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Introduction - Computer Vision
• Deep learning (e.g., CNN or ViT) is a lazy and inefficient statistical method that needs
millions if not billions of exemples to learn a precise task→ data hungry
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Introduction - Computer Vision

• Many specific tasks in Computer Vision, such as object detection1 (e.g., YOLO), image
classification2 (e.g., ResNet-50), or semantic segmentation (e.g., U-Net), have reached
astonishing results in the last years.

• Large and deep architectures (best performing) could be used mainly because:

1. large (N > 106), labeled data-sets were easily accessible and freely available

2. more computational power with hardware accelerators, such as GPU and TPU

1T.-Y. Lin et al. “Microsoft COCO: Common Objects in Context”. In: ECCV. 2014.
2J. Deng et al. “ImageNet: A Large-Scale Hierarchical Image Database”. In: CVPR. 2009.
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Introduction - The need for data

• Mathematically, this comes from the fact that in machine (deep) learning, we usually
follow the empirical risk minimization principle3, which states that we should look for a
model f, in the restricted space F , that minimizes the empirical risk R̂(f), which is an
approximation of the risk function R(f) (or generalization error):

arg min
f∈F

R(f) = E(x,y)∼p(X,Y)[L(y, f(x))] ≈ R̂(f) =
1
n

n∑
i=1

L(yi, f(xi)) (1)

• where we average the loss function L over the training setDn = {(xi, yi) ∈ X × Y}: n
i.i.d.samples drawn from the fixed but unknown joint distribution p(X, Y).

• We also assume that X is a real valued random input vector taking values x in X = Rd,
and Y is a real valued random output variable taking values y in Y = {C1, . . . ,CK}
(classification with K classes) or in Y = R (regression).

3V. Vapnik. “Principles of Risk Minimization for Learning Theory”. In: NIPS. 1991.
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Empirical risk minimization

Let F be the restricted space of f:

• f∗ : theoretical optimal model→ f∗ = arg minf R(f)
• f̃ : theoretical best model in the restricted spaceF → f̃ = arg minf∈F R(f)
• f̂ : best model in F based on the limited dataDn→ f̂ = arg minf∈F R̂(f)

We can notice that (without considering the optimization error):

err{f∗ − f̂} = err{ f∗ − f̃︸ ︷︷ ︸
approximation error

}+ err{ f̃− f̂︸ ︷︷ ︸
estimation error

} (2)

• The approximation error is due to the restriction of f to F since it is possible that
f∗ ̸∈ F → look for richer (many parameters) spaces F (e.g., deep learning)
• The estimation error is due to the limited training data. This tends to 0 when n→∞,
(law of large numbers)→ look for large, annotated data-sets
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Empirical risk minimization
• Following the Vapnik’s principle, we look for a model f̂ that entails R̂(̂f) ≈ 0→ this can
be computed using the n training samples !

• However, we would like a model f̂ which entails R(̂f) ≈ 0, but this can not be computed !
→ under which conditions R(̂f)− R̂(̂f) ≈ 0 ?

• The Probably Approximately Correct (PAC) bound4 states that, with probability 1− δ
where δ > 0, the following inequality holds:

∀f ∈ F , R(f)− R̂(f) ≤
√

1
2n

(
log2 |F|+ log

2
δ

)
(3)

▶ the greater n, the better R̂(f) approximates R(f)
▶ the smaller the size of F , the better R̂(f) approximates R(f)
▶ Given n, it is better using a smaller and simpler F → Occam’s Razor principle (”All

other things being equal, a simpler model is better”)

4M. Mohri et al. Foundations of Machine Learning. MIT Press, 2019.
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Empirical risk minimization

• We can conclude that, if we use a rich DL model (many parameters, large |F|):
▶ the approximation error gets smaller (lower bias), but...

▶ the estimation and generalization error may increase (higher statistical
complexity)→ it could perfectly adapt to the training samples and memorize them5

• We need to increase n to reduce the estimation and generalization error and not incur
in the problem of Overfitting6

• This shows that we need:

▶ large and labeled data-sets (big n)

▶ powerful computational servers to train deep neural networks with millions of
parameters (large |F|)

5C. Zhang et al. “Understanding deep learning requires rethinking generalization”. In: ICLR. 2017.
6Y. Abu-Mostafa et al. Learning from data: A short course. 2012.

9/132



Empirical risk minimization

• If we don’t have much data, like in medical imaging where usual training data-sets have
less than 1k images, what can we do to avoid Overfitting ?

▶ choose the adequate hypothesis/model space F (inductive bias problem)7→ not
always easy and very time-consuming. Need to try several models and
hyper-parameters

▶ Regularization such as: weight decay, Dropout or early-stopping.→ These are very
important but they are not a miracle cure...

▶ Data augmentation (e.g., geometric and iconographic transformations)→ can be
very effective but one needs to find adequate transformations (not always easy for
medical images)

▶ Feature Engineering/Learning

▶ Transfer Learning

7J. Baxter. “A Model of Inductive Bias Learning”. In: Journal of Artificial Intelligence Research (2000).
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Feature Engineering

• The main idea behind Feature Selection/Engineering is to identify new features that :

▶ are not-redundant

▶ are possibly of lower dimension than the original features

▶ better describe the original data

▶ are useful for one (or more) downstream tasks

• Until the advent of Deep Learning8, the feature selection process was mainlymanual.

• Good results and representations are interpretable and explainable but ... it is usually
tedious, time-consuming, labor-intensive and only for experienced practitioners

8A. Krizhevsky et al. “ImageNet classification with deep convolutional neural networks”. In: NIPS. 2012.
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Manual feature selection in neuroimaging

• During the last 30 years, there has been a lot of work about feature engineering in
some applications of Medical Imaging, like anatomical brain imaging:

Figure: Feature extraction with VBM pipeline from MR T1-w images9.

• where linear models applied to accurately extracted features (after a series of
specifically designed pre-processing steps) can still compete with the most recent
Deep learning algorithms10 !

9J. Ashburner. “A fast diffeomorphic image registration algorithm”. In: NeuroImage (2007).
10B. Dufumier. “Representation learning in neuroimaging”. PhD thesis. 2022.
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Manual feature selection in neuroimaging

• But... Brain Imaging has received a tremendous attention in the last 30 years (...even
politicians are afraid of Alzheimer’s disease...) and not all applications can benefit from
the works of thousands of researchers !→ Generic automatic feature learning
algorithms could be used in all applications without requiring a big expertise on the
data 15/132
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Feature/Representation Learning

Goal
Automatically learn discriminative, relevant and well-organized representations f(x) of
the original data x which are useful and generalizable to one or more downstream tasks

• The first and well-known methods for Automatic Representation Learning are the
unsupervised dimensionality reduction methods, such as:

▶ Principal Component Analysis (PCA)

▶ Independent Componenent Analysis (ICA)

▶ Non-negative Matrix factorization (NNMF)

• These methods can be very performing but are all based on strong assumptions (e.g.,
linearity, variance is interesting, statistical independence, positiveness)

• Deep learning gives a (more) generic way to automatically learn well-adapted
representations, but...
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Feature/Representation Learning

... How should it be a “good” representation f ?11

1. Smooth

2. Compact yet explanatory

3. Distributed

4. Hierarchical

5. Invariant

6. Disentangled

7. Generic, Well organized

11Y. Bengio et al. “Representation Learning: A Review and New Perspectives”. In: IEEE TPAMI (2013).
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Smooth Representations

• Smooth: it implies that if x ≈ y then f(x) ≈ f(y). This prior is integrated in most
unsupervised ML algorithms since prediction is usually achieved by a form of local
interpolation between neighboring training examples12 (e.g., kernel methods such as
K-PCA, Isomap13, LLE14).

• But... if the data are represented in a very large raw input space, due to the curse of
dimensionality, we will need an exponentially growing number of samples to correctly
reconstruct the entire functional landscape of f (and all its wrinkles)

12Y. Bengio et al. “Non-Local Manifold Tangent Learning”. In: NIPS. 2004.
13J. B. Tenenbaum et al. “A Global Geometric Framework for Nonlinear Dimensionality Reduction”. In: Science (2000).
14S. T. Roweis et al. “Nonlinear Dimensionality Reduction by Locally Linear Embedding”. In: Science (2000).
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Curse of dimensionality

• Curse of dimensionality15: we assume that in 1D we need 21 samples to correctly
retrieve the true latent function f. If the same process is transposed in 2D, we would
need 212 samples, in 100D we will need 21100 samples! We have an exponentially growing
number of samples to correctly sample the entire input space

15R. Bellman. Dynamic Programming. Princeton University Press, 1957.
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Smooth Representations

Are all deep learning representations smooth ?

• Not necessarily... we can almost always find adversarial examples: generated images
obtained by applying small perturbations to correctly classified input images, so that
they are no longer classified correctly→ no locally smooth, there are blind spots !

Adversarial examplesa generated for
AlexNet. (Left) is a correctly predicted
sample, (center) difference between
correct image and image predicted

incorrectly, (right) adversarial example. All
images in the right column are predicted to

be an “ostrich, Struthio camelus”

aC. Szegedy et al. “Intriguing properties of neural
networks”. In: ICLR. 2014.
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Compact yet explanatory

• To avoid the curse of dimensionality, we usually also require the representation to be
compact (or minimal)

• Mathematically, this mean learning a mapping: f : Rd → Rp where p < d

• Furthermore, the new features need to be explanatory, which means expressive
enough to represent and capture most of the possible input configurations.

