
Computers & Graphics (2018)

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

A Delaunay triangulation based approach for cleaning rough sketches

A R T I C L E I N F O

Article history:
Received March 12, 2018

Keywords: Delaunay triangulation,
Sketch Simplification, Sketch segmenta-
tion, Vectorization

A B S T R A C T

Given a set of rough strokes drawn by an artist (either in pen-paper medium or in digital
medium) in raster format, the objective is to group them meaningfully and represent
the group with simple most appropriate curves. In this paper, a Delaunay triangulation
based algorithm is proposed for grouping strokes. The grouping procedure is capable
of identifying open curves and reconstructing broken strokes. The proposed algorithm
is capable of helping the user in masking misinterpreted regions. We also introduce a
shape aware skeleton smoothing procedure which best approximates the shape by taking
input raster sketch as a reference to create final vector output. The user can also control
the final output. The proposed algorithm combines the techniques in computational
geometry as well as in image processing to utilize the power of both.

c© 2018 Elsevier B.V. All rights reserved.

1. Introduction

From an artist’s perspective, it is easier to create a rough
drawing which usually has multiple strokes to represent a sim-
ple shape. The main reason behind this is that, it gives the
artist more flexibility to correct the mistakes that happen during
drawing. Also, artists usually draw a complicated sketch start-
ing from a set of vague simple shapes which he/she overdraws
to create the original object. This rough sketch making is the
initial step of story telling in applications like model creation,
image generation etc. On the other hand, for developing ap-
plications such as 3D modeling, character drawing etc., devel-
opers prefer vector drawings. Vector drawing helps application
developer to easily edit the shape by manipulating a few con-
trol points. It also helps to create sharp and clean drawings with
less storage requirement. To handle this gap between artists and
developers comfortness, a rough sketch to vector drawing con-
version is necessary.

It is very difficult to draw a sketch perfectly by both expert
and novice users. Keeping this in mind, various sketch beautifi-
cation and sketch simplification systems have been introduced.
The aim of sketch beautification systems is to help users by
modifying user drawn strokes based on the geometric and prox-
imity relationship between strokes. The sketch simplification
systems simplify the user drawn sketch by removing unwanted
information from the stroke. In this paper, we introduce a De-

launay triangulation based stroke simplification algorithm and
a shape aware skeleton simplification algorithm for rough raster
sketch to vector drawing conversion.

The main contributions of the proposed approach are:

• A Delaunay triangulation based stroke grouping algorithm
which helps in a better identification of regions and hence
features.

• A shape aware skeleton smoothing algorithm for generat-
ing a better approximation of the shape.

• User control for masking of regions in the sketch and con-
trol of accuracy of the vectorized output.

1.1. Related Works
Sketch simplification tools mainly concentrate on represent-

ing the entire sketch with a set of few meaningful strokes. Most
of the approaches can be divided into one of the two classes:
stroke reduction and stroke grouping. In stroke reduction based
techniques, the input strokes are classified according to their
relevance and are removed one by one until the sketch is sim-
plified. Work introduced by Preim et al. [1] uses parameters
like length of line, distance and density, to prioritize strokes.
Density information is used in the work introduced by Grabli
et al. [2] to select relevant strokes from a set of cluttered line
drawings. The 2D properties along with information from three
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Fig. 1: Left to Right:: Input rough sketch (scanned sketch), Output of our algorithm (vector drawing) and blown up parts of various features (in blue boxes) ((a):
Broken strokes, (b): Sharp corners, (c): Small regions, (d): Junctions, (e): Open, disconnected curves, (f): A group of strokes) captured by our algorithm along with
input sketch (in red boxes).

Fig. 2: Result of trapping ball segmentation for two different ball radii, blown
up part shows the error occured during segmentation.

dimensional inputs are used in works introduced by Wilson et
al. [3] and Deussen et al. [4]. The main drawback with these
kind of systems is that, since it is simplifying strokes by it-
eratively removing irrelevant strokes. The simplified stroke is
always a subset of input strokes, whereas, artists usually use a
set of strokes for representing a long curve [5].

