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a b s t r a c t 

Given a planar point set S , outer boundary detection (shape reconstruction) is an extensively studied 

problem whereas, inner boundary (hole) detection is not a well researched one, probably because de- 

tecting the presence of a hole itself is a difficult task. Nevertheless, hole detection has wide applications 

in areas such as face recognition, model retrieval and pattern recognition. We present a Delaunay tri- 

angulation based strategy to detect the presence of holes and an algorithm to reconstruct them. Our 

algorithm is a unified one which reconstructs holes, both for a boundary sample (points sampled only 

from the boundary of the object) as well as for a dot pattern (points sampled from the entire object). 

Our method is a non-parametric one which detects holes irrespective of its shape. Assuming a sampling 

model, we provide theoretical analysis of the proposed algorithm, which ensures the correctness of the 

reconstructed holes, for specific structures. We conduct both qualitative and quantitative comparisons 

with existing methods and demonstrate that our method is better or comparable with them. Experi- 

ments with varying point densities and distributions demonstrate that the algorithm is independent of 

sampling. We also discuss the limitations of the algorithm. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Given a finite set of points, S ⊆ R 

2 ( Fig. 1 (a)), shape recon-

struction problem asks for a shape in R 

2 that best approximates

S [6] . Most of the existing works in shape reconstruction such as

[5,18] , focus only on outer boundary detection ( Fig. 1 (b)). The outer

boundary can be considered as a convex/non-convex simple poly-

gon, enclosing all points of S [6] . 

Visually, Fig. 1 (c) captures the features of the shape better than

Fig. 1 (b), because of the presence of both outer and inner bound-

aries. An inner boundary (hole) can be considered as an empty

convex/non-convex simple polygon which is enclosed within a

boundary. Hole detection problem computes a best approximation

of inner boundaries of S . 

A planar point set can be classified into two types: (i) bound-

ary sample [9] or curve sample [17] and (ii) dot pattern [9] or ob-

ject sample [17] . If the points are sampled only from the boundary

of the object, it is known as a boundary sample (BS), as shown

in Fig. 2 (a). If the points are sampled from the whole object, it is

known as a dot pattern (DP), as shown in Fig. 2 (b). Fig. 2 (c) and
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d) are the reconstructed shapes for the boundary sample and dot

attern, respectively and we denote the reconstruction of holes for

S and DP as RBS and RDP, respectively. 

Given a point set S with its reconstructed outer boundary using

elaunay triangulation based methods such as [5,15,17] , hole de-

ection problem computes one of the best approximations of inner

oundaries of S . From the set of triangles of the outer boundary

econstructed triangulation (output of [5,15,17] ), we propose an al-

orithm to detect a triangle as the initial hole and expand it to

btain the hole boundary, based on the area and adjacency infor-

ation of the triangle. 

.1. Motivation 

We focus on the hole detection problem due to: (i) the chal-

enges posed by the problem (ii) varied applications for the hole

etection (iii) existence of only a few works addressing the prob-

em and (iv) non-existence of a unified method for both recon-

truction of boundary sample and reconstruction of dot pattern. 

.1.1. Challenges 

The challenges associated with the outer boundary detection

such as ill-posed nature of the problem, dependence of the recon-

tructed output on density & distribution of the input point set,

uman cognition and perception [6] ) exist for hole detection as

ell. Apart from them, another major challenge of hole detection is

http://dx.doi.org/10.1016/j.cag.2017.05.006
http://www.ScienceDirect.com
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Fig. 1. (a) Input point set (b) Shape with reconstructed outer boundary (c) Shape 

with reconstructed outer and inner boundaries. 

Fig. 2. (a) Boundary sample (b) Dot pattern (c) Reconstructed boundary sample (d) 

Reconstructed dot pattern. 

Fig. 3. (a) Convex hull (b) Shrinking of convex hull (c) Reconstructed outer bound- 

ary. 

