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A B S T R A C T

Given a planar point set sampled from a curve, the curve reconstruction problem com-
putes a polygonal approximation of the curve. In this paper, we propose a Delaunay
triangulation-based algorithm for curve reconstruction, which removes the longest edge
of each triangle to result in a graph. Further, each vertex of the graph is checked for a
degree constraint to compute simple closed/open curves. Assuming ε-sampling, we pro-
vide theoretical guarantee which ensures that a simple closed/open curve is a piecewise
linear approximation of the original curve. Input point sets with outliers are handled
as part of the algorithm, without pre-processing. We also propose strategies to identify
the presence of noise and simplify a noisy point set, identify self-intersections and en-
hance our algorithm to reconstruct such point sets. Perhaps, this is the first algorithm to
identify the presence of noise in a point set. Our algorithm is able to detect closed/open
curves, disconnected components, multiple holes and sharp corners. The algorithm is
simple to implement, independent of the type of input, non-feature specific and hence it
is a generalized one. We have performed extensive comparative studies to demonstrate
that our method is comparable or better than other existing methods. Limitations of our
approach have also been discussed.

c© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Curve reconstruction of a given set of points S , sampled from
a curve C, computes a polygonal (piecewise linear) approxi-
mation of the curve. The curve C can be an open or a closed
curve with self-intersections, disconnected components, mul-
tiple holes and sharp corners, where a hole (inner boundary)
is considered as a convex/non-convex simple polygon which is
enclosed within a boundary. The input and output of the prob-
lem are as shown in Figures 1(a) and 1(b), respectively. Even
though the reconstruction problem, in general, has a rich liter-
ature over the last three decades, it is still an active and chal-
lenging problem due to its ill-posed nature [1]. Nevertheless, it
has various applications in the fields of computational geome-
try, computer vision, computer graphics, image processing and
pattern recogonition.

Edelsbrunner proposed a Delaunay triangulation-based para-
metric method to produce α-shape [2], which characterizes the
shape of a point set. Even though it was not designed for curve
reconstruction, subsequently its 3D version [3] was shown to be

Fig. 1: (a) Input point set. (b) Our output with closed/open curve, disconnected
components, self-intersections, multiple holes and sharp corners.
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applicable for reconstruction. A-shape [4] is computed from a
combination of Delaunay triangulation and Voronoi diagram.
Veltkamp proposed a method for reconstruction which results
in γ-graph [5]. Duckham et al. [6] proposed a parametric
method for reconstruction from the Delaunay triangulation to
produce characteristic shape (χ-shape). Locally Density Adap-
tive α-complex [7] is a Delaunay triangulation-based, locally
adaptive method for curve reconstruction. Simple shape [8]
computes the curve, based on the distance, angle and certain
other criteria. Concepts of Delaunay disks are used to com-
pute r-regular shape [9]. Crust algorithms [10, 11, 12] use a
combination of Delaunay triangulation and Voronoi diagram
to produce closed/open curves. In Crust, a dense sampling
based on medial axis transform was introduced by Amenta
et al. [10], which is widely used to ensure theoretical guar-
antee of a reconstructed curve. Reconstruction using nearest
neighbour graph with theoretical guarantee is presented in nn-
crust [11]. In power crust [12], a subset of Voronoi vertices
known as poles is used to build a power diagram, which divides
the plane into interior and exterior cells. Noise filtering of a
given point set and introducing new points, followed by prun-
ing and reconstruction using nn-crust is proposed by Cheng et
al. [13]. Mehra et al. [14] proposed a visibility operator on the
convex hull of a noisy point set and in turn used the visibil-
ity information to perform both curve and surface reconstruc-
tions. Feiszli et al. [15] introduced a non-parametric denois-
ing strategy and reconstructing a curve preserving sharp cor-
ners. However, the three curve reconstruction algorithms men-
tioned above [13, 14, 15] do not reconstruct open curves, dis-
connected components, curves with self intersections and they
are not designed for handling outliers. Lee [16] proposed a re-
construction method based on moving least squares concept,
specially designed for noisy point sets to compute curves with-
out self-intersections. Shape hull [17] removes the edges of a
Delaunay triangulation based on the position of circumcenter
of triangles to construct a simple closed divergent curve. An-
other Delaunay triangulation-based method is ec-shape, which
use empty circle approach for outer boundary detection [18]
and hole detection [19]. Non-divergent curves are also recon-
structed by ec-shape, but not open curves. Water-distribution-
model (wdm) crust [20] is based on Voronoi diagram and han-
dles outliers. Crawl [21] reconstructs closed/open curves with
disconnected components and multiple holes, however it does
not handle noisy point set. Optimal transport cost method pro-
posed by deGoes et al. [22] is a greedy method to minimize
the increase in the transport cost, which is designed for noisy
point sets. Wang et al. [23] proposed a quad-tree method with
smoothening concept to reconstruct a curve from a noisy point
set with outliers. There are algorithms such as Fidelity vs. Sim-
plicity [24], which perform a piecewise smooth reconstruction
of a given sketch.