In stroke grouping based methods, the input strokes are
grouped together and replaced by a simple stroke. The strokes
are grouped based on continuation, parallelism and proximity
in works like Rosin et al. [6]. A selection assistance tool for
perceptual grouping and suggesting potential extensions is in-
troduced by Lindlbauer et al. [7]. A greedy algorithm based
on the concept of ε-lines is introduced by Barla et al. [8][9] for
grouping and is further used for simplification. Learning based
stroke grouping is used in works by Orbay et al. [10], Simo-
Serra et al. [11] and Ogawa et al. [12]. Noris et al. [13] use
stroke-to-stroke and scribble-to-stroke relationship for group-
ing strokes in a digitally drawn sketches. Gestalt phenomenon
of closure is utilized by [5] to interpret regions which helps to
group strokes. The recent work introduced by Favreau et al.
[14] concentrates on generating a vector drawing from a rough
sketch to approximate the shape and is composed of a small
number of curves which makes it easily editable.

Works like interactive beautification [15], suggestive inter-
face for 3d drawing [16], exploring sketch beautification tech-
niques [17] and ShipShape [18] follow the sketch beautification
systems. The main disadvantage of this kind of system is that

Fig. 3: Delaunay triangulations inside a region and between two adjacent
strokes.

the input should be given in a progressive manner which makes
it unsuitable for applications where the input is a scanned image
drawn by an artist.

A number of methods are introduced for vectorizing an input
drawing [19], [20], [21], [22]. The main idea behind these algo-
rithms is to find junction points from a 1-pixel width skeleton of
the drawing. The curves in between junction points are further
replaced by simple primitives like lines, arcs and curves. Dif-
ferent from these existing algorithms, the proposed algorithm
uses the grouped strokes for determining the curve to be kept
between junction points. A recent work by Bessmeltsev et al.
[23] makes use of vector fields to place curves. Donati et al.
[24] made use of Pearson’s cross correlation and introduced
a new thinning algorithm with improved capability to handle
varying stroke widths and scribbles.

The stroke grouping methods try to cluster similar strokes
into same group. Most of the algorithms in this category rely
on a region identification procedure (like trapped ball segmen-
tation) to group the strokes. Even though trapped-ball segmen-
tation [25] used by various related works (works by Liu et al.
[5], Falvreau et al. [14] etc.) can do region identification mod-
erately fine, the control of user over the segmentation result is
less. Figure 2 shows the result of trapped ball segmentation. It
can be noted that, as we try to decrease the ball radius to de-
tect iris, unwanted regions are getting detected as well. In this
paper, we introduce a Delaunay triangulation based region iden-
tification algorithm that provides better control over the identi-
fied regions. Though Delaunay triangulation has been used for
piecewise-linear reconstruction from 2D point-sets [26] (which
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(a) (b) (c) (d)

Fig. 4: Overall steps in the proposed algorithm. (a) Input rough sketch, (b) Result after grouping similar strokes, (c) Result of skeletonization, (d) Our result.

Fig. 5: Effect of varying threshold parameter, Left to right: Results of thresh-
olding for values 0.7, 0.8, 0.9 and 1 respectively.

can be used for a noisy point set similar to sketch strokes), to
the best of our knowledge, it has not been used yet for region
identification from a sketch input.

Similarly, works in image vectorization field usually simplify
the 1-pixel width skeleton for finding vector representation of
the sketch. The vector drawing can further be simplified by
reducing the points for representing curves. This direct simpli-
fication of skeleton typically results in loss of information. To
avoid this, while simplifying, the skeleton can be matched with
the original rough sketch to ensure that the curve always fol-
low the structure defined by rough sketch and hence the artist’s
imagination. Hence, different from other stroke grouping ap-
proaches, in our approach, the similar strokes are grouped based
on a Delaunay triangulation based region identification algo-
rithm, and furthermore, is used to generate a vector represen-
tation of the sketch. We exploit the triangle shape/structure
and their connectivity present in DT to identify regions. This
enables the user to mask the pseudo regions (the gap between
strokes which looks like a region by itself) generated from the
input sketch.

Rest of the paper is arranged as follows: Section 2 gives the
overall framework of the proposed system. The algorithm is
explained in Section 3 and the results and discussion are given
in Section 4. Finally, the paper is concluded along with possible
future works in Section 5.

