same time
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• Not possible to determine a hard boundary between positive and negative samples→
all samples are positive and negative at the same time

• Let y be the continuous/weak label of the anchor x and yk of a sample xk.

• Simple solution: threshold d between y and yk at τ to create positive and negative
samples: xk is x+ is if d(y, yk) < τ → Problem: how to choose τ ?
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Contrastive Learning - Weakly supervised

• The previous framework works well when samples are either positive or negative
(unsupervised and supervised setting). But what about continuous/weak labels ?

• Not possible to determine a hard boundary between positive and negative samples→
all samples are positive and negative at the same time

• Let y be the continuous/weak label of the anchor x and yk of a sample xk.

• Simple solution: threshold d between y and yk at τ to create positive and negative
samples: xk is x+ is if d(y, yk) < τ → Problem: how to choose τ ?

• Our solution: define a degree of “positiveness” between samples using a kernel
function wk = Kσ(y− yk), where 0 ≤ wk ≤ 1.

• New goal: learn f that maps samples with a high degree of positiveness (wk ∼ 1) close
in the latent space and samples with a low degree (wk ∼ 0) far away from each other.
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Contrastive Learning - Weakly supervised

Question: Which pair of subjects are closer in you opinion (brain MRI, axial plane) ?

Subject A

Age=15

Subject B

Age=64

Subject C

Age=20
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Contrastive Learning - Weakly supervised

Alignement: 1N
∑N

i=1 dii Uniformity:log
(

1
N2

∑N
i,j=1 e

−dij
)
122

122T. Wang et al. “Understanding Contrastive Representation Learning through Alignment and Uniformity on the
Hypersphere”. In: ICML. 2020.
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Contrastive Learning - Weakly supervised

Meta-data
𝑦 ∈ ℝ

Latent Space
𝒵

Latent Space
𝒵

𝑤𝜎 𝑦1 , 𝑦2
𝑤𝜎 𝑦2 , 𝑦3

𝑡1 ∼ 𝒯

𝑡1′ ∼ 𝒯

𝑦1 𝑦2 𝑦3

SimCLR 𝒚-Aware Contrastive 
Learning

𝑥1 𝑥2 𝑥3

𝑡2 ∼ 𝒯

𝑡2′ ∼ 𝒯 𝑡3′ ∼ 𝒯

𝑡3 ∼ 𝒯
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Contrastive Learning - Weakly supervised

• In123’124, we propose a new contrastive condition for weakly supervised problems:

wk∑
j wj

(st − sk) ≤ 0 ∀j, k, t ≠ k ∈ A

• where A contains the indices of samples ̸= x and we consider as positives only the
samples with wk > 0, and align them with a strength proportional to wk.

• As before, we can transform it in an optimization problem obtaining the y-aware loss:

arg min
f

∑
k

max(0,
wk∑
t wt
{st − sk}t=1,...,N

t̸=k
) ≈ Ly−aware = −

∑
k

wk∑
t wt

log

(
exp(sk)∑N
t=1 exp(st)

)

123B. Dufumier et al. “Contrastive Learning with Continuous Proxy Meta-data for 3D MRI Classification”. In: MICCAI. 2021.
124B. Dufumier et al. “Conditional Alignment and Uniformity for Contrastive Learning...”. In: NeurIPS Workshop. 2021.
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Contrastive Learning - Weakly supervised
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Results - Linear evaluation

(a) 5-fold CV Stratified on Site.

(b) 5-fold CV Leave-Site-Out
101/144



Results - Robustness to σ and transformations

▶ Linear classification performance remains stable for a range σ ∈ [1, 5]
▶ Adding more transformations improve the representation (in line with SimCLR)
▶ Cutout remains competitive while being cost-less computationally
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Results - Fine-tuning

Task Test Set
Pre-training Strategies

Weakly Self-Supervised Self-Supervised Generative Discriminative

Baseline Age-Aware Contrastive125 Model Genesis126 Contrastive Learning127 VAE Age Sup.

SCZ vs. HC ↑
Ntrain = 933

Internal Test 85.27±1.60 85.17±0.37 76.31±1.77 82.31±2.03 82.56±0.68 83.05±1.36

External Test 75.52±0.12 77.00±0.55 67.40±1.59 75.48±2.54 75.11±1.65 74.36±2.28

BD vs. HC ↑
Ntrain = 832

Internal Test 76.49±2.16 78.81±2.48 76.25±1.48 72.71±2.06 71.61±0.81 77.21±1.00

External Test 68.57±4.72 77.06±1.90 65.66±0.90 71.23±3.05 71.70±0.23 73.02±2.66

ASD vs. HC ↑
Ntrain = 1526

Internal Test 65.74±1.47 66.36±1.14 63.58±4.35 61.92±1.67 59.67±2.04 67.11±1.76

External Test 62.93±2.40 68.76±1.70 54.95±3.58 61.93±1.93 57.45±0.81 62.07±2.98

Table: Fine-tuning results.128 All pre-trained models use a data-set of 8754 3D MRI of healthy brains. We
reported average AUC(%) for all models and the standard deviation by repeating each experiment three
times. Baseline is a DenseNet121 backbone.