Most among the above methods are designed only for a sim-
ple closed curve reconstruction [6, 17, 18] whereas a few of
them [21, 22, 23] reconstruct both open and closed curves. To
the best of our knowledge, only few of them [10, 11, 20] pro-
vide theoretical guarantee. Apart from reconstructing open
and closed curves, few algorithms are designed to handle other

Summary of Comparison
Method OC DC SI NI IO NFS NP

α-shape [2] Y Y Y N N Y 1
χ-shape [6] N N N N N Y 1

Simple shape [8] N N N N N Y 3
Crust [10] Y Y Y∗ N∗ Y∗ Y 0

nn-crust [11] Y Y Y∗ N∗ Y∗ N 0
Cheng et al. [13] N N N Y N N 3
Mehra et al. [14] N N N Y N N 2
Feiszli et al. [15] N N N Y N N 0

Lee [16] Y Y N Y Y Y 0
Shape hull [17] N N N N N N 0

ec-shape [18, 19] N N N N N Y 1
wdm-crust [20] N N N N Y Y 0

Crawl [21] Y Y N N Y Y 0
deGoes et al. [22] Y Y Y Y Y N 2
Wang et al. [23] Y Y Y Y Y N 4

Our Method Y Y Y Y Y Y 2@

Table 1: Summary of comparison of existing methods, where Y or N refers
to YES or NO based on whether the corresponding method handles the fol-
lowing: Open Curve (OC), Disconnected Components (DC), Self-Intersections
(SI), Noisy Input (NI), Input with Outliers (IO), Non-Feature-Specific (NFS)
and Number of Parameters (NP). ∗Crust and nn-crust are not specifically de-
signed for reconstructing self-intersections, noisy inputs and outliers, hence,
the reconstructed output may or may not handle these. @ One parameter for
simplifying the noisy point set and another one for identifying the presence of
self-intersections.

challenges of reconstruction problem such as (i) the input can
be noisy or/and with outliers (ii) the original curve can have dis-
connected components, self-intersections, multiple holes and
sharp corners. Even though a few of the reconstruction algo-
rithms [18, 20, 21] detect some of the features mentioned above,
they are not designed for handling noise. There are algorithms
specially designed for handling noise [13, 14, 15], but they do
not reconstruct open curves, disconnected components, curves
with self intersections and are not designed for handling out-
liers. Lee [16] designed a reconstruction algorithm for noisy
point sets for both closed and open curves, however, it is not
able to detect self-intersections. F. de Goes et al. [22] and Wang
et al. [23] detect self-intersections on a noisy point set, however
performance of Wang et al. [23] degrades if the input is without
noise. Also, how to detect the presence of noise remains to be
a challenging open problem. Moreover, many algorithms have
multiple parameters, hence it is very tedious to synchronize and
tune.

Table 1 summarizes the comparison of the existing methods,
where Y or N refers to YES or NO based on whether the cor-
responding method handles the following: Open Curve (OC),
Disconnected Components (DC), Self-Intersections (SI), Noisy
Input (NI), Input with Outliers (IO), Non-Feature-Specific
(NFS) and Number of Parameters (NP).

In general, it is challenging to develop a generalized algo-
rithm which handles all the features - closed/ open curves, dis-
connected components, self-intersections, multiple holes and
sharp corners as well as handle noise and outliers.
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Fig. 2: Illustration of Algorithm 1 (a) Input point set (b) Delaunay triangulation (c) Intermediate output after removing the longest edge from all of the triangles (d)
The final output after checking the degree constraint for every point. Output has features such as open and closed curves, multiple holes and sharp corner.

1.1. Our contributions

We have developed an algorithm which reconstructs sim-
ple closed/open curves with theoretical guarantee. Point sets
with outliers are also handled by this algorithm without pre-
processing. Further, we have designed strategies to identify
the presence of noise and self-intersections. Our algorithm is
enhanced to simplify a noisy point set and perform curve re-
construction. It is also extended to reconstruct curves with self-
intersections. The algorithm is simple to implement too. Hence,
our algorithm is a generalized one as it is not designed for a
particular input case or feature-specific, but tuned to handle dif-
ferent input cases and detects various features.

Our major contributions are as follows:

• Non-feature specific algorithm for reconstruction of
closed/open curves.

• Novel ‘flower structure’ to identify the presence of noise
(perhaps for the first time), using Delaunay triangulation.

• Strategy to identify and restore self-intersections in the re-
constructed curve.

2. Algorithm

Let DT denote the Delaunay triangulation [25] of an input
point set S . An edge between a pair of points (vertices) in DT
is denoted by e. It has been proved that, if S is obtained by
ε-sampling [10] from a simple closed curve, a set of connected
subgraphs of DT provides a piecewise linear approximation of
S [10]. Hence, we use this fact to develop our reconstruction
algorithm, based on Delaunay triangulation.

Algorithm 1 starts with the construction of a Delaunay tri-
angulation DT of the input point set S . From each triangle T
of the Delaunay triangulation, the longest edge e is removed,
which results in a graph G. In G, for each point p with more
than two as degree, at most two shortest incident edges are re-
tained (this condition of having degree at most two for all the
points in the reconstructed curve is known as degree constraint).
Pseudocode of our approach for reconstructing a closed/open
curve is given in Algorithm 1.