2. Overview

The main motivation behind the work is based on the obser-
vation that the Delaunay triangulation inside a region has fat tri-
angles (acute triangles) as shown in Figure 3. On the other hand,
the Delaunay triangles between the adjacent strokes (which can
be combined into a single group) has thin triangles (obtuse tri-
angles). The observation helped us to realize that capturing the

fat triangles and their associated ones lead to the identification
of regions.

Based on the observation, our overall framework is as shown
in Figure 4. The input to our system is a pencil drawn rough
sketch as shown in Figure 4(a) (can also be a set of digital
strokes made by digital drawing tools). Image thresholding is
applied on the sketch (if the input is a pencil sketch) and the
result is fed to our region identification and skeleton generation
procedure. The adjacent strokes are combined using a Delau-
nay triangulation based algorithm (as shown in Figure 4(b)),
from which an approximate shape is generated (as in Figure
4(c)). This is further represented using a set of Bézier curves
to create a vector drawing (as shown in Figure 4(d)). The user
is given the flexibility to alter the number of control points rep-
resenting the shape, which helps in easier editing of the sketch.
The result of our procedure is in ready-to-edit simplified vector
format. The user can edit the control points using any existing
tools like Inkscape to alter the shape.

3. Algorithm

Our algorithm can take a scanned pencil drawn paper
sketches or digitally drawn sketch as input. If the input is
scanned pencil drawn paper sketch, a binary thresholding is ap-
plied on it. After several experiments, we fixed the thresholding
parameter as 0.9 (in which all pixels which has intensity lower
than 0.9*255 are retained). Effect of varying the threshold pa-
rameter is shown in Figure 5. As shown in the figure, many use-
ful stroke components are missing for low thresholding values
and unwanted strokes come to play for larger threshold values.
After thresholding, the procedure mainly consists of two steps:
(a) Region identification and skeleton generation (to identify re-
gions and create an unpolished simplified version of the rough
sketch) (b) Shape aware skeleton smoothing (to smooth and cre-
ate a best shape from the approximation).

3.1. Region identification and skeleton generation

DEFINITION 1. Exterior triangle: A triangle (in a set of tri-
angles) having an edge that is not shared with any other trian-
gle (edge in ‘red’ in Figure 6) and has length more than a user
given parameter len.
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DEFINITION 2. Fat seed triangle: A fat triangle whose cir-
cumcenter lies inside itself (green triangle in Figure 7a) and
having edge lengths greater than len.

Fig. 6: A sample Delaunay tri-
angulation with exterior edges
shown in red color.

Given a sketch, this step creates
an approximate simplified shape
in the form of skeleton. The De-
launay triangulation is used for
creating an approximate shape in
this step. Since the input sketch is
in pixel format and Delaunay tri-
angulation is defined over a point
set, a mapping from pixels in
the image to points in Euclidean
space has been made (by keeping
points in the center of each pixel) for further processing. Start-
ing from the Delaunay triangulation of the mapped point set,
a fat seed triangle (similar to high persistent cells in [27]) is
found and a growing procedure is initiated to identify a region.
From a fat seed triangle (which represents a region), the algo-
rithm grows by recursively merging the adjacent triangles (if the
edge shared between them has length more than a user given
parameter len). The growing procedure is continued until no
more triangles can be merged to the region. Once the region
cannot grow further, the procedure continues to find the next
region, starting from an unprocessed fat seed triangle. The en-
tire procedure is continued until no more fat seed triangles can
be found. Figure 7 shows the illustration of our region finding
algorithm on the sketch of a Jackalope. Starting from a fat seed
triangle (Figure 7(a)), the algorithm recursively merges adja-
cent triangles to the region (Figure 7(b)) until it cannot grow
further (since the length of edge is less than the parameter, Fig-
ure 7(c)). Finally, the triangles are merged to create a region
(Figure 7(d)). Once a region is found, the region growing pro-
cedure continues by finding the next fat seed triangle (Figure
7(e) - 7(l)). The procedure terminates when the growing pro-
cedure is done for all fat triangles (whose all edge lengths are
greater than len). Figure 7(m) shows the regions identified us-
ing our region growing algorithm. The len parameter tells how
much apart the strokes of the same group can be, and is eas-
ily found by visually tuning the sketch and checking whether
unwanted strokes are getting grouped together.