Fig. 4. (a) Hole structure specified in RGG [17] : A fat triangle (green in color) sur- 

rounded by a set of thin triangles (blue in color) (b) Hole without the structure 

specified in RGG (c)–(d) Reconstructed holes of different structures. (For interpre- 

tation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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o identify the presence of a hole (initial guess of a candidate hole

egion to start the algorithm) in the given point set. In the case of

uter boundary detection, a natural choice for the initial guess of

he outer boundary is the convex hull ( CH ) of the point set (blue

olor boundary shown in Fig. 3 (a)), because of the following rea-

ons: (i) CH encloses all the points of S and (ii) all the vertices of

H are part of the reconstructed outer boundary. As an analogy, CH

an be considered as a rubber band and the rubber band is shrunk

 Fig. 3 (b)) to compute the outer boundary as shown in Fig. 3 (c).

n analogous structure to that of the convex hull is not available

or the hole detection. Hence, identifying the initial hole region to

tart with, is a challenging one. 

.1.2. Applications 

Hole detection has various applications in fields such as face

ecognition, model retrieval, pattern recognition etc. Hole detec-

ion is used in face detection algorithms, where a hole mapping

s used to detect certain facial characteristics such as mouth, nose,

yes and ears [19] . Hole detection has also applications in areas

uch as three-dimensional (3D) model retrieval system [12] and

D point set matching. 3D point sets can be visualized by a col-

ection of 2D views and it is easier to obtain the visual similarity

etween 2D point sets, if both inner and outer boundaries are re-
onstructed and thus the 3D model retrieval can be made more

fficient. Specifically, Computer Aided Design (CAD) models are

haracterized by features like holes, tunnels, ribs and helixes [12] .

uter and inner boundary detected 2D point sets of CAD models

ake the matching more effective and accurate. 

Other applications of hole detection are in the areas of Wireless

ensor Networks (WSNs) and power systems. Detecting the holes is

 deciding factor for the efficiency of communication in WSNs [10] .

sland (hole) formation in the power systems is a causality factor

hich has to be considered for the study of security analysis and

ontrol of power systems [11] . 

.1.3. Related work 

Unlike in the case of outer boundary detection problem,

o the best of our knowledge, only a few works such as

2,4,7,8,13,14,16,17] exist for hole detection, perhaps because the 

atter problem is more challenging than the former. Most of the

xisting works are Delaunay triangulation based, except the one

roposed in [8] . 

α-shape is the space generated by connecting point pairs that

an be touched by an empty disk of radius α [7] . The points of

eighted A -shape [14] are the vertices of the Voronoi diagram and

he centers of the Delaunay circle having radius greater than the

pecified threshold value, with weights associated with points in

parse regions. V. Kurlin proposed a method to compute number

f holes from a given noisy point cloud, based on topological per-

istence [13] . The above methods are parametric, in which a pa-

ameter was tuned to obtain different outputs for the same input.

ven though parameter tuning provides flexibility for the user to

elect the shape based on their requirements, it is very tedious to

une the parameter to obtain the best perceived shape. 

Crawl through neighbors (crawl) [16] , reconstruction of RGG

Relaxed Gabriel Graph - output of 2D reconstruction algorithm

17] , which is a collection of most of the Gabriel edges and a few

on-Gabriel edges induced by a Delaunay triangulation), crust [2] ,

N-crust [4] are non-parametric methods, which detect both outer

nd inner boundaries. Crawl is a Delaunay triangulation based

ethod, designed for boundary sample. RGG is designed for han-

ling dot pattern as input, which detects a hole only if the corre-

ponding region in the point set has a structure in which a fat tri-

ngle is surrounded by a set of thin triangles as shown in Fig. 4 (a).

or a general point set, there is no guarantee that a hole region

ollows a particular structure, and hence the hole may be of any

tructure such as shown in Fig. 4 (b), whose reconstructed holes are

hown in Figs. 4 (c)–4 (d). Hence, it is challenging to develop a non-

arametric algorithm, which in practice, works irrespective of the

tructure of the hole. Crust and NN-crust are designed to work for

oundary samples. An approximate positioning of network nodes

ear the hole boundaries was done in [8] . 