Figure 2 illustrates various steps of Algorithm 1. Figure 2(a)
and Figure 2(b) show the input point set and its DT respec-
tively. The result after removing the longest edges from all
the triangles is shown in Figure 2(c). The final output after

Algorithm 1: Reconstruct(S )
Input: Input point set S
Output: Simple curve(s)
Construct Delaunay Tringulation (DT ) of S
for each triangle T in DT do

Remove the longest edge
end
Let G be a graph representing the remaining edges in DT
for each point p in G, which does not satisfy degree

constraint do
repeat

Remove the longer edge incident at p
until degree constraint of p is satisfied;

end
return G

checking the degree constraint for every point is shown in Fig-
ure 2(d). Our result captures features such as closed and open
curves, multiple holes and sharp corners. Please note that Al-
gorithm 1 which reconstructs simple closed/open curves, is a
non-parametric one.

Fig. 3: Two cases where a longest edge becomes the part of a piecewise linear
approximation of the original curve C.

Fig. 4: A case in which the edge in a piecewise linear approximation of original
curve C is removed due to degree constraint.
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2.1. Guaranteeing the results
Let R be the reconstructed curve using our algorithm and P

be a piecewise linear approximation of a curve C. Theoretical
guarantee implies that the output of Algorithm 1 is a piecewise
linear approximation of the ε-sampled curve C.

DEFINITION 1 Medial axis of a curve C is a closure of the set
of points in the plane which has two or more closest points in
C [10].

DEFINITION 2 Local feature size LFS (p) of a point p ∈ C
is the Euclidean distance from p to the closest point m on the
medial axis [10].

DEFINITION 3 A point set is an ε-sampling of a curve C, if
for every p ∈ C, there is a sample within a distance ε × LFS (p),
where 0 < ε < 1 [10].

In the reconstructed curve, if there is an edge existing between
a pair of points, they are known to be adjacent to each other, if
not, they are non-adjacent.

2.1.1. Closed Curve
To ensure theoretical guarantee of our algorithm, it is enough

to prove that an edge e ∈ P ⇔ e ∈ R, where R is the recon-
structed curve using our algorithm and P is a piecewise linear
approximation of the original simple closed curve C.

LEMMA 2.1 e ∈ P⇒ e ∈ R

Proof Suppose e ∈ P but e < R, e might have removed because
of the following reasons:

• Case 1: e is the longest edge in one of the Delaunay trian-
gles

• Case 2: one of the endpoints of e has degree more than
two

Case 1: Let a and b be the end points of e, and c be the third
point in the Delaunay triangle in which e is the longest edge.
Figure 3 shows illustrations of this case, where curve(s) C and
corresponding medial axis M are shown in green and blue (dot-
ted lines) color respectively. As C is a simple closed curve, a, b
and c are not mutually adjacent to each other in P. Let I be
the region defined by half of the intersection of circles drawn
with a and b as centers and ‖ab‖ as radius (yellow dotted arcs
in Figure 3). The point c should lie inside I since ‖ab‖ >‖ac‖
and ‖ab‖ >‖bc‖. If ac < P, then the vertices a and c are on the
different sides of the medial axis. On the other hand, if bc < P,
the vertices b and c are on the different sides of the medial axis.
In both the cases, irrespective of the position of c inside I, there
exists a point d in the curve segment of C between a and b for
which the ε ×LFS (d) is empty (shown in magenta color of Fig-
ure 3) and hence contradicts the assumption that points of R
follows ε-sampling of C. Absence of such a point d violates the
fact that c should be inside I.

Case 2: Let a and b be the end points of e, in this case, either a
or b has degree more than two (Figure 4 shows a sample case).
Let b is connected to two other points f and g, which lies in a

Fig. 5: A sample case in which an edge which is not present in a piecewise
linear approximation of original curve C is present in the reconstructed output.

Fig. 6: C1 and C2 are parts of an original curve. a and b are end points of C1
and C2. (a) abc and abd are prominent sectors of a. (b) Prominent region of ab
is the intersection of prominent sectors of a and b.

distance lower than ‖ab‖ from b. Since either b f or bg is part of
P, the other vertex (which is not adjacent to b in P) and a lies
on the different sides of the medial axis. This makes a point d in
the curve segment of C between a and b to lie closer to medial
axis than to a and b, which makes point set of R not to fulfill
ε-sampling condition.

LEMMA 2.2 e ∈ R⇒ e ∈ P

Proof By Lemma 2.1, e ∈ P =⇒ e ∈ R, which means all the
edges in a piecewise linear approximation of curve C is present
in R. Suppose e ∈ R and e < P, since C is a simple closed curve
and all the edges in P are already present in R, the end points of
e have degree 3 in R. It is enough to prove that e is the longest
edge connected to end points of e and hence is removed due to
the degree constraint. Let e = ab, and c be the adjacent point to
a (or b) for which ‖ab‖ <‖ac‖. This makes a point d in the curve
segment of C between a and c to have ε × LFS (d) disk empty
and hence contradicts our assumption that point set in R follows
an ε-sampling of C. This case is shown in Figure 5.