All unvisited triangles (which are not visited during the grow-
ing procedure) are filled with black color (as in [20]) which
gives an approximation of the shape by combining similar
strokes (Figure 7(n)). The filling procedure is applied for com-
bining small triangles between strokes. However, the resulting
filled shape has varying thickness depending on the strokes in
the input sketch (as shown in blown up part of Figure 7(n)). It
is difficult to convert this filled shape to a set of simple curves.
In order to tackle this problem, the filled shape is mapped back
into an image and a skeleton generation [28] algorithm is ap-
plied to make its width uniform (Figure 7(o)). For further ex-
planation, the result after filling the triangles are called as filled-
shape.

A fat seed triangle might lie outside the shape as well, which
leads to the detection of regions outside. In order to stop the al-
gorithm from taking such fat seed triangles, a Delaunay sculpt-

ing [29] is employed before region identification procedure.
The Delaunay sculpting procedure is as follows:

• On the Delaunay triangulation DT of the point set, Exte-
rior edges are found (edges which is shared with only one
triangle)

• Exterior edges having length greater than len are removed,
and the exterior edges are updated until the length of all
exterior edges are less than len

Figure 8 shows the Delaunay triangulation of the point set,
and the remaining triangles respectively. It can be seen that the
Delaunay sculpting procedure with appropriate len removes all
triangles lying outside the shape and hence stops the procedure
from selecting fat seed triangles from outside the shape. The
len parameter depends on the distance between two adjacent
strokes in same group.

An interesting property we observed while experimenting is
that, the number of regions identified can be controlled by re-
stricting the number of fat seed triangles being processed. In
order to process large regions before processing small ones, the
fat seed triangles are processed in the decreasing order of their
circumradii. Figure 9 shows the results of our algorithm for dif-
ferent number of fat seed triangles that are getting processed.
It can be seen that the nostrils are getting completely masked
in the beginning and started appearing one by one as we in-
crease the number of fat seed triangles (masking value) to be
processed.

Algorithm 1: Grow Triangle()
Input: Triangulation DT , Triangle T , Length len, Region

R
Output: A region R
if T is already visited then

return
end
R = R

⋃
T

Let p1, p2, p3 be three vertices of T
if (Euclidean distance(p1, p2) >len ) then

Grow Triangle(DT, Neighbor(DT, T, p1, p2), len, R)
end
if Euclidean distance(p2, p3) >len then

Grow Triangle(DT, Neighbor(DT, T, p2, p3), len, R)
end
if Euclidean distance(p3, p1) >len then

Grow Triangle(DT, Neighbor(DT, T, p3, p1), len, R)
end
return R

Figure 10 (first row) shows a small blown up part of a sketch
after thresholding, its pixels, generated point set (by placing
points in the center of each pixel whose color is black), De-
launay triangulation and the result after filling. Second row of
Figure 10 shows the image after thresholding, triangles after
growing procedure, regions and filled shape.

The pseudocode given in Algorithm 1 shows the region grow-
ing procedure. The function Euclidean distance(a, b) finds the
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o)

Fig. 7: Illustration of region finding procedure: (a), (e) and (i) show the beginning of region growing algorithm with green, red and blue triangles as the fat seed
triangles, (b), (f) and (j) show the intermediate steps of region growing procedure where a cluster of triangles are merged to the intial fat seed triangle, (c), (g) and
(k) show the termination of region growing algorithm for corresponding fat seed triangles, (d), (h) and (l) show the respective identified regions, (m) final set of
regions found, (n) filled shape, (o) skeleton of the filled shape.

(a) (b)

Fig. 8: (a) DT of a rough sketch, (b) Triangles after Delaunay sculpting.

Euclidean distance between two points a and b. Neighbor(DT ,
T , a, b) function returns the triangle from DT which shares edge
(a, b) with T , if any. The algorithm is called for each fat seed
triangle to divide the rough sketch into regions. The complete
region identification procedure is shown in Algorithm 2, where
Delaunay Triangulation(PS) function computes the Delaunay
triangulation of the point set PS . The Delaunay Sculpting(DT,
len) function performs Delaunay sculpting on DT until all ex-
terior edge lengths are less than len, and returns the remaining
triangles.