125B. Dufumier et al. “Contrastive Learning with Continuous Proxy Meta-data for 3D MRI Classification”. In: MICCAI. 2021.
126Z. Zhou et al. “Models Genesis”. In: MedIA (2021).
127T. Chen et al. “A Simple Framework for Contrastive Learning of Visual Representations”. In: ICML. 2020.
128B. Dufumier et al. “Deep Learning Improvement over Standard Machine Learning in Neuroimaging”. In: NeuroImage
(under review) ().
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Contrastive Learning - Regression

• We could use Ly−aware also in regression. But...

Ly−aware = −
∑
k

wk∑
t wt

log

(
exp(sk)∑N
t=1 exp(st)

)

• ... the numerator aligns xk, and the denominator focuses more on the closest samples
in the representation space.
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• We could use Ly−aware also in regression. But...

Ly−aware = −
∑
k

wk∑
t wt

log

(
exp(sk)∑N
t=1 exp(st)

)

• ... the numerator aligns xk, and the denominator focuses more on the closest samples
in the representation space.→ Problem ! These samples might have a greater degree
of positiveness with the anchor than the considered xk
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Contrastive Learning - Regression

• We thus propose two new losses:

wk(st − sk) ≤ 0 if wt − wk ≤ 0 ∀k, t ̸= k ∈ A(i)

Lthr = −
∑
k

wk∑
t δwt<wkwt

log

(
exp(sk)∑

t̸=k δwt<wk exp(st)

)

• Lthr repels only the samples that have a y greater than the one of xk but it still
focuses more on the closest samples.
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Contrastive Learning - Regression

wk[st(1− wt)− sk] ≤ 0 ∀k, t ̸= k ∈ A(i)

Lexp = − 1∑
t wt

∑
k

wk log
exp(sk)∑

t̸=k exp(st(1− wt))

• Lexp has a repulsion strength inversely proportional to the similarity between y values,
whatever their distance.

• Repulsion strength only depends on the distance in the kernel space.→ samples
close in the kernel space will be close in the representation space.
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Results - OpenBHB Challenge

• OpenBHB Challenge: age prediction with site-effect removal→ Brain age ̸=
chronological age in neurodegenerative disorders !
• Ntrain: 5330 3D brain MRI scans (different subjects) from 71 acquisition sites.
• Two private test data-sets (internal and external)
• To participate https://ramp.studio/problems/brain_age_with_site_removal108/144

https://ramp.studio/problems/brain_age_with_site_removal


Results - Regression

Method Int. MAE ↓ BAcc ↓ Ext. MAE ↓ Lc ↓

Ly−aware 2.66±0.00 6.60±0.17 4.10±0.01 1.82
Lthr 2.95±0.01 5.73±0.15 4.10±0.01 1.74
Lexp 2.55±0.00 5.1±0.1 3.76±0.01 1.54

Table: Comparison of contrastive losses.

Method Model Int. MAE ↓ BAcc ↓ Ext. MAE ↓ Lc ↓

Baseline (ℓ1)
DenseNet 2.55±0.01 8.0±0.9 7.13±0.05 3.34
ResNet-18 2.67±0.05 6.7±0.1 4.18±0.01 1.86
AlexNet 2.72±0.01 8.3±0.2 4.66±0.05 2.21

ComBat
DenseNet 5.92±0.01 2.23±0.06 10.48±0.17 3.38
ResNet-18 4.15±0.01 4.5±0.0 4.76±0.03 1.88
AlexNet 3.37±0.01 6.8±0.3 5.23±0.12 2.33

Lexp
DenseNet 2.85±0.00 5.34±0.06 4.43±0.00 1.84
ResNet-18 2.55±0.00 5.1±0.1 3.76±0.01 1.54
AlexNet 2.77±0.01 5.8±0.1 4.01±0.01 1.71

Table: Final scores on the OpenBHB Challenge leaderboard using a 3D ResNet-18. MAE: Mean Absolute Error.
BAcc: Balanced Accuracy for site prediction. Challenge score: Lc = BAcc0.3 · MAEext.
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The Issue of Biases

• Contrastive learning is more robust than traditional end-to-end approaches, such as
cross-entropy, against noise in the data or in the labels129.