From Lemma 2.1 and Lemma 2.2, it follows that our algo-
rithm reconstructs a piecewise linear approximation of the sim-
ple closed curve C.

2.1.2. Open Curve
Let C1 and C2 be two original curves and a and b are be one

of the end points of C1 and C2 respectively.

DEFINITION 4 Prominent sectors of a point a are two sectors
of a circle with radius ‖ab‖ and center as a with center angle as
60◦ with respect to the edge ab ie. ∠bac = ∠bad = 60◦.

Prominent sectors of a are abc and abd, as shown in Figure 6(a).
Note that if the angle is greater than 60◦, ab will not be the
longest edge in the 4abc, where 4abc is one of the Delaunay
triangles.
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Fig. 7: First row shows a pair of input curves. Their prominent regions are
non-empty and hence open curves are reconstructed as shown in second row.

Fig. 8: (a) Input where the prominent region is empty (b) An invalid case in the
proof where a closed curve is reconstructed instead of an open curve.

DEFINITION 5 Let a and b be two end points of the original
curve C1 and C2. Prominent region with respect to edge ab is
the intersection of prominent sectors of a and b (as shown in
Figure 6(b)).

LEMMA 2.3 Let a and b be the end points of a curve/curves.
The edge ab is removed if its prominent region is non-empty.

Proof If the prominent region of edge ab is non-empty (let point
c be present in the region), then there exists a 4abc in the De-
launay triangulation of the input point set. Since c is inside the
prominent region, ‖ab‖ > ‖ac‖ and ‖bc‖ and ab will be removed
by our algorithm.

First row of Figure 7 shows input curves where respective
prominent regions (which is shaded) are non-empty and the
second row of shows reconstructed output curves. Figure 8
shows empty prominent region (which is shaded) and the re-
constructed output.
If a prominent region of an edge connecting the end points is
non-empty, the edge between the end points of the curves is
removed resulting in an open curve.

THEOREM 2.4 Let the input point set be sampled from a set
of curves (for which prominent regions of edges connecting the
end points of open curves are non-empty), our algorithm recon-
structs a piecewise linear approximation of the original curves.

Proof As a corollary to Lemma 2.1, 2.2 and 2.3, the shape of
the original curve is captured and the end points have degree
one, resulting in open curve(s).

2.2. Handling curves with self-intersections

Self-intersection is a common feature in many planar curves.
However, only a few of the existing methods [22, 23] can re-
construct self-intersections. Crust [10] might reconstruct curves
with self-intersections for some point sets, since the output is a

set of edges that do not have a restriction on the degree of ver-
tices. Other existing algorithms are not generalized enough to
work equally well in the presence and absence of noise.

We propose a strategy to detect the presence of self-
intersections of a given point set. This is motivated by the
snapping procedure available in authoring tools such as Adobe
animate CC.

To check the presence of a self-intersection and to restore
it in the reconstructed output, the following procedure is used:
Reconstruct the input point set using Algorithm 1, which results
in curves without self-intersections. Consider the reconstructed
curve and DT of the input point set. Take any point p from the
DT. Let d be the distance of the farthest incident point of p and
ϑ be a user given parameter. Existence of another point k in the
disc of radius d×ϑ centered on p suggests the presence of a self-
intersection. Adding a DT edge between p and k (if present)
in the reconstructed curve (of Algorithm 1) restores the self-
intersections. This strategy, instead of applying at all the points
on the reconstructed curve, we employ only on the one degree
vertices (as self-intersections are most likely to happen there).
Self-intersections are restored with respect to the existence of
other points in the disc of radius d × ϑ. Please note that our al-
gorithm is capable of restoring multiple self-intersections with
respect to a particular point.

Figure 9 shows an example of detecting and restoring a self-
intersection. Figure 9(a) is the input point set and Figure 9(b)
shows the reconstructed curves from Algorithm 1. Enlarged
part of Figure 9(b) shows that self-intersection is not detected
with Algorithm 1. Figure 9(c) is the Delaunay triangulation of
the input point set and its enlarged portion shows the part of
Delaunay triangulation where a self-intersection exists. Let the
disc is with radius ‖pq‖ (longest edge among pq and pr) and
center p. Dilating the disc based on ϑ makes s to lie inside the
disc, hence ps is added to Figure 9(b) thus introducing a self-
intersection in Figure 9(d).

Figure 10 shows the effect of parameter tuning while
restoring self-intersections. Parts which do not detect self-
intersections well are shown in dotted circles. The parameter ϑ
as 1.4 provides a better curve and even though we increase the
value to 1.6, the curve remains unchanged since all open edges
are paired with some other points in the reconstructed curve.
From various experiments, we have observed that the value of
ϑ varies from 1 to 2.

2.3. Simplifying a point set to remove the effect of noise

Curve reconstruction algorithms [13, 14, 15] designed for
noisy point sets, do not reconstruct open curves, disconnected
components, curves with self intersections. They do not han-
dle outliers also. Curve reconstruction methods for noisy in-
puts [16, 22, 23] detect open curves and disconnected compo-
nents. The method proposed by Lee [16] does not detect self-
intersections and the method by Wang et al. [23] degrade its
performance for a point set without noise. Those methods also
do not detect the presence of noise a priori, rather assume that
input contains noise.