At the end of Algorithm 2, since skeletonization results in
images, further processing is done on pixels. Small protrusions

Algorithm 2: Algorithm for skeleton generation
Input: Thresholded image I, len
Output: S keleton o f grouped strokes
DT=Delaunay Triangulation(point set representation of I)
DST= Delaunay Sculpt(DT, len)
for each fat seed triangle T in DST sorted in decreasing

order of circumradius do
if number of identified regions is less than masking
value then

R = φ
R=Grow Triangle(DS T , T, len, R)
Remove all triangles in R from DST and classify

their union as a region
end

end
Fill each triangle in DS T with black color and create a new

image NI
Apply skeleton thinning on NI
return NI

are removed from skeleton (in the following sections, we will be
using the term skeleton to refer to the skeleton of filled shape)
to ignore the branches made by varying thickness of the filled
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(a) (b) (c)

Fig. 9: (a) Input rough sketch, (b) Result of our algorithm with various masking values. Rows (i), (ii) and (iii) show filled shape, skeleton and vectorized results
respectively. Columns (A)-(E) show result for masking values 1,2,3,4,5 respectively. As the masking value increases, the number of regions identified are increasing
one by one as shown in Row (iii), (c) Final result of our algorithm.

Fig. 10: First row: (Left to Right): Blown up image part, its pixels as squares, point set generated, Delaunay triangulation, filled part, Second row: (Left to Right):
Thresholded sketch input, Clustered triangles, Identified regions, Filled shape.

Fig. 11: A sample rough sketch along with results after increasing the skeleton
pruning parameter.

shape. For skeleton pruning, a parameter skel length is used,
and all protrusions which contain less than the number of pix-
els given by skel length are removed. Figure 11 shows the ef-
fect of skel length parameter on a sample rough sketch. The
skel length is the minimum length, an open curve should have
in order to be retained. For example, a high random value can
be given for skel length parameter, if the shape does not have

any open curve. It can also be easily tuned by checking whether
the parameter value removes all unnecessary open curves. Af-
ter applying skeletonization procedure, we noticed that sharp
corners are converted to junction pixels (pixels which has more
than two neighbors in its 8-neighborhood) with three edges, out
of which one is an open curve. To restore such sharp corners,
similar to biasing effect removal in [24], we made use of a sim-
ple heuristic. If the angle between non-open curves in a junc-
tion pixel is lesser than that of the one with open curve, then
it is considered as a sharp corner and restored by moving the
intersection point to the end point. Figure 12 shows a sam-
ple sketch, whose skeletonization has both sharp and non-sharp
corners, and how the heuristic is handling such cases.

3.2. Shape aware skeleton smoothing
As shown in Figure 7(o), the generated skeleton is not

smooth or in vector format. To alleviate this problem, a shape
aware skeleton smoothing algorithm is introduced. In this step,
the skeleton is replaced by a smooth shape that preserves the
shape drawn by an artist.

Figure 13(a), shows a filled shape along with its skeleton.
Directly, the skeleton pixels can be considered as anchor points
and a cubic Bézier curve can be fitted, but the resulting output
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(a) (b) (c) (d)

Fig. 12: Heuristic for restoring sharp corners, Left to Right: Input rough sketch, Filled shape, Skeleton (sharp corner and non-sharp corner in blown up circles), Our
result with restored sharp corner.

Fig. 13: Smoothing skeleton by skipping its intermediate pixel. A blown up part
of Jackalope’s leg is taken for reference (a) Filled shape (blue color) along with
skeleton (black color), (b) Filled shape along with Bézier curve representation
by taking all pixels of skeleton into consideration, (c) Filled shape along with
its Bézier curve representation by skipping 25 intermediate pixels, (d) Filled
shape along with its Bézier curve representation by skipping 65 intermediate
pixels.

(a) (b)

Fig. 14: Representative pixels shown inside boxes (Left), Skeleton with seg-
ments shown in different colors (Right).

can have undue oscillations (Figure 13(b)). The problem can be
tackled by skipping few intermediate points from the skeleton.
Figures 13(c) and 13(d) show two examples by skipping inter-
mediate 25 and 65 points (starting from a junction point, every
25th and 65th consecutive pixels are considered) respectively.
Such a method raises two major concerns: (a) How many pix-
els should be skipped?, (b) Whether the shape will get distorted
after skipping?