• What about data bias, such as the site-effect ?

Method Model Int. MAE ↓ BAcc ↓ Ext. MAE ↓ Lc ↓

Baseline (ℓ1) ResNet-18 2.67±0.05 6.7±0.1 4.18±0.01 1.86

ComBat ResNet-18 4.15±0.01 4.5±0.0 4.76±0.03 1.88

Lexp ResNet-18 2.55±0.00 5.1±0.1 3.76±0.01 1.54

• Lexp shows a small overfitting on internal sites but also a low debiasing capability
towards site effect→ BAcc should be equal to random chance: 1/nsites = 1/64 ∼ 1.56

• Need to include debiasing regularization terms, such as FairKL130. Please have a look !
129F. Graf et al. “Dissecting Supervised Contrastive Learning”. In: ICML. 2021.
130C. A. Barbano et al. “Unbiased Supervised Contrastive Learning”. In: ICLR. 2023.
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Self-distillation

• Self-distillation methods use a Siamese architecture with two different neural
networks: online (student) and target (teacher).

• They are non-contrastive methods→→ only positives, no negatives are used !

• They avoid collapse using asymmetric architectures and different optimization
procedures (e.g., EMA, stop-gradients, diverse learning rates/weight decay) for the two
networks131’132’133’134

131C. Zhang et al. “How Does SimSiam Avoid Collapse Without Negative Samples?” In: ICLR. 2022.
132Q. Garrido et al. “On the duality between contrastive and non-contrastive self-supervised”. In: ICLR. 2023.
133Y. Tian et al. “Understanding self-supervised learning dynamics without contrastive pairs”. In: ICML. 2021.
134M. S. Halvagal et al. Predictor networks and stop-grads provide implicit variance regularization in BYOL/SimSiam. 2022.
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Bootstrap Your Own Latent (BYOL)
• BYOL135 is the first method that introduced self-distillation to avoid collapse of
Siamese architecture (constant output).

• Online is composed of: encoder fθ, projector gθ and predictor qθ.

• Target is composed of: encoder fξ and projector gξ . The parameters ξ are different
from θ and they are updated using an exponential moving average (i.e., momentum
encoder): ξ ← τξ + (1− τ)θ

135J.-B. Grill et al. “Bootstrap your own latent: A new approach to self-supervised Learning”. In: NeurIPS. 2020. 114/144



Bootstrap Your Own Latent (BYOL)

• The idea of BYOL is to maximize agreement between the outputs of the two networks
that take as input augmentations of the same image

• Agreement is defined as the symmetric mean squared error between normalized
outputs (v and v′ are fed to both networks):

Lθ,ξ =
1
2
|| qθ(zθ)

||qθ(zθ)||2
−

z′
ξ

||z′
ξ||2
||22 +

1
2
|| qθ(z′

θ)

||qθ(z′
θ)||2

− zξ

||zξ||2
||22

≈ −
< qθ(zθ), z′

ξ >

||qθ(zθ)||2||z′
ξ||2
− < qθ(z′

θ), zξ >

||qθ(z′
θ)||2||zξ||2

(17)
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Simple Siamese networks (SimSiam)
• SimSiam136 removes the EMA (momentum encoder) using simply a stop-grad and... it
magically works without collapsing !

136X. Chen et al. “Exploring Simple Siamese Representation Learning”. In: CVPR. 2021.
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Simple Siamese networks (SimSiam)

• SimSiam uses an even simpler architecture with one shared encoder f and a predictor
h only for the student network. Two views (i.e., augmentations) of the same image x are
then matched minimizing the symmetric loss:

Lf,h(x1, x2) = −
< h(f(x1)), f(x2) >

||h(f(x1))||2||f(x2)||2
− < h(f(x2)), f(x1) >

||h(f(x2))||2||f(x1)||2
(18)
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Simple Siamese networks (SimSiam)

• SimSiam does not collapse thanks to the stop-gradient: f(x2) and f(x1) are treated as
constants in the loss and the encoder f receives no gradients from them

Lf,h(x1, x2) = −
< h(f(x1)), f(x2) >

||h(f(x1))||2||f(x2)||2
− < h(f(x2)), f(x1) >

||h(f(x2))||2||f(x1)||2
(19)
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Simple Siamese networks (SimSiam)