• The concept of expressiveness is very important in Representation Learning and
several measures have been proposed to quantify it using, for instance:

▶ Information theoretic measures

▶ Supervised discriminative signals

▶ Reconstruction error
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Compact yet explanatory

• Information theoretic measures:

▶ InfoMax principle: maximizing mutual information between inputs and
representationsmaxθ I(x; fθ(x))16→ MI is not necessarily a good predictor of the
model performance17

▶ The information bottleneck (IB) principle18: maximizing mutual information
between representations and outputs while minimizing between inputs and
representationsmaxθ I(fθ(x); y)− βI(x; fθ(x))→ seeks a minimal set of informative
features for the chosen task. Low generalizability and transferability

▶ Maximal Coding Rate Reduction (MCR2)19: learn a representation that
discriminates between classes while being maximally diverse→ task dependent

16A. J. Bell et al. “An Information-Maximization Approach to Blind Separation...”. In: Neural Computation (1995).
17M. Tschannen et al. “On Mutual Information Maximization for Representation Learning”. In: ICLR. 2020.
18N. Tishby et al. “Deep Learning and the Information Bottleneck Principle”. In: IEEE ITW. 2015.
19Y. Yu et al. “Learning Diverse and Discriminative Representations...”. In: NeurIPS. 2020.
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Compact yet explanatory

• Supervised signals

▶ Minimizing the cross-entropy loss over a labeled training data-set (x, y)→ highly
task-dependent

• Reconstruction error

▶ Auto-encoders→ estimate a compact and informative representation that
reconstructs the original images→ results vary depending on metric (L2, L1, etc.),
additive discriminative network (e.g., GAN), regularity terms, making it
task-dependent

• Measuring the expressiveness or meaningfulness of a representation is an active
research area.

• Most of these measures are task-dependent or based on a precise statistical
measure (e.g., Mutual Information)→ Need to quantify the generalizability of a
representation to several, and possibly new, tasks
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Distributed Representations
• Local or non-distributed representations: we create a feature for each possible
input sample (or configuration). Thus, each feature represents a different input sample.
This is also called one-hot feature representation.

• In a neural network, we would dedicate one neuron to every possible input sample→
very simple, easy to code, easy to learn but.. highly inefficient !

Figure: Each individual shape is represented by a single neuron. Image by Garrett Hoffman.
28/132



Distributed Representations
• Examples of one-hot feature representations are: clustering algorithms, mixtures, NN,
decision trees, Gaussian SVM→ they need O(N) parameters/examples to distinguish
O(N) different input samples.20

• It is inefficient because it does not leverage possible relationships/similarities
between input samples.

20Y. Bengio et al. “Representation Learning: A Review and New Perspectives”. In: IEEE TPAMI (2013).
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Distributed Representations
• Distributed representations: features are related to general and high-level concepts
that are shared between input samples and describe their intrinsic variability.

• It is highly efficient since we don’t need one neuron per sample but we can describe
many samples with few features.21

Figure: Each shape is represented by shared and high-level features. Image by Garrett Hoffman.

21Y. Bengio et al. “Non-Local Manifold Tangent Learning”. In: NIPS. 2004.
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Distributed Representations
• Distributed representations from neural network architectures (auto-encoders,
multi-layer NN, CNN, RBMs, etc.) can all represent up to O(2N) input samples using only
O(N) parameters.22

• In a distributed representation, each input sample is represented by a certain number
of active features, and each feature is involved in representing several input samples.

Figure: Each shape is represented by shared and high-level features. Image by Garrett Hoffman.

22Y. Bengio et al. “Representation Learning: A Review and New Perspectives”. In: IEEE TPAMI (2013). 31/132
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Hierarchical Representations
• Deep architectures are highly used in representation learning because, even if they
may be more difficult to train, they can:
▶ learn multiple levels of features which constitute a hierarchy that goes from

low-level to high-level/abstract features
▶ promote the re-use of features, which explains the power of distributed

representations.23

Figure: Visualization of input stimuli that excite individual feature maps at different layers.24

23Y. Bengio et al. “Representation Learning: A Review and New Perspectives”. In: IEEE TPAMI (2013).
24M. D. Zeiler et al. “Visualizing and Understanding Convolutional Networks”. In: ECCV. 2014. 33/132



Hierarchical Representations

• In a hierarchical representation (e.g., CNN):

▶ low-level features are related to contours, edges, angles, colors, texture→ closer
to raw pixels, retrieved at locale scale, more sensitive to noise and changes, less
interpretable

▶ high-level features describe semantically meaningful concepts like entire objects,
faces, etc.→more abstract, retrieved at global scale (bigger receptive field), less
sensitive to noise and changes (i.e., invariant), more interpretable

• Furthermore, deep and hierarchical architectures have many ways to re-use and
compose the different features at different levels→ the number of ways can grow
exponentially with the depth of the network !
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Invariant Representations

• A representation should be invariant to geometric/iconographic nuisance
transformations→ features should be insensitive to these nuisance variations that are
uninformative for the aimed downstream tasks

• The high-level, abstract features corresponding to the animal “squirrel” should
activate for both images

• In CNN: convolutions + non-linearities + pooling (subsampling) produce shift-invariant
representations

36/132



Invariant Representations

• However, how to determine a priori which are the irrelevant/nuisance variations ? If
the representations are destined to multiple tasks, they might have distinct relevant
features !

• The most common answer to this question is to preserve as much as possible of the
information in the data removing only the information that can be considered as
irrelevant for all aimed tasks (e.g., the previous geometric transformations)

• Ultimately, the research postulate mostly followed by researchers is: “the most
robust approach to feature learning is to disentangle as many factors as possible,
discarding as little information about the data as is practical.”25

What does it mean disentangling factors of variation ?

25Y. Bengio et al. “Representation Learning: A Review and New Perspectives”. In: IEEE TPAMI (2013).
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Disentangled representations
• Data distributions can be usually described by the interaction of several independent
(or conditionally independent) factors of variation.

• Between two samples, only few of them tend to change while the others stay fixed

Figure: DSprite dataset where there are only 5 factors of variation (shape, rotation, scale, x-pos,
ypos). Image representations have 5 latent codes (which capture the actual factors of
variation). Each row shows how an image changes when traversing a single latent code.26

26Z. Lin et al. “InfoGAN-CR and ModelCentrality: Self-supervised Model ... for Disentangling GANs”. In: ICML. 2020. 39/132



Disentangled representations

• However, representations of fully-connected networks or CNN are not necessarily
disentangled !27

Figure: Test images (x ∈ T ) that maximize the
projection of the image representation f(x)
onto the i-th direction ei of the last layer:
x′ = arg maxx∈T ⟨f(x),ei⟩

Figure: Test images (x ∈ T ) that maximize the
projection of the image representation f(x)
onto a random direction v of the last layer:
x′ = arg maxx∈T ⟨ϕ(x), v⟩

• Images within each row share similar semantic properties !→ This means that the
entire representation space contains important but entangled semantic information.
Source of variations are not disentangled among the individual units of the last layer.

27C. Szegedy et al. “Intriguing properties of neural networks”. In: ICLR. 2014.
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Disentangled representations

How can we encourage representations to be disentangled ?

• Unsupervised disentanglement: we would like to learn a disentangled representation
purely from the observed data, without any form of supervision→ Unfortunately, it is
fundamentally impossible without inductive biases on both the models and the data !28

• That’s why, researchers have mainly proposed two types of methods:

▶ Supervised disentanglement: generative factors are (partly or entirely) known and
we use this knowledge explicitly to guide the representation learning29

▶ • Weakly-supervised disentanglement: we leverage additional information (e.g.,
inductive biases, number of varying factors, labels) to disentangle the input data30

• We will discuss these methods in the next lecture !
28F. Locatello et al. “Challenging Common Assumptions in the Unsupervised Learning of Disentangled...”. In: ICML. 2019.
29F. Locatello et al. “Disentangling Factors of Variation Using Few Labels”. In: ICLR. 2020.
30F. Locatello et al. “Weakly-Supervised Disentanglement Without Compromises”. In: ICML. 2020.
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Generic Representations

• Ideally, we would like to learn a representation that is generic→ it performs well for all
possible tasks !

• Low-level features are closer to the pixel space→more
useful for tasks such as image segmentation and specific
(useful) to the employed imaging modality

• High-level features describe more high-level concepts→
more useful for tasks such as image classification or object
recognition and more specific to a task, namely if we change
classes/objects they might not be so useful

We should train using several input modalities and/or different tasks
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Semantically coherent Representations
• A generic and well-organized representation should
also be semantically coherent→ similar categorical
concepts should be close to each other in the
representation spacea

aP. Khosla et al. “Supervised Contrastive Learning”. In: NeurIPS. 2020.