To address the problem, we introduce a shape aware skeleton
smoothing procedure. Initially, a few representative pixels are
selected from the skeleton as follows:

• A pixel which has more than two neighboring pixels in its
8-neighborhood (pixels inside blue colored boxes in Fig-
ure 14(a))

• A pixel which has only one neighbor in its 8-neighborhood

Fig. 15: Shape aware smoothing. (a) Filled shape along with new polyline NP
(vertices shown in yellow color), (b) Filled shape along with its Cubic Bézier
curve fitted using vertices of NP, (c) Smooth curve lying inside the filled shape.

Fig. 16: Relevance of length parameter, First row (Left to Right): Input sketch,
Filled shape, Skeleton, Second row (Left to Right): Output of our algorithm as
the lim length increases.

(pixels inside red colored boxes in Figure 14(a))

The skeleton is converted into a set of segments based on
representative pixels (Figure 14(b) shows the skeleton segments
shown in different colors). Each skeleton segment is converted
into a polyline P with each pixel considered as a vertex and two
vertices vi and v j representing pixel xi and x j are connected with
an edge if:

• If xi is in the 4-neighborhood of x j

• If xi has only one/no pixel in its 4-neighborhood and x j

lies in the 8-neighborhood of xi
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Fig. 17: Result of our algorithm for various inputs, First row shows the input sketch, filled shape, skeleton and result of our algorithm respectively for lion sketch.
Second row shows the Input rough sketch (scaled down) and third row shows corresponding results. Parameters used are given in brackets (len, masking value,
skel length, lim length) respectively.

Fig. 18: Filling small gaps in input sketch: “Mouse” input and our output.

In order to represent part of the skeleton which is a simple
closed curve (with all pixels have exactly two neighbors in its
8-neighborhood), and does not have any representative pixels, a
random pixel is considered as the representative pixel to create
a polyline (pixels shown inside green colored boxes in Figure
14(a)).

From the polyline P = p1, p2, ..., pn, a new polyline NP =

np1, np2, ..., npk with minimum possible number of vertices is
created from P satisfying the following conditions:

• Let the vertex set of P and NP be X(P) and X(NP), then
X(NP) ⊆ X(P).

• Let npi,np j ∈ NP represents pk, pm ∈ P respectively, then
‖npi, np j‖ ≤ ‖pk, pm‖.

• |P| ≥ |NP|.

• Let F be the filled shape, all edges (npi, np j) ∈ NP lies
interior to F.

The new polyline NP is computed in a greedy fashion, in
which, starting from an end point p1 ∈ P, lines are computed
to all succeeding vertices in P. The longest possible line which
completely lies inside the filled shape is selected and the corre-
sponding vertex p2 is added to NP. Next, the lines are drawn
from p2, and the procedure continues until p2 becomes the last
vertex of P. By taking the vertices in NP as anchor points,
piecewise cubic Bézier curves can be fitted preserving tangent
and second derivative continuity as in [14]. However, in this
paper, we made use of a readily available SVG tool, Inkscape.

Figure 15(a) shows a new polyline NP (yellow points repre-
sents vertices and black lines connecting them are the edges)
along with a part of F on both sides. Figure 15(b) shows the
Bézier curve created using NP. Final Bézier curve along with
its filled shape is shown in Figure 15(c).

The method of keeping straight lines inside the filled shape
tells about how many pixels can be skipped between two anchor
points. Results show that our algorithm is capable of generating
vector output resembling their corresponding rough sketches.

To provide more control for user to decide on the accuracy of
resulting shape, a limiting length parameter can be used. The
role of limiting length parameter “lim length” is to stop draw-
ing of a line at a length given by the parameter. The parameter
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Fig. 19: Output of our algorithm for “Duck”, “House”, “Car” and inputs taken from [19], [13], [30], [11], [14] and [10]. Corresponding inputs are shown in top
right corner. Parameters used are given in bracket (len, masking value, skel length, lim length) respectively.