• The stop-gradient and the architecture design (presence of h, different learning
rates for f and h, batch normalization, etc) are very important... but, they don’t explain
How does SimSiam avoid collapse without negative samples?→ still open question137
137C. Zhang et al. “How Does SimSiam Avoid Collapse Without Negative Samples?” In: ICLR. 2022.
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DINO

• In138 authors propose DINO which differs from BYOL and SimSiam: 1) same architecture
for teacher and student, 2) knowledge distillation, 3) centering and sharpening the
teacher output, 4) use of ViT, 5) multi-crops
138M. Caron et al. “Emerging Properties in Self-Supervised Vision Transformers”. In: ICCV. 2021.
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DINO

• Teacher and student use the same architecture: g = f ◦ h where f is an encoder (ViT
or ResNet) and h is a MLP projection head. No predictor is used for the student!

• When using ViT no Batch Norms, Group Normalization, Weight decay/standardization
are used (thus less hyper-parameters to tune)→ important for BYOL139

139P. H. Richemond et al. BYOL works even without batch statistics. 2020.
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DINO

• Generalized knowledge distillation140 (KD) matches the soft labels of student and
teacher instead than hard labels. Soft labels allow to uncover relations between
classes that would be difficult to detect with hard labels.

• In DINO the vector of K features z is transformed into soft-labels (each dimension i
becomes a probability) using the softmax function:

Ps(x)i =
exp(gθs(x)

i/τs)∑K
k=1 exp(gθs(x)k/τs)

=
exp(zis/τs)∑K
k=1 exp(zks/τs)

Pt(x)i =
exp(gθt(x)

i/τt)∑K
k=1 exp(gθt(x)k/τt)

=
exp(zit/τt)∑K
k=1 exp(z

k
t/τt)

(20)

• where z = g(x)i indicates the i-th dimension of z, and τ controls the sharpness of the
output distribution (the smaller, the sharper)
140D. Lopez-Paz et al. “Unifying distillation and privileged information”. In: ICLR. 2016.
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DINO

• Given the parameters of the two networks (θt and θs), we compute the symmetric loss
(as in BYOL and SimSiam):

Lθs,θt(x1, x2) =
1
2
H(Ps(x1), Pt(x2)) +

1
2
H(Ps(x2), Pt(x1)) (21)

• where H(a,b) = −a log(b) is the cross-entropy.

• As in BYOL, the parameters of the teacher are not updated via back-propagation (i.e.,
stop-gradient) but using an EMA:

θt ← λθt + (1− λ)θs (22)

• Authors use amulti-crop strategy: x1 is a global view while x2 is a local view with
smaller resolution
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DINO

• DINO can have two forms of collapse:

▶ the model output is uniform along all the dimensions (zi = zj ∀ i, j)
▶ the model output is dominated by one dimension (zi >> zj ∀ j ̸= i)
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DINO

• DINO can have two forms of collapse:

▶ the model output is uniform along all the dimensions (zi = zj ∀ i, j)→ sharpening Pt
using low τt

▶ the model output is dominated by one dimension (zi >> zj ∀ j ̸= i)→ centering Pt

• However, sharpening and centering avoids one collapse but encourage the other,
they need to be used together

• Centering can be seen as adding a bias term to the teacher: zt ← zt + c, and it is
updated with an EMA:

c← mc+ (1−m)
1
B

B∑
i=1

gθt(xi) (23)

• wherem > 0 is a rate hyper-parameter and B is the batch size.
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DINO

• Take home message: Non-contrastive teacher-student methods do not need
negatives and avoid collapse using architectural/optimization solutions.→ still not
clear what’s the best strategy and why it works ! 125/144



Recap

Image from141

141F. Del Pup et al. Applications of Self-Supervised Learning to Biomedical Signals: where are we now. 2023. 126/144
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Barlow Twins
• Another category of non-contrastive methods maximizes the information content of
the embeddings by reducing the redundancy

• Barlow Twins142 makes the normalized cross-correlation matrix computed from twin
embeddings as close to the identity matrix as possible

142J. Zbontar et al. “Barlow Twins: Self-Supervised Learning via Redundancy Reduction”. In: ICML. 2021.
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Barlow Twins

• Barlow Twins does not use: 1) large batch, 2) asymmetric networks (no predictor), 3)
EMA, 4) clustering/prototypes, 5) stop-gradient→ Easier to optimize !
• Two views, yA and yB, of the same image x are fed to the same network f producing
zA = f(yA) and zB = f(yB).
• The batch matrix Z with all z (views of multiple images) is then batch-normalized along
each dimension i (Ẑi =

Zi−µi
σi

).
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Barlow Twins

• We first define the normalized cross-correlation matrix C between the random
vectors zA = [zA1 , zA2, ..., zAD]

T = [D, 1] and zB = [zB1 , zB2, ..., zBD]
T = [D, 1], where D is the

dimension of the embeddings (i.e., number of elements):

C = [D,D] ≜ E[zA(zB)T] =

E[zA1 zB1 ] E[zA1 zB2] ... E[zA1 zBD]
... ... ... ...