• Contrastive Learning (self-supervised strategy) uses
this strategy to estimate the representation space→
loss is computed using only the final layer

• Deep (self) supervision adds extra supervisions or
self-supervision to the intermediate layersab

• More information in the next lecture !
aS. Ren et al. DeepMIM: Deep Supervision for Masked Image Modeling. 2023.
bL. Zhang et al. “Contrastive Deep Supervision”. In: ECCV. 2022.
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Interpretable Representations
• Interpretability is the degree to which a human can understand the reasoning behind
the prediction of a model

• Very important in medical imaging. If you want to create a product you need to be able
to explain “Why and How does your DL model work ?”

• And interpretable representations ?→ Concept-based modelsmake predictions
based on human-understandable concepts (e.g.,31’32 predicts c, then use c to predict y)

31P. W. Koh et al. “Concept Bottleneck Models”. In: ICML. 2020.
32E. Kim et al. “Probabilistic Concept Bottleneck Models”. In: ICML. 2023.
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Evaluation

How can we evaluate the quality of a representation ?

• Unsupervised and self-supervised methods learn a representation without labels. To
evaluate the quality of the representation, three methods are mainly used:

▶ Linear classification: labeled train/test samples are passed through the frozen
network and then linearly classified→ the hypothesis is that classes should be
linearly separable in the representation space33

▶ k-NN34: labeled train/test samples are passed through the frozen network and
then classified (non-linearly) using k-nearest neighbors (k-NN). Several values of k
are tested. Best results reported.

▶ Transfer Learning35: the network is fine-tuned on another labeled dataset and
then evaluated.

33A. Kolesnikov et al. “Revisiting Self-Supervised Visual Representation Learning”. In: CVPR. 2019.
34Z. Wu et al. “Unsupervised Feature Learning via Non-parametric Instance Discrimination”. In: CVPR. 2018.
35P. Goyal et al. “Scaling and Benchmarking Self-Supervised Visual Representation Learning”. In: ICCV. 2019.

46/132



Summary

1. Introduction
2. Feature Engineering/Learning

2.1 Manual Feature Engineering
2.2 Feature Learning
2.3 Smooth representations
2.4 Compact yet explanatory representations
2.5 Distributed Representations
2.6 Hierarchical Representation
2.7 Invariant Representations
2.8 Disentangled Representation
2.9 Generic, well organized Representation

3. Learning, preserving and transferring knowledge between tasks
3.1 Transfer Learning and Domain Adaptation
3.2 Multitask Learning
3.3 Knowledge Distillation
3.4 Meta-learning or Learning to learn
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Human learning Vs Machine Learning

• You have never seen (hopefully...)
these animals, but you know that
they don’t exist.

• On the contrary, a ML algorithm
would probably recognize them as
animals but will struggle about the
class.

Why is that ?

• Human beings can perform new tasks without training, or with few training samples→
ML algorithms need thousands or millions of examples for a precise task !
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Human learning Vs Machine Learning

• People can use previously learned
concepts (from previous tasks) toa:

1. recognize new objects with a single
example (one-shot learning)

2. create new similar examples

3. parsing objects into parts and relations

4. mix parts to create new objects

Can we do the same with ML algorithms ?

aB. M. Lake et al. “Human-level concept learning through
probabilistic program induction”. In: Science (2015).
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Different kind of learning paradigms

• There are 7 main paradigms that deal with transferring knowledge between source
(training) and target (test) tasks:

▶ Transfer learning

▶ Domain Adaptation

▶ Multi-task learning

▶ Meta-Learning (Learning to Learn)

▶ Continual Learning (Lifelong Learning)

▶ Online learning

▶ Knowledge Distillation

50/132



Notation

• Adapting the notation of3637, we define for the training (source) and test (target) data:

Definition of Domain
A domainD = {X ,Y,p(X, Y)} consists of an input feature space X = Rd, an output
space Y (e.g., Y = {1, .., K}, Y = {0, 1}, Y = R), and a joint distribution over the input and
output space p(X, Y), where X is a r.v. taking values x ∈ X and Y is a r.v. taking values
y ∈ Y

Definition of Task
A task T = f(·) consists of the predictive function f(·) : X → Y which is the conditional
distribution p(Y|X). It thus depends on the output space Y .

36S. J. Pan et al. “A Survey on Transfer Learning”. In: IEEE Trans. Knowl. Data Eng. (2010).
37S. Ben-David et al. “A theory of learning from different domains”. In: Machine Learning (2010).
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Different kind of learning paradigms

• The main differences between the 7 paradigms are:

▶ Number of source and target domains→ Example: we might have several source
domains and one target domain
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one component of T needs to be related (e.g., equal, smooth changes) to the same
component of S. The two domains must be related, need to transfer something38.

▶ Source/Target data are annotated or not

▶ Source/Target tasks are learned sequentially or simultaneously

▶ Data from source domain comes gradually over time
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Transfer Learning

Definition of Transfer Learning
Given one source domainDS and one target domainDT entirely available at
training/test time (no online setting), whereDS ̸= DT and/or TS ̸= TT, transfer learning
aims to improve the learning of the target task TT using the knowledge ofDS and TS

• Given this definition, we can divide Transfer Learning into two sub-categories3940:

1. Inductive transfer learning

2. Transductive Transfer learning (domain adaptation)

39F. Zhuang et al. “A Comprehensive Survey on Transfer Learning”. In: Proceedings of the IEEE. 2020.
40S. J. Pan et al. “A Survey on Transfer Learning”. In: IEEE Trans. Knowl. Data Eng. (2010).
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Transfer Learning

Figure: Fig. from41

41I. Redko et al. Advances in Domain Adaptation Theory. 2019. 55/132



Transfer Learning

• If we suppose that pS(X, Y) ̸= pT(X, Y), then, from Bayes’ rule, we know that:

p(X, Y) = p(Y|X)p(X) and p(X, Y) = p(X|Y)p(Y)

• The four components are thus linked and one can study either the left or the right
components (or both).

• Remember, that T and S should be related. Otherwise, training S data are of no use for
predicting test T data.
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Transfer Learning

• Inductive transfer learning (XS = XT and pS(X) = pT(X))

▶ YS ̸= YT: The two domains have different labels y

▶ YS = YT and pS(Y|X) ̸= pT(Y|X): S and T have the same labels but the conditional
distributions are different (e.g., in regression, given the same feature vector, the
predicted values are different)

• Transductive Transfer learning (domain adaptation).
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Transfer Learning

• Inductive transfer learning (XS = XT and pS(X) = pT(X))

• Transductive Transfer learning (domain adaptation).
We assume YS = YT and XS = XT (not necessarily) and

▶ covariate shift: pS(Y|X) = pT(Y|X) and pS(X) ̸= pT(X)

▶ concept shift: pS(Y|X) ̸= pT(Y|X) and pS(X) = pT(X)

▶ target shift: pS(X|Y) = pT(X|Y) and pS(Y) ̸= pT(Y)

▶ conditional shift: pS(Y) = pT(Y) and pS(X|Y) ̸= pT(X|Y)
▶ generalized target shift: pS(X) ̸= pT(X), pS(Y|X) ̸= pT(Y|X), pS(Y) ̸= pT(Y) and

pS(X|Y) ̸= pT(X|Y)→ need to use prior/inductive biases/constraints42

▶ model shift: pS(X) ̸= pT(X), pS(Y) ̸= pT(Y) and pS(Y|X) ̸= pT(Y|X)43

42K. Zhang et al. “Domain Adaptation under Target and Conditional Shift”. In: ICML. 2013.
43X. Wang et al. “Flexible Transfer Learning under Support and Model Shift”. In: NIPS. 2014.
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Transfer Learning

• Then, we can re-subdivide the two categories by considering whether annotations
are available in the source S and/or target T domains

1. Inductive transfer learning
1.1 Supervised→ Large labeled source dataset and small labeled target dataset
1.2 Self-Supervised→ Large unlabeled source dataset and small labeled target dataset
1.3 Semi-Supervised→ Large unlabeled source dataset with few labeled source samples

and small labeled target dataset

2. Transductive Transfer learning (domain adaptation)
2.1 Supervised→ Labeled source dataset and labeled target dataset
2.2 Unsupervised→ Labeled source dataset and unlabeled target dataset
2.3 Semi-supervised→ Labeled source dataset and unlabeled target dataset with few

labeled target samples
2.4 Few-shot→ Labeled source dataset and few labeled target samples
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Inductive Transfer Learning

• Supervised transfer learning from ImageNet is very common.444546

• First train a network on Imagenet
(source domain) and then transfer
it to the target domain.
• Parameters θ are thus initialized
with the ones from Imagenet
instead than randomly.
• Then, either the last
classification layer or the entire
network are fine-tuned (small
re-training).

44J. Donahue et al. “DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition”. In: ICML. 2014.
45J. Yosinski et al. “How transferable are features in deep neural networks?” In: NIPS. 2014.
46K. Simonyan et al. “Very Deep Convolutional Networks for Large-Scale Image Recognition”. In: ICLR. 2015.
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Domain gap/shift

• The main assumption behind fine-tuning is that the features/representations learned
from the source task are useful for the target task

• This kind of method fails when47:

▶ Source and target domains are very different (not related)

▶ The target task has very few (or no) labeled training data

• When pS(X) ̸= pT(X), we say that there is a Domain gap or shift between source and
target domains→ e.g., two different MRI machines/protocols between S and T but same
modality, or two different imaging modalities

• To reduce the domain gap, one can use a different strategy...