We propose an approach (which is perhaps the first approach)
to detect the presence of noise in an input point set S . We define
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Fig. 9: (a) Point set. (b) Output of Algorithm 1 without restoring self-intersection (shown as enlarged) (c) DT with a part of triangulation (shown as enlarged) where
p is the point under consideration, q is the far apart point incident on p, disc with radius ‖pq‖ * ϑ encloses s, (d) Our result after restoring self-intersection.

Fig. 10: Tuning of parameter to detect self-intersections. Parts in which self-
intersections are not detected are shown in dotted circles. The best approxima-
tion is achieved at ϑ =1.4. The output remains same for all ϑ > 1.4.

Fig. 11: (a) A valid flower structure (b) Invalid flower structure

a valid flower structure in the Delaunay triangulation of S . Let
v be a vertex with a set of incident edges L. Let l1 be the shortest
edge and l2 be the longest edge from L. A valid flower structure
is a set of triangles associated with v, in which the ratio of l2 to l1
is lower than 2. This is based on the observation that for a non-
noisy curve following ε-sampling, the ratio of longest incident
edge to the shortest incident edge should be lower than 2.

Figure 11(a) shows an example of a valid flower structure and
Figure 11(b) shows an example of an invalid flower structure.
The existence of a valid flower structure as shown in Figure 12
with respect to a point p suggests the presence of noise. The
noisy point set (Figure 12(a)) is simplified by removing all the
points inside the disc with center p and radius µ, where µ is a
user given parameter. The valid flower structure ( enlarged part
in the blue box of Figure 12(b)) ensures that the point p lies
completely inside the boundary defined by the noisy point set
and hence it is retained. After simplifying the point set (Fig-
ure 12(c)), we apply Algorithm 1 on the retained points to re-
construct the curve (Figure 12(d)).

Figure 13 shows the effect of parameter tuning while detect-

Fig. 12: (a) Noisy input point set ( [16]) (b) Valid flower structure shown in
enlarged blue box and Invalid flower structure shown in enlarged green box (c)
Point set after simplification (d) Output of our algorithm

Algorithm 2: Complete Reconstruction(S )
Input: Input point set S
Output: Reconstructed curve(s)
Construct Delaunay Tringulation (DT ) of S
Search for a valid flower structure in DT (S )
if a valid flower structure is present then

Read value for µ from user and initialize S̄ = φ
for each vertex p having a valid flower structure do

Remove all points q from S , if ‖pq‖ < µ
S̄ = S̄

⋃
P

end
S = S̄

end
C=Reconstruct(S )
if C has self-intersection(s) then

Read ϑ from user
for each vertex p in C with degree 1 do

Find all points q in one-ring neighborhood of p in
DT (S ) such that ‖pq‖ < ϑ × l, where l is the
smallest edge length in the one-ring neighborhood
of p

Create edges from all q to p and add it to C
end

end
return G

Fig. 13: Effect of tuning parameter for detecting the presence of noise and
simplifying the point set. µ = 90 simplified the point set in a better way.

ing the presence of noise and simplifying the point set. The
parameter µ as 90 detects the presence of noise and simplifies
the point set in a better way. The overall reconstruction pro-
cedure is shown in Algorithm 2, which has a worst case time
complexity of O(n2).
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Fig. 14: (a)-(e) Input point set without noise and outliers, (f)-(j) Outputs of our algorithm with various features: (f) and (g) Self-intersections, multiple holes,
elongated parts, (h) Open curves, multiple holes, sharp corners, self-intersections, (i) Concave parts, elongated features, self-intersections, (j) Concave parts,
open curves, multiple holes, (k)-(l) Input point set with outliers, (m)-(o) Input point set with noise, (p)-(q) Reconstructed curve for inputs with outliers, (r)-(t)
Reconstructed curve after simplification of noisy point set. The parameters (ϑ and µ for restoring self-intersection and noise simplification) are specified along with
each result. An underscore is used to specify that no parameter is used.

3. Results and Discusssion

The algorithms are implemented in C++ using CGAL [26]
and results are visualized using OpenGL framework. The
point sets are sampled from inputs having open curves, self-
intersections, sharp corners, disconnected components and mul-
tiple holes. The sampling is done using WebPlotDigitizer tool.
The point set is sampled with various densities and random dis-
tributions along the curve. Please note that we do not follow
any sampling assumptions for practical purposes, even though
we assumed ε-sampling for ensuring theoretical guarantee (Sec-
tion 2.1).

Figures 14(a)-14(e) show input point sets without noise and
outliers. Different features such as self-intersections (e.g.:
Figures 14(f), 14(g), 14(h), 14(i), 14(j)), sharp corners (Fig-
ure 14(h)), elongated features (e.g.: Figure 14(f), 14(i)), open
curves (e.g.: Figures 14(g), 14(h), 14(j)), multiple holes (e.g.:
Figures 14(f), 14(g), 14(h), 14(j)), concave parts (e.g.: Fig-
ure 14(i), 14(j)) are reconstructed.