E[zADzB1 ] E[zADzB2] ... E[zADzBD]

 (24)
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Barlow Twins

• We can approximate the E with an average on the (normalized) batch samples
ẐA = [N,D] and ẐB = [N,D], where N is the batch size, and define C = ((ẐA)TẐB)/N.

• Each elements of C has values comprised between−1 (anti-correlation) and 1
(correlation) and is defined:

Cij =

∑N
t=1 z

A
tiz

B
tj√∑N

t=1(z
A
ti)

2
√∑N

t=1(z
B
tj)

2
(25)

• where t is a batch index, i and j refers to the dimension of the embeddings (i.e.,
1 ≤ i, j ≤ D)
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Barlow Twins

• Intuitively, since the two networks A and B take as input two views of the same image,
we would like the embeddings zA and zB to be invariant to the augmentations and thus
that homologous elements of zA and zB have similar values and same sign

• At the same time, we would like that our representations zA and zB do not contain
redundant information, which means that different elements of zA and zB should have
different and unrelated values

• The loss of Barlow Twins is thus:

LBT =
∑
i

(1− Cii)2︸ ︷︷ ︸
invariance term

+λ
∑
i

∑
j̸=i

C2ij︸ ︷︷ ︸
redundancy reduction term

(26)

• where λ > 0 is a hyper-parameter to tune
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Barlow Twins
• Intuitively, since the two networks A and B take as input two views of the same image,
we would like the embeddings zA and zB to be invariant to the augmentations and thus
that homologous elements of zA and zB have similar values and same sign
→Cii = 1 ∀i perfect correlation
• At the same time, we would like that our representations zA and zB do not contain
redundant information, which means that different elements of zA and zB should have
different and unrelated values
→Cij = 0 ∀i, j perfect de-correlation
• The loss of Barlow Twins is thus:

LBT =
∑
i

(1− Cii)2︸ ︷︷ ︸
invariance term

+λ
∑
i

∑
j̸=i

C2ij︸ ︷︷ ︸
redundancy reduction term

(26)

• where λ > 0 is a hyper-parameter to tune
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VICReg

• VICReg143 is similar to Barlow Twins but instead than using a normalized
cross-correlation, they use a loss with three different terms

▶ Mean squared distance between the embedding vectors zAt and zBt → invariance to
the augmentations

▶ Variance regularization term: the standard deviation (over a batch) of each
dimension of the embedding is forced to be above a given threshold.→ it prevents
a collapse (possible in BT) where all dimensions have the same value

▶ Covariance term: it attracts the off-diagonal coefficients of the covariance
matrices of ZA and ZB to be close to 0.→ it reduces redundancy, as in BT, without
using cross-correlation C = ((ẐA)TẐB)/N but single covariance matrices
CA = ((ẐA)TẐA)/N, CB = ((ẐB)TẐB)/N

• Results between BT and VicReg are very similar...

143A. Bardes et al. “VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning”. In: ICLR. 2022.
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Conclusions

• Different methods of self-supervised learning exist. Recently contrastive and
non-contrastive methods have emerged obtaining SOTA results and, in some cases,
on-pair or very similar to fully supervised methods

• Architecture (e.g., siamese networks, CNN/ResNet/ViT, BN, temperature τ , etc.) and
optimization (e.g., losses, lr, etc.) choices are important. But probably the most
important factor in unsupervised SSL is the transformations/augmentations144→ it
depends on the downstream task (e.g., classification, recognition, segmentation) and
data (e.g., medical, multimodal)

• Recent non-contrastive methods (BYOL, SwAV) do not need negatives (small batch,
smaller pre-training datatsets, less memory and less computing power) BUT, they can
be harder to train (e.g., SimSiam) and their underlying mechanisms are still poorly
understood→ geometric approach as in145 or146 ?
144I. Bendidi et al. No Free Lunch in Self Supervised Representation Learning. 2023.
145C. Zhang et al. “How Does SimSiam Avoid Collapse Without Negative Samples?” In: ICLR. 2022.
146Q. Garrido et al. “On the duality between contrastive and non-contrastive self-supervised”. In: ICLR. 2023.
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