47J. Yosinski et al. “How transferable are features in deep neural networks?” In: NIPS. 2014.
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Inductive Transfer Learning

• Self-supervised transfer learning is a recent hot-topic48.

• First pre-train a network on a
large unlabeled source dataset
leveraging a pretext task
• Then, transfer it to the target
domain.
• Source and target domains are
usually similar and thus highly
related ! Small domain gap/shift.

→ Next lecture !

48T. Chen et al. “A Simple Framework for Contrastive Learning of Visual Representations”. In: ICML. 2020.
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Unsupervised Domain Adaptation
• In the unsupervised domain adaptation setting, we assume that:
▶ we only have labeled data in the source domain S but not in the target domain T
▶ YS = YT→ same labels (output space)
▶ XS = XT→ same features (input space)

Figure: DA example about patients diagnosed with heart disease based on their age and
cholesterol.(Left) source samples. (Right): target samples. Fig. from49

• Considering a binary classification task (i.e., f ∈ F), we define the error (or risk) on the
source domain as:

eS(f) = E(x,y)∼pS(X,Y)[L(f(x), y)] = E(x,y)∼pS(X,Y)[I(f(x) ̸= y)] = Pr(x,y)∼pS(X,Y)(f(x) ̸= y)

and the empirical error as êS(f) = 1
n
∑n

i=1 L(f(xi), yi). Similarly, we use eT(f) and êT(f) for
the target domain.

49W. M. Kouw et al. “A Review of Domain Adaptation without Target Labels”. In: IEEE TPAMI (2021).
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Unsupervised Domain Adaptation

• In the unsupervised domain adaptation setting, we assume that:
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Unsupervised Domain Adaptation

Question: under what conditions a model with a small error in the training set of the
source domain f̂S will produce a small error also in the (full) target domain eT(̂fS),
where small means comparable to the best model for the target domain eT(̃fT)?

• In49 Th.2, it has been shown that, if T has no labeled data (α = 0,β = 0), we obtain:

eT(̂fS)− eT(̃fT) ≤ λ+
1
2
d̂F∆F (US,UT) + C(F , δ, n) (4)

• which holds with probability at least 1− δ, for δ ∈ {0, 1}

• On the left, we have the cross-domain generalization error in the T domain, where :

▶ f̂S = arg minf∈F êS(f)→ best empirical model in F trained on n samples from S

▶ f̃T = arg minf∈F eT(f)→ best theoretical model in F for the T domain

49J. Blitzer et al. “Learning Bounds for Domain Adaptation”. In: NIPS. 2007.
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Unsupervised Domain Adaptation

eT(̂fS)− eT(̃fT) ≤ λ+
1
2
d̂F∆F (US,UT) + C(F , δ, n)

• λ = eS(f∗) + eT(f∗) with f∗ = arg minf∈F eS(f) + eT(f)→ the combined error of the
ideal joint model (in F) for both (full) domains.

• This shows the best performance that we can long for, if we had an infinite number of
training/test samples in both domains.

• It also embodies the notion of adaptability. If f∗ performs poorly, we cannot expect to
learn a good target classifier by minimizing the source error.50 On the other hand, if
λ = 0, then the generalization error mostly depends on...

50S. Ben-David et al. “A theory of learning from different domains”. In: Machine Learning (2010).
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Unsupervised Domain Adaptation

eT(̂fS)− eT(̃fT) ≤ λ+
1
2
d̂F∆F (US,UT) + C(F , δ, n)

• ... d̂F∆F (US,UT) the empirical symmetric difference hypothesis divergence (called
H∆H−distance in50) which measures the distance between two unlabeled datasets US,
UT of equal size n′ drawn from pS(X) and pT(X), respectively.

• It approximates the theoretical F∆F−distance whichmeasures the discrepancy
between pS(X) and pT(X). It is used with binary classification problems and it takes two
classifiers, looks at to what extent they disagree with each other on both domains and
returns the value of the largest (supremum) difference51.

d̂F (US,UT) = 2 sup
f,f′∈F

|PrUS [f ̸= f′]− PrUT [f ̸= f′]| with PrU [f ̸= f′] =
1
|U|

∑
x∈U

I(f(x) ̸= f′(x))

50S. Ben-David et al. “A theory of learning from different domains”. In: Machine Learning (2010).
51W. M. Kouw et al. An introduction to domain adaptation and transfer learning. Tech. rep. 2019. 64/132



Unsupervised Domain Adaptation

eT(̂fS)− eT(̃fT) ≤ λ+
1
2
d̂F∆F (US,UT) + C(F , δ, n)

• C(F , δ, n) ≈ O
(√

d log(n+1)−log(δ)
n +

√
d log(n′)−log(δ)

n′

)
describes the complexity of the

model family F and it depends on:

▶ d→ the Vapnik–Chervonenkis (VC) dimension measuring the expressive power ofF
▶ n→ number of training samples in S used to estimate f̂S
▶ n′→ number of samples of US and UT
▶ δ→ 1 minus the probability that this bound holds

• This shows that we would like to have a small d (not really DL...), a small δ and a big n
and n′
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Unsupervised Domain Adaptation

eT(̂fS)− eT(̃fT) ≤ λ+
1
2
d̂F∆F (US,UT) + C(F , δ, n)

• This bound50 is the foundation of many works in Unsupervised Domain Adaptation and
it states that:

▶ λ→ 0 : the model’s family F needs to be rich enough to have a theoretical model
f∗ that can minimize both source S and target T errors

▶ d̂F∆F (US,UT)→ 0 : the two input spaces pS(X) and pT(X)must be similar (small
domain gap), based on the chosen model family F

▶ C(F , δ, n)→ 0 : the VD dimension d should not be too big (trade-off with λ→ 0) and
we should use a large training dataset (n) in the source S domain

50S. Ben-David et al. “A theory of learning from different domains”. In: Machine Learning (2010).
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Unsupervised Domain Adaptation

• The previous bound is rather generic. Further works have tried to find more tighter
bounds by adding constraints and assumptions

• We are interested in minimizing the target error (i.e., risk) using data from the source
distribution. How ca we relate pS(X, Y) and eT(f) ?

eT(f) =
∑
y∈Y

∫
x∈X

L(f(x), y)pT(x, y)dx =
∑
y∈Y

∫
x∈X

L(f(x), y)
pT(x, y)
pS(x, y)

pS(x, y)dx

= E(x,y)∼pS(x,y)L(f(x), y)
pT(x, y)
pS(x, y)

≈ 1
n

n∑
i=1

L(f(xi), yi)
pT(xi, yi)
pS(xi, yi)

(5)

• where samples (xi, yi) are drawn from the source S domain pS(x, y)! Here, pT(xi, yi)
refers to the probability of those samples under the target distribution.51

51W. M. Kouw et al. An introduction to domain adaptation and transfer learning. Tech. rep. 2019.
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Unsupervised Domain Adaptation

• The empirical generalization error on the target T domain is thus:

êT(f) =
1
n

n∑
i=1

L(f(xi), yi)
pT(xi, yi)
pS(xi, yi)

(6)

• As previously seen, joint distributions can be decomposed in two ways. We can thus
make assumptions on these four components:

p(x, y) = p(x|y)p(y) or p(x, y) = p(y|x)p(x)

• The three main studied data shifts are:

▶ covariate shift: pS(Y|X) = pT(Y|X) and pS(X) ̸= pT(X)

▶ target (prior) shift: pS(X|Y) = pT(X|Y) and pS(Y) ̸= pT(Y)

▶ concept shift: pS(Y|X) ̸= pT(Y|X) and pS(X) = pT(X)
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Domain Adaptation - Covariate Shift
• The covariate shift assumptions, pS(Y|X) = pT(Y|X) and pS(X) ̸= pT(X), is probably the
most studied case

• This is mainly due to the sampling selection bias : samples in S are not drawn
randomly. Some samples are more likely to be included or a subset of samples is
excluded from the sampling (i.e., missing samples). Target samples are instead
assumed to be unbiased.

Figure: Image from52

52W. M. Kouw et al. An introduction to domain adaptation and transfer learning. Tech. rep. 2019. 68/132



Domain Adaptation - Covariate Shift

• Under the covariate shift assumptions, pS(Y|X) = pT(Y|X) and pS(X) ̸= pT(X), the
empirical generalization target error can be rewritten as:

êT(f) =
1
n

n∑
i=1

L(f(xi), yi)
pT(xi, yi)
pS(xi, yi)

=
1
n

n∑
i=1

L(f(xi), yi)
����pT(yi|xi)pT(xi)
����pS(yi|xi)pS(xi)

=
1
n

n∑
i=1

L(f(xi), yi)
pT(xi)
pS(xi)︸ ︷︷ ︸
w(xi)

• The importance weights w(x) = pT(x)
pS(x)

53 indicates how the probability of a (biased)
source sample should be corrected to reflect the (unbiased) probability under the
target distribution

• The weights influence a classification model by increasing the loss for certain
samples and decreasing the loss for other

53W. M. Kouw et al. “A Review of Domain Adaptation without Target Labels”. In: IEEE TPAMI (2021).
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Domain Adaptation - Covariate Shift

Figure: Effect of importance-weighting. (Left) Weighted source samples (large dot = large
weight) with w(x). (Right) Target samples. Black line: original samples classifier. Dashed line:
importance-weighted classifier. Fig. from54

54W. M. Kouw et al. “A Review of Domain Adaptation without Target Labels”. In: IEEE TPAMI (2021). 70/132



Domain Adaptation - Covariate Shift

• What about the generalization error of a given classifier f ? The difference between
the true target T error eT(f) and the empirical weighted sourceWS error êWS(f) is55:

eT(f)− êWS(f) ≤
√
d2(pT(X)|pS(X))C(c, n, δ)

• where d2(pT(X)|pS(X)) =
∑

x∈X
p2T(x)
pS(x)

= Ex∼pS(x)[w(x)
2] is the Rényi divergence between

the two marginal distributions and it is directly related to w(x)...