.1.4. Unified method for reconstruction of RBS and RDP 

Given an input point set, it is not easy to find out whether it

s a boundary sample or dot pattern. Hence, apart from the chal-

enges of reconstruction problem in general, there is a require-

ent for a unified method for hole detection, which works for

oth boundary sample and dot pattern. Simple shape [9] , a para-

etric algorithm that works for both BS and DP, can reconstruct

nly outer boundary. The existing hole detection algorithms are ei-

her designed for RBS [2,4] or for RDP [17] . Hence, it is challenging

o develop a unified algorithm for hole detection which works for

oth RBS and RDP. The primary motivation of a unified approach

or hole detection is to provide an approach which is independent

f the nature of the input. 
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Fig. 5. (a) Delaunay triangulation overlaid on top of a Voronoi diagram (b) Exte- 

rior triangles (in purple color), exterior edges (in red color), interior edges (in black 

color) (c) Outer boundary reconstructed triangulation ( G ). (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version 

of this article.) 

Fig. 6. (a) Interior edge e ij shared by � ijk & � ijl (b) Diametric disk on interior edge 

e ij with diameter || e ij || (c) Chord disks C 1 & C 2 on e ik , C 3 & C 4 on e jl with same 

diameter || e ij || (d) Midpoint disks C 5 on e jk & C 6 on e il with same diameter || e ij ||. 
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1.2. Our contributions 

In this paper, we propose a Delaunay triangulation based algo-

rithm for hole detection of a planar point set, assuming that the

best approximation of the outer boundary of the point set has al-

ready been obtained, by an outer boundary detection algorithm

such as [5,15,17] , where the exterior edges of Delaunay triangula-

tion are removed. (Note that the results of our algorithm is not

dependent on the choice of the outer boundary detection algo-

rithm.The proposed algorithm for hole detection works for both

types of inputs - dot pattern and boundary sample unlike a few

other algorithms [13,16,17] which are focused on a particular input

type. Our algorithm uses disk constraint [15] and regularity con-

straint [5] . Unlike [5,15] which start from an exterior edge, our al-

gorithm starts from an interior edge that is part of a highest area

triangle. Moreover, the algorithm does not assume any structure

for a hole as in [17] . Our contributions are listed as follows: 

• We propose a method for hole detection with the following

characteristics: 

- A Delaunay triangulation based strategy to efficiently detect

the presence of holes. 

- Unified method which works for both boundary sample and

dot pattern. 

- Non-parametric method, so that tuning of parameter can be

avoided. 

- Detects holes irrespective of their structure. 

- Capable of reconstructing multiple holes. 
• We perform theoretical analysis of the algorithm, assuming r -

sampling. 
• We conduct extensive comparative studies and demonstrate

that our algorithm works better or comparable with existing

methods. 
• We perform experiments varying point densities and distribu-

tions and they demonstrate that the algorithm works indepen-

dent of sampling. 

2. Basic definitions and notations 

Let S = { p 1 , p 2 , . . . , p n } be the set of n points/sites in a plane,

where n is a positive integer greater than 2. An edge between two

points p i and p j is denoted as e ij . We also use e i to denote an edge,

when the endpoints of the edge are not relevant to explain the

context. The length of an edge e ij is denoted as || e ij ||. A triangle

formed by three points p i , p j and p k is denoted as � ijk . We also as-

sume that the input point set is without noise (unwanted points),

that means the sampling is done exactly from the hole boundaries

so that no unwanted points are sampled. 

Definition 1. Voronoi diagram of S is a subdivision of the plane to

n cells, one for each site in S , with a property that a point q lies in

the cell corresponding to a site p i if and only if distance ( q , p i ) <

distance ( q , p j ) for each p j ∈ S where i � = j , where distance ( q , p i )

denotes the Euclidean distance between the points q and p i . 

Definition 2. Delaunay triangulation (DT) of S is a straight line

dual graph of Voronoi diagram of S . 

A Delaunay triangulation overlaid on top of a Voronoi diagram

for a set of points is shown in Fig. 5 (a). 