Fig. 20: Comparison of our results with the state of the art methods, Left to Right: Input, Output of [5], [11], [14] and Our result. Various problems in the outputs
are denoted in bubbles, where each letter denotes, D: Disconnected, EP: Extra protrusions, B: Broken edges, UE: Unclean edges, M: Missing part.

stops the growing of the line in skeleton smoothing step either
if a straight line cannot be drawn or the line under consideration
exceeds the “lim length”. Increased value of the parameter de-
creases the number of points in NP and hence the accuracy. On
the other hand, decreasing the parameter leads to more num-
ber of points in NP and hence the accuracy with respect to the
skeleton. Figure 16 shows the result of our shape aware skele-

ton smoothing procedure for various values of “lim length”.
The lim length parameter is used to smoothen the resultant vec-
tor output (increasing the value increases the smoothness of the
result) and can be increased/decreased until user gets a visually
best result.



10 A.D. Parakkat et al. / Computers & Graphics (2018)

(a) (b)

Fig. 21: Results of [11] (Left) and [14] (Right) for “Jackalope” input.

4. Results & Discussion

Figure 17 shows the result of our algorithm for various inputs
(which are scaled down appropriately) with different features.
It can be seen that complex multiple strokes are represented
using single simple stroke, all small protrusions coming out of
strokes are removed and small details are retained. Experiments
show that our algorithm is capable of capturing various features
like: sharp corners, small regions, junctions, open disconnected
curves etc.

Figure 18 shows a standard sample input in which the input
sketch has various discontinuities. It can be seen that our algo-
rithm is capable of dealing with such small gaps and gives nice
results.

We generated results for the inputs taken from various pa-
pers ([10], [13], [19], [30], [11], [14]) and for standard inputs
like “Duck”, “House”, “Car”, and the outputs are shown in Fig-
ure 19. It can be seen that our algorithm is capable of gen-
erating good results for all the inputs. Irrespective of sketch
type (pencil drawn or digital strokes), our algorithm gener-
ated good results. Our algorithm also captured original regions
(duck), minute details (house), simple strokes from irregular
sketch (car), self-intersections and junctions (snake, stapler),
clean output from noisy paper sketch (mask), sharp corners (cad
model) etc. Even though the very coarse nature of the input
sketches resulted in a few unwanted strokes and gaps, it can be
seen that our algorithm generated a visually better vector result.

Figure 20 shows the comparison of our algorithm with var-
ious existing methods on inputs which represents the gen-
eral cases such as sketch with multiple unwanted protrusions
(CAD model), disconnected components (mouse wheel) and
very sketchy input with minute features (ring). It can be noted
that the procedure by Liu et al. [5] is not able to handle bro-
ken data and many extra protrusions are retained as such. The
learning based approach used in [11] has many discontinuities
in the resulting shape, as they are ignoring various parts of the
shape (mouse wheel) assuming that they are part of same stroke
group. Favreau et al. [14] merges adjacent regions and so the
important information in the shape is lost.

We have compared our “Jackalope” input with the most re-
cent works ([11] and [14]) and Figure 21 shows the results of
their algorithms. Results of Favreau et al. [14] is obtained from
the authors, and it can be seen that it is not able to capture var-
ious open curves (curves which cannot be represented as a re-
gion). Also, it can be noted that the eyes are not captured well

Fig. 22: Effect of the simple trapped ball segmentation on two sketches for
varying ball sizes [(5,6,7) and (2,3,4) for horse and bull respectively] (Left),
Result of our region identification algorithm (Right).

Fig. 23: Result of various vectorization algorithms, First row (Left to Right):
Input image, Filled shape, Skeleton, Our result, Second row (Left to Right):
Result of Vector Magic, Adobe illustrator CC, CorelDraw, Autotrace.

in the result since the ball radius used for region identification
is high and as the ball radius decreases, small gaps between the
adjacent strokes are considered as separate regions.

Result of learning based approach introduced in [11] is
shown in Figure 21(b). We tuned the parameter and the best re-
sult is selected for comparison. It is clear that the result contains
various disconnected curves. Many of the strokes are ignored
(connection between ear) from the input sketch while generat-
ing the final result. Some strokes are misclassified as part of the
final shape (small protrusion from the ear) and some other are
not grouped appropriately (small gap between adjacent strokes
in the hand). Different from learning based approaches, we do
not require any training.