• ... and C(c, n, δ) ≈ O(−p log(pn)n−3/8) where p ≥ 0 is the pseudo-dimension of the
model space F ( a generalization of VC-dimension)

• Similarly to before, this bound tells us that the model family should not be too
complex (p→ 0), the number of samples big (n→∞) and the two domains not so
different (d2(pT(X)|pS(X))→ 0)

55C. Cortes et al. “Learning Bounds for Importance Weighting”. In: NIPS. 2010.
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Domain Adaptation - Covariate Shift

eT(f)− êWS(f) ≤
√
d2(pT(X)|pS(X))C(c, n, δ)

• Since d2(pT(X)|pS(X)) = Ex∼pS(x)[w(x)
2] , we know that we should have

Ex∼pS(x)[w(x)
2] <∞ and thus that w should not be too big

• Based on this bound, one can also show that if we use the correct model family F and
we have enough samples n, an unweighted model will also work !56

• However, we usually don’t know the correct F and we don’t have an infinit number of
samples n, so how do we choose the appropriate weights w(x) ?

56W. M. Kouw et al. “A Review of Domain Adaptation without Target Labels”. In: IEEE TPAMI (2021).
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Domain Adaptation - Covariate Shift

To compute w(x) one can57:
• Estimate the distributions pS(X) and pT(X)

▶ parametrically: both pdf follow a parametric function, like: ŵ(xi) =
N (xi|µ̂T,Σ̂T)

N (xi|µ̂S,Σ̂S)

▶ non-parametrically: using kernel density estimators (KDE): ŵ(xi) =
m−1

∑m
j=1 kσT (xi−xj)

n−1
∑n

t=1 kσS (xi−xt)
,

where k is a kernel, σ is the hyper-parameter (one for S, one for T),m and n are the
total samples in T and S respectively.58

• Direct estimate of w via optimization

• Direct estimate of w without optimization

57W. M. Kouw et al. “A Review of Domain Adaptation without Target Labels”. In: IEEE TPAMI (2021).
58H. Shimodaira. “Improving predictive inference under covariate shift by weighting the log-likelihood function”. In: JSPI

(2000).
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Domain Adaptation - Covariate Shift

To compute w(x) one can57:
• Estimate the distributions pS(X) and pT(X)

• Direct estimate of w via optimization by minimizing a discrepancy measure D
between pT(X) and w(x)pS(x) and fulfilling two constraints about the non-negative
values of w and w(x)pS(x) should be a valid p.d.f.:

ŵ = arg min
w

D(w,pS(X),pT(X)) s.t.w ≥ 0 and
∫
X
pT(x)dx =

∫
X
w(x)pS(x)dx ≈

1
n

n∑
i=1

w(xi) = 1

where D can be the Maximum Mean Discrepancy (MMD) or the Kullback-Leibler
divergence

• Direct estimate of w without optimization

57W. M. Kouw et al. “A Review of Domain Adaptation without Target Labels”. In: IEEE TPAMI (2021).
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Domain Adaptation - Covariate Shift

To compute w(x) one can57:
• Estimate the distributions pS(X) and pT(X)

• Direct estimate of w via optimization

• Direct estimate of w without optimization

▶ use logistic regression to discriminate between S and T and then use the
estimated posterior probabilities as weights

▶ Divide the feature space into regions (Voronoi cells) and then use
Nearest-Neighbour algorithm

▶ jointly optimize the weight and the final classifier

57W. M. Kouw et al. “A Review of Domain Adaptation without Target Labels”. In: IEEE TPAMI (2021).
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Domain Adaptation - Covariate Shift
• In addition to reweighting methods, there are other methods that look for
transformations t to match the two marginal distributions.

• one can look for a transformation t such that pS(t(X)) ≈ pT(X)58→ However, domains
can be very different and high-dimensional. A too complex tmight bring to overfitting.

58W. M. Kouw et al. “A Review of Domain Adaptation without Target Labels”. In: IEEE TPAMI (2021).
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Domain Adaptation - Covariate Shift

• A solution could be mapping the data onto common subspaces and then apply simple,
linear transformations to align them59. This should thus reduce the discrepancy
between the marginals:

▶ First compute PCA on S and T keeping the first d eigenvectors: US and UT

▶ Compute (linear) transformation matrixM that aligns US to UT:
M∗ = arg minM ||USM− UT||2F , which results M∗ = UT

SUT.

▶ Project source data XS onto US (XSUS) and then transform it: XSUSM∗
▶ Project target data XT onto UT : XTUT

▶ Train Classifier on modified source data (XSUSM∗) to predict projected target data
(XTUT)

• Limitation:here we use a simple linear mapping (i.e., PCA) to estimate a new
representation. Why not using DL to estimate a domain-invariant representation (same
for S and T)?

59B. Fernando et al. “Unsupervised Visual Domain Adaptation Using Subspace Alignment”. In: ICCV. 2013.
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Domain Adaptation - DANN method

• In60, authors combine domain adaptation and deep feature learning using:
▶ feature extractor (green): learns a relevant mapping f = Gf(x; θf)
▶ label predictor (blue): predicts the label ŷ = Gy(f(x); θy)

▶ domain classifier (pink): predicts the domain d̂ = Gd(f(x); θd)
60Y. Ganin et al. “Unsupervised Domain Adaptation by Backpropagation”. In: ICML. 2015.
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Domain Adaptation - DANN method

• During training, we want to correctly predict the class y ∈ Y of the labeled S samples:

arg min
θf,θy

ES(θf, θy) =
∑

(xi,yi)∈S

Ly(Gy(Gf(xi; θf); θy), yi) (7)

• ... at the same time, we want to make the features f(x) domain-invariant, that is:
S(f) ≈ T(f), where S(f) = {f(x)|x ∈ S} and T(f) = {f(x)|x ∈ T}.

• The two distributions S(f) and T(f) are high-dimensional, complex and changing during
training. How can we compute their dissimilarity ?

→ using a (trained) domain classifier
!

• If the domain classifier can not distinguish between the two domains (probability = 0.5
∀ x), it means that the features f are domain invariant !

• Problem: we don’t have a trained domain classifier...
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Domain Adaptation - DANN method

• Idea: Train domain classifier Gd to distinguish between S (d = 0) and T (d = 1) and at
the same time train feature extractor Gf to fool the discriminator→ Adversarial,
two-player minimax training as in GAN61 !

arg max
θf

arg min
θd

ED(θf, θd) =
∑
xj∈S,T

Ld(Gd(Gf(xj; θf); θd),dj)

• The final optimization problem becomes:

(θ̂f, θ̂y) = arg min
θf,θy

ES(θf, θy)− λED(θf, θd)

θ̂d = arg min
θd

λED(θf, θd)
(8)

• where λ > 0 is a hyper-parameter that balances the two losses

61I. Goodfellow et al. “Generative Adversarial Nets”. In: NIPS. 2014.
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Domain Adaptation - DANN method
• Using a gradient descent scheme, the updates of all parameters are straightforward.
For θf, we obtain: θf ← θf − µ(∂Ly∂θf

− λ∂Ld∂θf
), where µ > 0 is the learning rate

• To implement such update, authors introduce the gradient reversal layer (GRL):
▶ During forward: GRL acts as an identity transform
▶ During back-propagation: GRL takes the gradient from the subsequent level,

multiplies it by−λ and passes to the preceding layer
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Domain Adaptation - DANN method

• At test time, the network can predict labels y from both domains.

• A more in-depth theoretical analysis and in particular a link between the discriminator
Gd and the F∆F-distance can be found in62

62Y. Ganin et al. “Domain-Adversarial Training of Neural Networks”. In: JMLR (2017).
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Domain Adaptation - MDD method

• Another interesting, and currently still SOTA method, is based on a new divergence
measure between domains: Margin Disparity Discrepancy (MDD)63

• Similar generalization bounds as in64 but based on margin theory:

eT(f) ≤ êS(f) + df(Ŝ, T̂) + λ+ C

• Expected error on target domain eT(f) is bounded by the sum of the empirical margin
error on the source domain êS(f), empirical MDD df(Ŝ, T̂) between domains, ideal margin
error λ and complexity terms C.