Definition 3. Exterior triangle (ET) of a Delaunay Triangulation is

a triangle which has at least one edge which is not shared by (part

of) any other triangle. Exterior edge of an ET is the edge which is

not shared by (part of) any other triangle in DT. An edge which is

not an exterior edge is known as an interior edge. 
The purple colored triangles, the red colored edges and the

lack colored edges in Fig. 5 (b) are the exterior triangles, exterior

dges and interior edges, respectively. 

efinition 4. Outer boundary reconstructed triangulation (OBRT)

s the output of an outer boundary detection algorithm such as

5,15,17] , where the exterior edges are removed from the Delaunay

riangulation of the input point set. 

OBRT is computed by an outer boundary detection algorithm

5,15,17] . OBRT for a teapot point set is shown in Fig. 5 (c), where

he solid black line indicates the reconstructed outer boundary. It

an be noticed that OBRT is a simplicial complex, where a simpli-

ial complex is defined as a collection of simplices. (A k -simplex

s defined as the nondegenerate convex hull of k + 1 geometrically

istinct points, v 0 , v 1 , ..., v k ∈ R 

d where k ≤ d [3] . Points, edges,

riangles and tetrahedra are all examples of simplices.) For easy

eference, we denote OBRT as G for further discussions. 

efinition 5. Let e ij be an edge under consideration which is

hared between two triangles � ijk and � ijl . Diametric disk of an

dge e ij is a disk with center as the midpoint of the edge and with

iameter || e ij ||. Chord disk of an edge e ik or e jk or e il or e jl is a

isk with the edge as its chord and with diameter || e ij ||. Midpoint

isk of an edge e ik or e jk or e il or e jl is a disk whose center is the

idpoint of the edge and with diameter || e ij ||. 

Note that, in this paper, the term disk means an open two-

imensional disk excluding its boundary circle. Consider an interior

dge e ij on DT , as shown in Fig. 6 (a). It can be observed that an in-

erior edge is shared by (part of) two triangles. For example, the

dge e ij is shared by � ijk and � ijl , as shown in Fig. 6 (a). Fig. 6 (b)
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Fig. 7. (a) Non-empty diametric disk C i on e i (b) Empty diametric disk C j on e j and 

non-empty chord disk C k on e k (c) Empty diametric disk C l on e l and non-empty 

midpoint disk C m on e m . 
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Fig. 8. (a)–(b) Rubber band analogy for hole boundary detection (c)–(d) Highest 

area triangle (in blue) as initial hole (e) Non-valid highest area triangle (in green) 

(f) Valid highest area triangle (in blue). (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 
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hows a diametric disk on the edge e ij . It is to be noted that both

hord disk and midpoint disks are associated with the adjacent

dge(s) of e ij on both the triangles (shared by e ij ), with diameter

| e ij ||. Chord disk of e ik exists only when || e ij || > || e ik || and there are

wo chord disks associated with one edge. Chord disks C 1 & C 2 on

 ik , C 3 & C 4 on e jl with same diameter || e ij || are shown in Fig. 6 (c).

idpoint disk of e jk exists only when || e ij || ≤ || e jk ||. Fig. 6 (d) shows

idpoint disks C 5 on e jk and C 6 on e il . 

.1. Disk and regularity constraints 

Let e ij in � ijk of G be the edge under consideration, where G

s outer boundary reconstructed triangulation of the point set. Our

lgorithm checks two constraints before removing an edge e ij from

 : (i) disk constraint and (ii) regularity constraint. Disk constraint

hecks whether a disk on an edge e ij contains any point other

han p i and p j , or in other words if the disk is non-empty. Non-

mptiness of the disk on e ij implies, e ij is longer in the local neigh-

orhood and so it can be considered for removal. 

efinition 6. Disk constraint is satisfied if any of the disks is non-

mpty. For that: 

• Check diametric disk on e ij with diameter || e ij || is non-empty 
• If diametric disk is empty: 

- Check any of the chord disks with the same diameter || e ij ||

(on the adjacent edge(s) of e ij ) is non-empty 

- If all the chord disks are empty: 

∗ Check any of the midpoint disk(s) with the same diame-

ter || e ij || (on the adjacent edge(s) of e ij ) is non-empty 

Fig. 7 (a) shows a non-empty diametric disk C i on e i . An empty

iametric disk C j on e j and a non-empty chord disk C k on e k are

hown in Fig. 7 (b). Fig. 7 (c) shows an empty diametric disk C l on

 l and a non-empty midpoint disk C m 

on e m 

. 