It can be noted that the [5] requires an input rough sketch in
vector format and not as a raster image. Also, it requires addi-
tional cyclic refinements, once the outputs are generated. Figure
4(d) shows the vectorized result of our procedure for Jackalope
input. For the failure case shown in [23], our algorithm captures
the features better (House sketch in Figure 20). In general, the
sharp corners seem to have been captured better by Bessmeltsev
et al. [23].
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Fig. 24: Experimentation on varying complexity of sketchiness, showing the
robustness of our method.

Fig. 25: Result of our algorithm on various sketches drawn during user study.

Fig. 26: Limitation: Case where sharp corner detection heuristic fails.

Figure 22(left) shows the result of trapped ball segmentation
on two sample sketches for varying ball sizes. Result of our
region identification algorithm for the sketches are shown in
Figure 22(right). It can be seen that trapped ball segmentation
results in small unwanted regions which are captured properly
using our method.

We have also compared with other vectorization procedures
to know how it differs from the shape aware skeleton smooth-
ing. Figure 23 shows the result of various existing vectorization
procedures. They give good vector results, but since our algo-
rithm takes filled shape also under consideration, our results
give shape with less zigzags where it is not required.

Since sketchy and thick lines are very challenging [14], we
have conducted experiments on varying sketchiness (complex-
ity). Figure 24 shows a few sample sketches with varying
sketchiness, It can be seen that our algorithm produces con-
sistent vector drawings irrespective of the complexity of the
strokes.

We also conducted a user study in which six artists are asked
to draw in multi-stroke fashion. Figure 25 shows the sketches
drawn by user along with the vector results generated using our
algorithm. The artists were surprised to see our algorithm trans-
forming their sketchy input to an easily editable vector draw-
ing. Also, all the artists agreed that the vector drawing captured
all the important features that they kept in their mind while

Fig. 27: Few sketches in which our algorithm has potentially worse outputs
along with our results.

Fig. 28: The effect of outlier points in input sketch. Left to Right: Thresholded
sketch with outliers, Its Delaunay triangulation, Our result.

drawing the sketch. Even though we require four parameters
(whereas works like [14] requires more than five parameters)
for generating a result, most of the parameters are intuitive in
nature and hence easy to tune.

Limitations: First limitation is that the heuristic for finding
sharp corners may not work in some cases. Figure 26 shows
a sample in which our heuristic fails to identify sharp corners
because of the absence of junction point with open branch. As
shown in Figure 27, the second limitation is that there can be
regions which has a similar structure of a gap between adjacent
strokes which our algorithm may fail to capture. Also, out-
lier points in the input strokes has great effect on the Delaunay
structure and even though it does not effect the region identifica-
tion in greater scale, the outlier points group among themselves
to create unwanted artifacts in the final result. Figure 28 shows
an example sketch with outlier points.

5. Conclusion & Future Works

We introduced an algorithm for cleaning rough sketches
which reduces the gap with artists who prefer ink and paper
sketch and skillful vector artists. A Delaunay triangulation
based approach is used to group adjacent strokes to identify re-
gions which has the capability to mask regions to avoid misin-
terpretation. Our algorithm can also handle discontinuous and
broken curves. Since it is easy to manipulate curves with lesser
control points, we used a shape aware skeleton smoothing to
vectorize the results. The user is given with the flexibility to
control accuracy and simplicity in our algorithm. Irrespective
of input format, pencil sketches or vector drawings, we can use
our algorithm which facilitates the use of scanned drawings.

Modifying the shape aware skeleton smoothing step by tak-
ing the context of local segment into consideration will be an
interesting path to look into. An improved heuristic for restor-
ing sharp corners will increase the accuracy of the resultant
vector result. Similarly, developing a method to separate open
branches from irregularities made by strokes will increase the
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accuracy of our algorithm. Also, a criterion to distinguish re-
gions with shape similar to the gap between adjacent strokes
from the gap between adjacent strokes will be useful. The left-
overs of vague shapes which artists used for creating initial
sketching cannot be handled with the current system (results
in unwanted regions) and will be interesting to look into.
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