• λ→ 0 if F is rich enough, thus authors propose to look for an f ∈ F that minimize
êS(f) and the MDD df(Ŝ, T̂)

63Y. Zhang et al. “Bridging Theory and Algorithm for Domain Adaptation”. In: ICML. 2019.
64S. Ben-David et al. “A theory of learning from different domains”. In: Machine Learning (2010).
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Domain Adaptation - MDD method

• Similarly to DANN, authors propose to use a feature extractor ψ and an auxiliary
classifier f′ ∈ F optimized in an adversarial way:

min
f,ψ

êS(f) + ηdf(Ŝ, T̂) and max
f′

df(Ŝ, T̂)

• where η > 0 and êS(f) and df(Ŝ, T̂) are computed using cross-entropy losses.65

65Y. Zhang et al. “Bridging Theory and Algorithm for Domain Adaptation”. In: ICML. 2019.
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Domain Adaptation - domain-invariant

• Both DANN and MDD methods (as well as all domain-invariant algorithms) try to
minimize a discrepancy between features extracted from S and T using a common
feature extractor

• Limitations

▶ there is no guarantee that matching pS(X) with pT(X) will also imply
pS(Y|X) ≈ pT(Y|X). In other words, aligning marginal distributions does not enforce
semantic consistency. Source features of class Amay be aligned to Target
features of class B→ interesting solution proposed in66

▶ feature-level alignment (i.e., at the representation level) can ignore low-level
details→ need to also work at the pixel-level, translating source data S to the
“style” of the target domain T67 Next method

66K. Saito et al. “Maximum Classifier Discrepancy for Unsupervised Domain Adaptation”. In: CVPR. 2018.
67J. Hoffman et al. “CyCADA: Cycle-Consistent Adversarial Domain Adaptation”. In: ICML. 2018.
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Domain Adaptation - CyCADA method

• Pixel-level adaptation: pink and green. Cycle-consistency as in68.

• Feature-level adaptation: orange and purple. GAN loss69.

68J.-Y. Zhu et al. “Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks”. In: ICCV. 2017.
69I. Goodfellow et al. “Generative Adversarial Nets”. In: NIPS. 2014.
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Domain Adaptation - CyCADA method

• Pixel-level adaptation:
▶ Mappings GS→T and GT→S are trained to produce realistic samples that fool

adversarial discriminators DT and DS respectively (e.g., GS→T is trained so that
DT(GS→T(xS)) = 1). The discriminators DS and DT are also trained on real data so that
they output 1 when their inputs come from S and T respectively.

min
GS→T,GT→S

max
DT,DS
LGAN =ExT∈T log DT(xT) + ExS∈S log(1− DT(GS→T(xS)))+

ExS∈S log DS(xS) + ExT∈T log(1− DS(GT→S(xT)))

▶ How to guarantee that GS→T(xS) preserves structure and content of xS ?→
cycle-consistency constraint based on a L1−penalty (sharper reconstruction)

min
GS→T,GT→S

Lcyc = ExS∈S||GT→S(GS→T(xS)))− xS||1 + ExT∈T||GS→T(GT→S(xT)))− xT||1
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Domain Adaptation - CyCADA method

• Feature-level adaptation:
▶ train a source model fS (i.e., feature extractor + label predictor) on Sminimizing

cross-entropy (CE) loss and a target model fT; using GS→T; minimizing the CE loss
between fT(GS→T(xS)) and ys

▶ use a GAN loss at the feature level to align representations. Mappings GS→T and a
new feature-discriminator Dfeat

min
GS→T

max
Dfeat

ExT∈T log Dfeat(fT(xT)) + ExS∈S log(1− Dfeat(fT(GS→T(xS))))

• Authors also propose a semantic consistency loss so that the content is preserved
before and after translation. They leverage the pre-trained fS and encourage all images,
from both S and T, to be classified in the same way before and after translation by
minimizing the CE loss between fS(GT→S(xT)) and arg max fS(XT) as well as the CE loss
between fS(GS→T(xS)) and arg max fS(XT).
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Domain Adaptation - CyCADA method
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Domain Adaptation - CyCADA method

Figure: Ablation study removing the semantic consistency loss (left) or the cycle consistency
loss (right). Each triple contains the SVHN image (left), the image translated into MNIST style
(middle) and the image reconstructed back into SVHN (right).70

• An interesting follow-up method based on the conditional adversarial mechanisms is71
70J. Hoffman et al. “CyCADA: Cycle-Consistent Adversarial Domain Adaptation”. In: ICML. 2018.
71M. Long et al. “Conditional Adversarial Domain Adaptation”. In: NeurIPS. 2018.
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Domain Adaptation - Covariate Shift

• Many other methods exist, based on

▶ Optimal Transport72

▶ Separate Style (i.e., textures) from Content73’74

▶ Self-labeling, Self-training75 and Co-training76

▶ Mix-up approach with intermediate domains77

• There are also interesting theoretical works78 and surveys, such as79’80

72N. Courty et al. “Optimal Transport for Domain Adaptation”. In: IEEE TPAMI (2016).
73H. Nam et al. “Reducing Domain Gap by Reducing Style Bias”. In: CVPR. 2021.
74R. Geirhos et al. “ImageNet-trained CNNs are biased towards texture ...”. In: ICLR. 2019.
75V. Prabhu et al. “SENTRY: Selective Entropy Optimization via Committee Consistency for UDA”. In: ICCV. 2021.
76W. M. Kouw et al. “A Review of Domain Adaptation without Target Labels”. In: IEEE TPAMI (2021).
77J. Na et al. “FixBi: Bridging Domain Spaces for Unsupervised Domain Adaptation”. In: CVPR. 2021.
78A. Mehra et al. “Understanding the Limits of Unsupervised Domain Adaptation via Data Poisoning”. In: NeurIPS. 2021.
79I. Redko et al. Advances in Domain Adaptation Theory. 2019.
80X. Liu et al. “Deep Unsupervised Domain Adaptation: A Review of Recent Advances and Perspectives”. In: APSIPA (2022).
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Domain Adaptation - Target Shift

• The target (prior) shift assumptions are pS(X|Y) = pT(X|Y) and pS(Y) ̸= pT(Y) refer in
particular to class imbalance and cost-sensitive learning.

Figure: Fig. from81

81W. M. Kouw et al. An introduction to domain adaptation and transfer learning. Tech. rep. 2019.
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Domain Adaptation - Target Shift

• Under the target shift assumptions, pS(X|Y) = pT(X|Y) and pS(Y) ̸= pT(Y), the empirical
generalization target error can be rewritten as:

êT(f) =
1
n

n∑
i=1

L(f(xi), yi)
pT(xi, yi)
pS(xi, yi)

=
1
n

n∑
i=1

L(f(xi), yi)
����pT(xi|yi)pT(yi)
����pS(xi|yi)pS(yi)

=
1
n

n∑
i=1

L(f(xi), yi)
pT(yi)
pS(yi)︸ ︷︷ ︸
w(yi)

• The importance weights w(x) = pT(y)
pS(y)

correct for the change in class priors82

• If target labels are available one can under- or over-sample data points from one
class. But what if target labels (unsupervised) are not available ?

82W. M. Kouw et al. “A Review of Domain Adaptation without Target Labels”. In: IEEE TPAMI (2021).
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Domain Adaptation - Target Shift

• A possible method is Black Box Shift Estimation (BBSE)8384:

▶ train a model f ∈ F on the train split of source S domain

▶ compute the confusion matrix Cf,y on a validation split of S

▶ make predictions for the target data T: f(x ∈ T)

▶ compute the empirical target prior for label/class y as the proportion of target
samples classified by f to class y: p̂T(f(x) = y) = 1

m
∑m

j=1 I(f(xj) = y)

▶ weights are computed as the product of the inverse confusion matrix and
predicted empirical target priors: ŵ = C−1

f,y p̂T(f(x) = y), which is a vector of size
[#classes, 1]

▶ Estimate the final model f′ on S by usingmax(ŵ, 0) as weights. Practically, you
weight the training samples (xi, yi = k) by w[k]

83Z. C. Lipton et al. “Detecting and Correcting for Label Shift with Black Box Predictors”. In: ICML. 2018.
84S. Rabanser et al. “Failing Loudly: An Empirical Study of Methods for Detecting Dataset Shift”. In: NeurIPS. 2019.
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Domain Adaptation - Concept Shift

• The concept shift assumptions, pS(Y|X) ̸= pT(Y|X) and pS(X) = pT(X), refers to the
case where source S and target T domains share the same feature and labels/classes
but they have different tasks.

Figure: Fig. from85

85W. M. Kouw et al. An introduction to domain adaptation and transfer learning. Tech. rep. 2019.
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Domain Adaptation - Concept Shift

• Under the concept shift assumptions, pS(Y|X) ̸= pT(Y|X) and pS(X) = pT(X), the
empirical generalization target error can be rewritten as:

êT(f) =
1
n

n∑
i=1

L(f(xi), yi)
pT(xi, yi)
pS(xi, yi)

=
1
n

n∑
i=1

L(f(xi), yi)
pT(yi|xi)���pT(xi)

pS(yi|xi)���pS(xi)

• However, in this case, adapting the source classifier to the target domain requires
labeled data from both domains !