Figures 14(k)-14(l) and Figures 14(m)-14(o) show input
point sets with outliers and noise respectively. Figures 14(p)-
14(q) show the reconstructed curves for inputs with outliers and
Figures 14(r)-14(t) show the reconstructed curves after simplifi-
cation of noise. Please note that the inputs are of different point
densities (e.g.: Figures 14(a) and 14(e)) and of random distribu-
tion (e.g.: Figure 14(c)). The parameters (ϑ and µ for restoring
self-intersection and simplification of noisy point set) are spec-
ified along with each result. If there is no parameter used, that

Fig. 15: (a) Input point set with noise, outliers and self intersections (b) Output
of our algorithm after the removal of outliers, simplification of the point set and
restoration of self-intersections. The parameters are ϑ = 1.7 and µ = 20 for
restoring self-intersection and noise simplification respectively.

is represented using an underscore.
Figure 15(a) shows an input point set with outliers, noise and

self-intersections and Figure 15(b) shows the output of Algo-
rithm 2. Note that the outliers are removed, the point set is
simplified and the self-intersections are restored.

3.1. Comparison with other approaches

To evaluate the strength of our algorithm, we compared
our results with those of existing reconstruction algorithms
(α-shape [2], Crust [10], nn-crust [11], χ-shape [6], Simple
shape [8], F. de Goes et al. [22], ec-shape [18, 19], wdm-
crust [20] and Crawl [21]). Figure 16 shows the results gener-
ated by various algorithms for an input point set (without noise
and outliers) of antelope with various features. For parametric
methods, we have taken the best result obtained after parame-
ter tuning. The parameters used are specified along with each
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(a) Input (b) Our result (ϑ=1.6)

(c) α-shape (0.85) (d) Crust (e) nn-crust

(f) χ-shape (3) (g) Simple-shape (6,5,1) (h) F. de Goes et al. (136∗)

(i) ec-shape (j) wdm-crust (k) Crawl

Fig. 16: Comparison with other algorithms: Our algorithm captures self-intersections better than other algorithms (the parts which are not detected well are shown
in red dotted circles.). Disconnected components are not detected well by α-shape, χ-shape, Simple shape and ec-shape. Holes are detected by our algorithm better
than α-shape, F. de Goes et al., ec-shape and wdm-crust. The parameters used are specified along with each result for the parametric methods in brackets.

result in brackets. For example, our method uses ϑ = 1.6 for
restoring self-intersections.

α-shape is not able to capture concave parts, holes and dis-
connected components properly. Crust was able to capture
the curve comparatively well, but could not capture all self-
intersections. nn-crust is not able to capture the open curves
properly. As χ-shape and Simple shape are designed to recon-
struct a closed simple polygon, they are not able to capture dis-
connected components. A few concave parts are also not cap-
tured well by them. Optimal transport approach by F. de Goes et
al. have a few broken curves. As the algorithm is designed for
noisy point set, it over simplified the curve which led to the loss

of geometry. ec-shape is designed only for simple closed curve
and it could not detect disconnected components. EC-shape
could not detect the eyes of antelope as a hole. Even though
wdm-crust detected an incomplete outer boundary, since it is
not designed for objects with holes, it could not detect features
lying inside the antelope curve. Constraints put on Crawl made
it to ignore self-intersections and create a few non-appropriate
edges in the curve. Our algorithm is able to capture the curve
by preserving all the features.

Figure 17 shows the comparison of our algorithm with other
algorithms based on the ability to capture various features. The
parameters used are specified along with each output. α-shape
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Fig. 18: Comparison with other algorithms- varying the outlier. 1st , 2nd and 5th

rows show the outputs with 20%, 40% and 60% outliers respectively. 3rd and
4th rows show the enlarged parts of the results in 5th row. Our result is as good
as those of crust and comparable or better than others even with 60% outlier.

is not able to capture the concave parts and disconnected
components properly. Even though Crust, nn-crust and Crawl
worked equally well in many of the cases, Crust and nn-crust
have few unwanted edges in few cases whereas, Crawl could
not capture many open curves. χ-shape and Simple shape
capture the curve as such, however the corners and discon-
nected components are not captured well. Approach by F. de
Goes et al. also gave good results in many cases but with less
geometric details because of the presence of variable density.
Empty circles stopped ec-shape from further digging and in
many cases resulted in unvisited points. Wdm-crust is able to
capture many details even though it could not make all points
to be part of the curve.

Self-intersections: The last but one row of Figure 17
shows the results of various algorithms for an input with
self-intersections. NN-crust and our algorithm reconstructs
self-intersections better than the other algorithms.

Outliers: Similar to [20, 21, 22], our algorithm handles out-
liers. The last row of Figure 17 shows the result of various al-
gorithms for an input with outliers. α-shape, nn-crust, χ-shape,
Simple shape, ec-shape do not handle the outliers well. Extra
edges in the curve are seen in the output of Crust. Even though
the approach proposed by F. de Goes et al. [22] could obtain
a comparatively good result, the reconstructed curve is an ap-
proximation with loss of geometry. Our result is as good as the
results of wdm-crust and Crawl.