• Concept shift is also related to data drift in non-stationary environments, like
time-series. At each time step, the posterior distribution can change but if one
supposes small changes, then the drift can be modeled and the next time step
predicted (here we use a smooth change assumption→ induction bias)
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Summary

1. Introduction
2. Feature Engineering/Learning

2.1 Manual Feature Engineering
2.2 Feature Learning
2.3 Smooth representations
2.4 Compact yet explanatory representations
2.5 Distributed Representations
2.6 Hierarchical Representation
2.7 Invariant Representations
2.8 Disentangled Representation
2.9 Generic, well organized Representation

3. Learning, preserving and transferring knowledge between tasks
3.1 Transfer Learning and Domain Adaptation
3.2 Multitask Learning
3.3 Knowledge Distillation
3.4 Meta-learning or Learning to learn
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Multitask Learning

Multitask learning (MTL)
Multitask learning (MTL) aims to improve generalization by jointly learningmultiple and
related tasks T . Source and target tasks are different, labeled and learned
simultaneously. Domains usually have the same X but different p(X)

• As humans can leverage knowledge or experience acquired while learning a task A to
better perform a related task B, MTL8687 leverages the knowledge acquired about a task
A to improve B.

• Since all tasks are jointly learned, the goal is to simultaneously improve the
generalization performance of the main or all tasks888990

86R. Caruana. “Multitask Learning”. In: Machine Learning (1997).
87J. Baxter. “A Model of Inductive Bias Learning”. In: Journal of Artificial Intelligence Research (2000).
88A. Maurer et al. “The Benefit of Multitask Representation Learning”. In: JMLR (2016).
89S. Vandenhende et al. “Multi-Task Learning for Dense Prediction Tasks: A Survey”. In: IEEE TPAMI (2022).
90Y. Zhang et al. “A Survey on Multi-Task Learning”. In: IEEE TKDE. 2022.
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Multitask Learning
• All ML/DL methods have an inductive/learning bias which can be defined as ”anything
(e.g., assumptions, architecture constraints, optimization choices) that makes the
algorithm prefer some hypotheses/patterns over others to predict its output”91

• MTL uses the training signals of related tasks as an inductive bias to improve
generalization→ This makes the algorithm prefer patterns that are useful for all tasks.92

• The goal of MTL is to leverage the additional sources of information to improve the
performance of learning a main task (or all tasks). Inductive transfer from the related
tasks may improve:

▶ generalization accuracy (less overfitting)

▶ speed of learning

▶ less parameters to tune

▶ less training data needed
91T. M. Mitchell. “The Need for Biases in Learning Generalizations”. In: Readings in Machine Learning. 1980.
92R. Caruana. “Multitask Learning”. In: Machine Learning (1997).
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The no-free-lunch theorem

• In Machine Learning and optimization, the no-free-lunch theorem93 states that some
preferences (or inductive bias) are necessary for the algorithm to generalize→ there is
no completely general-purpose learning algorithm, all algorithms will generalize well
on some data and worse on other

• Most ML methods use assumptions, constraints, regularizations to predict and
generalize. This means that they prefer one representation (set of parameters) over
another→ the algorithm thus prioritize solutions with certain properties

• An inductive bias in neural network is the translation invariance property (even if we
translate the object in the image, the output should not change). It can be obtained by:

▶ replacing matrix multiplication by convolutions and pooling (i.e., CNN)

▶ averaging the network predictions over transformations of the input

▶ using data augmentation

93D. Wolpert et al. “No free lunch theorems for optimization”. In: IEEE Transactions on Evolutionary Computation 1 (1997).
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The no-free-lunch theorem
• AI researchers aiming at human-level performance need thus to identify inductive
biases that are most relevant to the human perspective on the world

• There are many inductive biases in deep learning algorithms. Here it is a list from94:

94A. Goyal et al. “Inductive biases for deep learning of higher-level cognition”. In: Proc. R. Soc. A. (2022).
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Multitask Learning
• MTL improves generalization by training tasks in parallel while using a shared
representation→ Mostly two ways: Hard or Soft parameter sharing

Figure: Image from95. Hard Sharing: A shared encoder followed by (small) task-specific
decoding heads. Soft sharing: each task has its own network but the input to each layer is a
combination (e.g., linear96) of the outputs of the previous layers from every network.

95S. Vandenhende et al. “Multi-Task Learning for Dense Prediction Tasks: A Survey”. In: IEEE TPAMI (2022).
96I. Misra et al. “Cross-Stitch Networks for Multi-task Learning”. In: CVPR. 2016. 100/132



Multitask Learning

Which are the hidden mechanisms of MTL ?97:

• Statistical Data Amplification: if the training signals of two (or more) tasks are noisy,
then it will be better to average the parameters update coming from multiple losses
(i.e., tasks) instead than from a single loss (i.e., task).

• Mutual help: if a shared encoder (or hidden layer) F is useful to multiple tasks, but it’s
difficult to learn with task TA, it will be better to learn the parameters of F using the other
tasks than simply using TA. Furthermore, the net will leverage F to better perform in TA.

• Common representations: if two or more tasks share one local minima for the
parameters of the shared encoder (or hidden layer) F, then it’s likely that the MTL will fall
into that representation. Similarly, if one representation is not convenient for a task, it’s
likely that MTL will avoid that.

97R. Caruana. “Multitask Learning”. In: Machine Learning (1997).
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Multitask Learning

• We assume T tasks and for each task t we have a training set {(xti ∈ Rd, yti ∈ R)}Ni=1,
where N and d are the same for all tasks.

• {(xti, yti)}Ni=1
i.i.d.∼ Pt, where Pt is the joint pdf on X x Y. All Pt are different but related.

• Goal: estimate the T functions ft : Rd → R by minimizing the empirical loss:

arg min
ft∈F ∀t

T∑
t=1

1
N

N∑
i=1

wtLt(yti, ft(xti))

• where the weights wt are usually considered as hyper-parameters tuned by the user
or automatically estimated as in9899 . Please note that this optimization problem can
also be formulated as a multi-objective optimization as in100

98A. Kendall et al. “Multi-task Learning Using Uncertainty to Weigh Losses for Scene ...”. In: CVPR. 2018.
99S. Liu et al. “End-To-End Multi-Task Learning With Attention”. In: CVPR. 2019.
100O. Sener et al. “Multi-Task Learning as Multi-Objective Optimization”. In: NeurIPS. 2018.
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Multitask Learning

arg min
ft∈F ∀t

T∑
t=1

1
N

N∑
i=1

wtLt(yti, ft(xti))

• Please note that one might also have a different number of samples Nt and features
dimension dt per task t. But tasks must be related.

• Another typical
simplification is to consider
the same input for all tasks:
xtj = xt′j ∀t, t′→ this is also
called Multi-label learning or
Multi-output regression.a

aY. Zhang et al. “A Survey on Multi-Task
Learning”. In: IEEE TKDE. 2022.
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Multitask Learning

• In MTL, tasks need to be related to each other to be of help (or related to the task/s of
interest)→ related ̸= correlated output signals ! Similar imaging patterns that are
exploited by similar internal representations of the network.

• We thus need tominimize the negative transfer or destructive interference→ tasks
that are not related may have conflicting needs. Increasing the performance on one
task may hurt the performance of another, unrelated, task101

• Almost all methods propose a strategy to separate the common from the
task-specific parameters/features→ this results in a well organized and generalizable
representation

• How to understand if two tasks are related a priori ?→ very hard question ! Usually
one uses heuristic/assumptions. For instance, two training sets of two different tasks,
that can be transformed one into the other, can be defined as “related”102

101M. Crawshaw. Multi-Task Learning with Deep Neural Networks: A Survey. 2020.
102S. Ben-David et al. “Exploiting Task Relatedness for Multiple Task Learning”. In: COLT. 2003.
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Multitask Learning

• Most of the works are based on one of these two architectures.

• What about the actual neural architecture present in our brain ? We are very
efficient multi-task learners (at least some of us...) !→ can we mimic it ?
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AI and cognitive neuroscience

Figure: Images created using https://dream.ai/create

• Many AI research algorithms try to mimic the brain mechanisms and take inspiration
from cognitive science and neuroscience→ Synergy between domains !

• At the same time, AI models can drive new insights into the neural mechanisms
underlying conscious processing, instantiating a virtuous circle.103

103A. Goyal et al. “Inductive biases for deep learning of higher-level cognition”. In: Proc. R. Soc. A. (2022).
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AI and cognitive neuroscience

• The human brain cortex contains multiple regions
with distinct, specialized functions that are are
selectively activated by a specific perceptual or
cognitive task→Why did evolution make this
choice ?

• Three possible answers are:104

▶ accident of evolution: it can more easily add modules to solve new problems than
redesign an entire system from scratch

▶ functional specialization allows mental processes to be selectively modulated

▶ computational reasons: distinct brain regions arise only for tasks that cannot be
solved using a more generic machinery based on the entire brain

104K. Dobs et al. “Brain-like functional specialization emerges spontaneously in deep NN”. In: Science Advances (2022).
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AI and cognitive neuroscience

Can we study DL to infer about our brain ?

• Is face recognition functionally segregated in the brain because more
domain-general visual representations simply do not suffice ? Test it with CNNs

• Authors in105 measure face and object recognition performance in CNNs trained to
classify faces, objects, or both. Their findings are:

▶ networks trained only on objects perform poorly on face recognition and much
worse than face-trained networks

▶ face discrimination spontaneously segregates from object recognition in networks
trained on both tasks despite the lack of built-in face-specific inductive biases.

▶ spontaneous segregation happens not only for faces but also for other categories

• Tendency for task segregation in networks→ Functional segregation in brains is a
natural consequence of optimization to solve multiple tasks?

105K. Dobs et al. “Brain-like functional specialization emerges spontaneously in deep NN”. In: Science Advances (2022).
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Knowledge Distillation

Can we distill knowledge from an ensemble of models or from a large and
cumbersome model to a small and fast one ?

• Yes ! First Caruana et al.106 and then Hinton et al.107 propose a very simple way to do
that, called Knowledge Distillation

• It has originally been designed for classification problems and it can be seen as a
form of “model compression”: a big model is compressed into a small one.

• It is also related to privileged information108’109, where a Student learns from a
Teacher that has “more information and knowledge”.

Better than a thousand days of diligent study is one day with a great teacher
106C. Buciluǎ et al. “Model compression”. In: KDD. 2006.
107G. Hinton et al. “Distilling the Knowledge in a Neural Network”. In: NIPS Workshop. 2014.
108V. Vapnik et al. “Learning Using Privileged Information: Similarity Control and Knowledge Transfer”. In: JMLR (2015).
109D. Lopez-Paz et al. “Unifying distillation and privileged information”. In: ICLR. 2016.
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Knowledge Distillation

What is knowledge in a trained (classification) model ?

• We usually identify it with the learned model’s parameters→ how can we change the
model but keep the same knowledge ? Difficult... Change definition !

• Knowledge is about the learned mapping from an input sample to the output
probabilities. All probabilities (for all classes and not only the most probable one) are
important and, in particular, the relative difference between probabilities.

• Little p tell us that there are two kinds of digit 2, one more similar to 3 and one more
similar to 7....
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Knowledge Distillation

• ... but they have little influence on the cross-entropy loss ! Calling zi (resp. vi) the logit
of class i for the small model (resp. big model) and qi (resp. pi) its probability (after the
softmax), we obtain:

C(p,q) =−
∑
i

pi log(qi) = −
∑
i

[
exp(vi)∑
j exp(vj)

log

(
exp(zi)∑
j exp(zj)

)]
=

− 0, 995 log

(
exp(z1)∑
j exp(zj)

)
− 0, 004 log

(
exp(z2)∑
j exp(zj)

)
− 0, 001 log

(
exp(z3)∑
j exp(zj)

)
≈

− 0, 995 log

(
exp(z1)∑
j exp(zj)

)

• where we have used the previous MNIST example with 3 classes.
• This means that using hard probabilities within the Cross-entropy loss won’t be
useful to transfer knowledge between models !
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Knowledge Distillation
• Use soft probabilities by dividing each logit by a temperature T→ pi =

exp(vi/T)∑
j exp(vj/T)

Figure: Effect of dividing the logits by a temperature before the softmax function.
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Knowledge Distillation

• The higher is T, the softer is the probability distribution over classes, namely
low-probability classes have a greater importance

• Be careful ! low-probable classes might carry important information but also noise.
Finding the right temperature T is quite important (and tricky) !

• High temperature T values increase the importance of low-probable classes→ if T is
too big, then all classes have the same importance
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Knowledge Distillation

• The higher is T, the softer is the probability distribution over classes, namely
low-probability classes have a greater importance

• Be careful ! low-probable classes might carry important information but also noise.
Finding the right temperature T is quite important (and tricky) !

• High temperature T values increase the importance of low-probable classes→ if T is
too big, then all classes have the same importance

So, how do we use Knowledge Distillation in practice ?
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Knowledge Distillation

• We first train the big, Teacher model fT ∈ FT using a training dataset {xi, yi}Ni=1, by
minimizing:

fT = arg min
f∈FT

1
N

∑
i

L(yi, σ(f(xi))) + Ω(f)

• where σ() is the softmax function, L and Ω are a data-term (e.g., cross-entropy) and
regularization loss.

• Then, we train the small, student model fs ∈ FS, by minimizing:

fT = arg min
f∈FS

1
N

∑
i

[
L(σ(̂fT(xi)/T), σ(f(xi)/T)) + λL(yi, σ(f(xi)))

]

• where f̂T is fixed and λ is a trade-off hyper-parameter between learning from real
(hard) target y and from the (soft) probabilities of the Teacher110

110G. Hinton et al. “Distilling the Knowledge in a Neural Network”. In: NIPS Workshop. 2014.
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Knowledge Distillation

• Hinton et al.111 propose to also multiply the gradient of the soft target by T2 (i.e.,
T2L(σ(̂fT(xi)/T), σ(f(xi)/T))) so that the contribution of hard and soft targets remains
roughly unchanged if changing the value of T→ important when looking for the best T
value

• Vapnik et al.112 suggest not to soften the probability distribution of the Student fS
classes when comparing with the soft targets of the Teacher, that is:

L(σ(̂fT(xi)/T), σ(f(xi))

• In practice, it highly depends on the application, data distribution and number of
training samples training.

111G. Hinton et al. “Distilling the Knowledge in a Neural Network”. In: NIPS Workshop. 2014.
112D. Lopez-Paz et al. “Unifying distillation and privileged information”. In: ICLR. 2016.
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Knowledge Distillation - Classification

Figure: Results on MNIST for 300 samples (left) and 500 samples (right).

• As shown in113, the benefits of distillation diminished as we further increased the
sample size N. This means that the student model can learn alone... but having a
Teacher can accelerate the convergence of the training.
113D. Lopez-Paz et al. “Unifying distillation and privileged information”. In: ICLR. 2016.
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Knowledge Distillation - Segmentation

KD loss Seg lossKL loss

128×128×128×1

128×128×128×4

MaxPool3d Trilinear interpolation Softmax Conv3d InstanceNorm3d LeakyReLU

Reference 
segmentation

Teacher

Student

• Knowledge distillation can also be used to distill knowledge from a Multi-modal
teacher network to a uni-modal student network.114
114M. Hu et al. “Knowledge Distillation from Multi-modal to Mono-modal Segmentation Networks”. In: MICCAI. 2020.
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Meta-learning or Learning to learn

• In Transfer Learning, we have seen that using the parameters of a pre-trained model
on a large labeled dataset can be a good initialization

• Limitation:

▶ works well only if the domain gap between source and target domains is small

▶ does not work when target data-set has few labeled samples

▶ one must use the same architecture for source and target domain

• Goal of Meta-learning: can we learn a meta-learning model from several data-sets
(different domains and tasks) so that it will generalize well to new data-sets ?115→ This
is also called learning to learn !

• When all data-sets have few (or just one) images per class we talk about few-shot
(one-shot) learning

115S. Thrun. “Lifelong Learning Algorithms”. In: Learning to Learn. 1998.
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Meta-learning or Learning to learn
• In Meta-learning one considers datasets as “samples”. The different training sets
constitutes the support set

Figure: Example of 3-shot (3 images per class) learning with also 3 classes. Source 116

116https://lilianweng.github.io/posts/2018-11-30-meta-learning 121/132
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Meta-learning or Learning to learn
• The goal is to learn ameta-learner model (i.e., algorithm/strategy/optimizer) so that
the learner/model can learn patterns across training tasks and generalize well to
unseen tasks. Source 117

117https://alinlab.kaist.ac.kr/resource/Lec17_Meta_learning.pdf
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Meta-learning or Learning to learn

• Meta-learning has usually two levels of learning. Source118:

▶ Inner loop: Fix parameters ϕ of meta-learner and optimize learner/model f
parameters θ for each task t, minimizing Lio(θ|ϕ)

▶ Outer loop: Optimize parameters ϕ of a meta-learner, which learns how to
modify/update the parameters θ of f , by minimizing Lmo(θ, ϕ), loss to evaluate
learner f on new task.

118https://alinlab.kaist.ac.kr/resource/Lec17_Meta_learning.pdf
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Meta-learning or Learning to learn

• There are three common approaches to meta-learning:

▶ Model-based→ find model parameters that work well for various tasks and that
can be easily and fast adapted when fine-tuned on new tasks (i.e., good
initialization for fine-tuning)

▶ Metric-based→ need to define a metric/similarity measure between samples and
support samples. Based on that, one evaluate the probability over a set of known
labels from the support set (similar to K-NN).

▶ Optimization-based→ usual optimizers (e.g., SGD, ADAM) are defined for large,
labeled data-sets and can converge in many epochs. Find new strategies to adjust
the optimization algorithm so that the model can learn with few samples and in few
steps.
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Foundation Models
• All these methods are very interesting but... today researchers use Foundation
Models (e.g., DINOV2119, CLIP120) which are large models pre-trained in a self-supervised
way on massive data-sets and many different tasks→ zero-shot capabilities ! strong
out-of-distribution performance ! Models can be used without fine-tuning.

Figure: DINOV2, an example of Foundation Model.

119https://dinov2.metademolab.com/
120https://openai.com/research/clip
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Foundation Models

• All these methods are very interesting but... today researchers use Foundation
Models (e.g., DINOV2119, CLIP120) which are large models pre-trained in a self-supervised
way on massive data-sets and many different tasks→ zero-shot capabilities ! strong
out-of-distribution performance ! Models can be used without fine-tuning.

Next Lecture

119https://dinov2.metademolab.com/
120https://openai.com/research/clip
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Further reading

• I. Sucholutsky et al. “Getting aligned on representational alignment”. In: Arxiv (2023)
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