Figure 18 demonstrate the comparative study we performed
varying the outliers. We have compared our results with
those of Crust [10], deGoes et al. [22], wdm-crust [20] and
Crawl [21]. First and second rows show the results for 20%
and 40% outliers. Third and fourth rows show the enlarged
parts of the circled portions of results for which the outliers

Fig. 19: Noisy point set (with noisy parts shown as enlarged), Point set after
simplification (by our algorithm), Result of our algorithm. Self-intersections
are also captured, as shown in second row.

Fig. 20: Results of our algorithm varying the noise band with the error norm.
The error increases when the value of noise band increases.

is 60% (shown in the last row of Figure 18). Even with 60%
outliers, our result performs as good as crust and comparable/

better than other methods.

Noisy point set: We have taken the noisy inputs by sampling
noisy line drawings. The sampling is done using WebPlotDig-
itizer tool, as in the case of a non-noisy point sets. Figure 19
shows noisy inputs (in the first column, with enlarged parts),
point sets simplified by our algorithm (in the second column)
and the results of our algorithm (in the third column).Our re-
sults reconstruct the curve well, even if the point set is noisy
or the curves have self-intersections (second row of Figure 19).
We also analysed the performance of our algorithm varying the
noise level and noise band of the input point set.

Creating a noise band: For each point in the given line draw-
ing of the input point set, a circle of radius r with centre as
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Fig. 21: Results of our algorithm varying the noise level with the error norm.
The error increases when the value of noise level increases.

Fig. 22: For three objects: Noisy point set, Results of deGoes et al. [22] and
Wang et al. [23], Point set after simplification (by our algorithm), Result of our
algorithm

the point is considered. The union of all those circles of all the
points is considered as a band area. A noise level nl% is induced
in the band area thus creating a noise band.

Calculation of the error: Let R and O be the reconstructed
and original simple closed curves respectively. Let N(Q) be the
number of points in the region Q, which is obtained by calcu-
lating the number of pixels by superimposing the images of the
curves.

error =
N((O − R) ∪ (R − O))

N(O)

Figure 20 shows our results varying the noise band for a fixed
noise level. Figure 21 shows our results varying the noise level,
for a fixed noise band. The error increases when the value of
noise band/noise level increases. Even though the error in-
creases, the approximate shape of the curve is captured.

There are algorithms developed for handling noise [13, 14,

Fig. 23: Down sampled inputs (first three figures in the first column) and Results
of other algorithms with ours. Results of F. de Goes et al. [22], Wang et al. [23]
degrade its performance for down sampled inputs. Other algorithms perform as
good as ours.

Fig. 24: (a) Scattered noisy point set (b) Point set after simplification (by our
algorithm) (c) Our result where µ =110

15], but they do not reconstruct open curves, disconnected com-
ponents, curves with self intersections and are not designed for
handling outliers. F. de Goes et al. [22] and Wang et al. [23]
are the methods designed to handle noisy input, which recon-
struct open curves and curves with self-intersections. Hence,
for noisy input we have compared our results with only that of
these methods.

Figure 22 shows sample noisy point sets along with outputs
generated by F. de Goes et al. and Wang et al. The simplified
point set generated by our noise simplification procedure and
our reconstructed output are also shown in Figure 22. Our out-
put capture geometry of the curve better than the result of F. de
Goes et al. Algorithms introduced by F. de Goes et al. [22] and
Wang et al. [23] are specially designed for noisy inputs. Fig-
ure 23 shows the output of various algorithms for simple closed
curves with varying sampling density. Most of the algorithms
performed reasonably well for the input that we tested except
F. de Goes et al. and Wang et al. which reiterates the fact that
they are tuned only for noisy inputs. Our algorithm captures the
curve irrespective of the sampling density.

Please note that for parametric methods except F. de Goes et
al. [22] and Wang et al. [23], we have tuned the parameter and
selected the best results. For F. de Goes et al. [22] and Wang et
al. [23], we have taken the results from their papers, along with
the inputs.

Limitations: Even though our algorithm simplifies noisy in-
puts, if the noise is scattered, our algorithm yields only a coarse
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approximation of the curve, which is a limitation for Delaunay
methods in general. Figure 24 shows the result of our algorithm
for a scattered noisy point set. If the outliers are closer to the
input points, our reconstruction produces extra lines as shown
in the last columns of first, second and third and fifth rows of
Figure 18. Also, we require one parameter each for simplify-
ing the noisy point set and detection of self-intersections. Self-
intersections are not identified automatically, only their restora-
tion is performed by our algorithm.

4. Conclusion and Future work

In this paper, we proposed a simple curve reconstruction al-
gorithm. Different from other works, we have designed a strat-
egy to identify the presence of noise and hence, our algorithm is
used for both simple and noisy point samples (with outliers too).
The algorithm also restores self-intersecting curves. Our algo-
rithm is a generalized one which is not input specific or feature
specific. Experiments show that the algorithm works equally
well or better than existing algorithms, detecting closed/open
curves, disconnected components, sharp corners and multiple
holes. Improving the output for scattered noisy point set and
extending the work to higher dimensions are under considera-
tion. Theoretical guarantee for our algorithm on noisy input and
outputs with self-intersections are further future directions.
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[3] Edelsbrunner, H, Mücke, EP. Three-dimensional alpha shapes. ACM
Trans Graph 1994;13(1):43–72.

[4] Melkemi, M, Djebali, M. Computing the shape of a planar points set.
Pattern Recognition 2000;33(9):1423–1436.

[5] Veltkamp, RC. Closed Object Boundaries from Scattered Points; vol.
885 of Lecture Notes in Computer Science. Springer; 1994. ISBN 3-540-
58808-6.

[6] Duckham, M, Kulik, L, Worboys, MF, Galton, A. Efficient generation
of simple polygons for characterizing the shape of a set of points in the
plane. Pattern Recognition 2008;41(10):3224–3236.

[7] Chevallier, N, Maillot, Y. Boundary of a non-uniform point cloud for
reconstruction: extended abstract. In: Symposium on Computational Ge-
ometry. 2011, p. 510–518.

[8] Gheibi, A, Davoodi, M, Javad, A, Panahi, F, Aghdam, MM, As-
garipour, M, et al. Polygonal shape reconstruction in the plane. IET
computer vision 2011;5(2):97–106.

[9] Attali, D. R-regular shape reconstruction from unorganized points. In:
Proceedings of the Thirteenth Annual Symposium on Computational Ge-
ometry. SCG ’97; New York, NY, USA: ACM. ISBN 0-89791-878-9;
1997, p. 248–253.

[10] Amenta, N, Bern, M, Eppstein, D. The crust and the beta-skeleton:
Combinatorial curve reconstruction. In: Graphical Models and Image
Processing. 1998, p. 125–135.

[11] Dey, TK, Kumar, P. A simple provable algorithm for curve reconstruc-
tion. In: SODA’99. 1999, p. 893–894.

[12] Amenta, N, Choi, S, Kolluri, RK. The power crust. In: Proceedings of
the Sixth ACM Symposium on Solid Modeling and Applications. SMA
’01; New York, NY, USA: ACM. ISBN 1-58113-366-9; 2001, p. 249–
266.

[13] Cheng, SW, Funke, S, Golin, M, Kumar, P, Poon, SH, Ramos,
E. Curve reconstruction from noisy samples. Computational Geome-
try 2005;31(1):63 – 100. Special Issue on the 19th Annual Symposium
on Computational Geometry - SoCG 2003.

[14] Mehra, R, Tripathi, P, Sheffer, A, Mitra, NJ. Visibility of noisy
point cloud data. Computers and Graphics 2010;In Press, Accepted
Manuscript:–.

[15] Feiszli, M, Jones, PW. Curve denoising by multiscale singularity de-
tection and geometric shrinkage. Applied and Computational Harmonic
Analysis 2011;31(3):392 – 409.

[16] Lee, IK. Curve reconstruction from unorganized points. Computer Aided
Geometric Design 2000;17(2):161 – 177.

[17] Peethambaran, J, Muthuganapathy, R. A non-parametric approach to
shape reconstruction from planar point sets through Delaunay filtering.
Computer-Aided Design 2015;62:164 – 175.

[18] Methirumangalath, S, Parakkat, AD, Muthuganapathy, R. A unified ap-
proach towards reconstruction of a planar point set. Computers & Graph-
ics 2015;51:90 – 97. International Conference Shape Modeling Interna-
tional.

[19] Methirumangalath, S, Kannan, SS, Parakkat, AD, Muthuganapathy, R.
Hole detection in a planar point set: An empty disk approach. Computers
& Graphics 2017;66:124–134.

[20] Peethambaran, J, Parakkat, AD, Muthuganapathy, R. A voronoi based
labeling approach to curve reconstruction and medial axis approximation.
2015.

[21] Parakkat, AD, Muthuganapathy, R. Crawl through Neighbors: A Simple
Curve Reconstruction Algorithm. Computer Graphics Forum 2016;.

[22] Goes, Fd, Cohen-Steiner, D, Alliez, P, Desbrun, M. An Optimal
Transport Approach to Robust Reconstruction and Simplification of 2D
Shapes. Computer Graphics Forum 2011;.

[23] Wang, J, Yu, Z, Zhang, W, Wei, M, Tan, C, Dai, N, et al. Robust re-
construction of 2d curves from scattered noisy point data. Comput Aided
Des 2014;50:27–40.

[24] Favreau, JD, Lafarge, F, Bousseau, A. Fidelity vs. simplicity: a global
approach to line drawing vectorization. ACM Transactions on Graphics
(SIGGRAPH Conference Proceedings) 2016;.

[25] Berg, Md, Cheong, O, Kreveld, Mv, Overmars, M. Computational Ge-
ometry: Algorithms and Applications. 3rd ed. ed.; Santa Clara, CA, USA:
Springer-Verlag TELOS; 2008. ISBN 3540779736, 9783540779735.

[26] Yvinec, M. 2D triangulation. In: CGAL User and Reference Manual;
4.10 ed. CGAL Editorial Board; 2017,.


	Introduction
	Our contributions

	Algorithm
	Guaranteeing the results
	 Closed Curve
	 Open Curve

	Handling curves with self-intersections
	Simplifying a point set to remove the effect of noise

	Results and Discusssion
	Comparison with other approaches

	Conclusion and Future work