When e i is considered for removal (after satisfying disk con-

traint), the regularity constraint is checked on G − e i , where G − e i 
s G without e i . 

Regularity constraint is based on a structure viz. cut vertex on

he simplicial complex G. A vertex in a simplicial complex is a

ut vertex, upon whose removal results in an increased number

f components. 

efinition 7. A simplicial complex satisfies regularity constraint if

t does not have any cut vertex. 

. Hole detection algorithm 

In this section, we discuss the intuition, observation and the al-

orithm for detection of holes. 

.1. Intuition 

As pointed out in Section 1.1.1 , the major challenge of the hole

etection problem is identifying the presence of a hole. We assume
hat a small rubber band ( Fig. 8 (a), and (b)) is placed in an arbi-

rary position. We can then grow the rubber band (unlike shrink-

ng the rubber band in the case of convex hull for the outer bound-

ry) to obtain the boundary of the hole. As shown in Fig. 8 (b), the

ubber band can be placed in more than one arbitrary positions. 

.2. Observation 

From the observations of holes of different shapes in Fig. 8 (c)

nd (d), the highest area triangle � (shown in blue color) can be

onsidered as an initial candidate (rubber band) for hole region for

he algorithm due to the following reasons: (i) � is the sparsest re-

ion, ie. the region which has no points interior to it (ii) When the

nitial hole region is grown, the adjacent triangles of � contribute

o expand the region (iii) It expands towards the lesser area trian-

les which are closer towards the boundary of the hole and (iv) All

hree points on � are part of the reconstructed hole (analogous to

he case of convex hull in Section 1.1.1 ). 

efinition 8. A valid highest area triangle in G is the highest area

riangle whose none of the vertices are on the reconstructed outer

r inner boundaries. 

Even if the triangle colored green in Fig. 8 (e) is of highest area

n G , it is not a valid highest area triangle. On the other hand, the

riangle colored blue in Fig. 8 (f) is a valid one. 

.3. The algorithm 

From the given point set, DT is constructed and its outer bound-

ry is reconstructed using an outer boundary reconstruction algo-

ithm [5,15,17] . Detect a valid highest area triangle � 1 from the

uter boundary reconstructed triangulation G . This is considered as

he initial hole. The three neighboring triangles of � 1 are pushed

nto priority queue ( PQ ), in the descending order of the area of the

riangles. Pop the head of PQ to obtain � 2 . If disk constraints are

atisfied on e ij which is the edge shared between � 1 and � 2 , and

f G − e i j satisfies regularity, then e ij and in turn � 2 is removed

rom G and those become part of the hole. Disk constraint on e ij of

 ijk is satisfied if one of the disks associated with e ij is non-empty.

egularity constraint on e ij of � ijk is satisfied, if p k is not part of

ny of the outer or hole boundaries. The edge e ij is retained in G ,

f either of the constraints is not satisfied. This process is contin-

ed until PQ becomes empty. Procedure for single hole detection

 Algorithm 1 ) is called repetitively from Algorithm 2 to obtain

ultiple holes. 
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Algorithm 1: HOLE_DETECTION( G ). 

Input: G (OBRT). 

Output: Single hole P . 

1: Identify valid highest area triangle � i jk from G . 
2: if no valid highest area triangle is available then 

3: return ∅ . 
4: end if 
5: Let P be a hole initialized as � i jk . 
6: Initialize a Priority Queue ( P Q) with the adjacent 

triangles of � i jk in the descending order of area. 
7: repeat 
8: Pop the head of priority queue to � i jl . 
9: Remove e i j and in turn � i jl from G , if it satisfies 

disk constraint and G − e i j satisfies regularity 

constraint, where e i j is the edge shared with P . 
10: if e i j is removed from G then 

11: Add adjacent triangles of � i jl (if they are not 
already present in P Q and in P ) and update PQ 

appropriately. 
12: P = P 

⋃ � i jl . 
13: end if 
14: until P Q is non empty. 
15: return P . 

Algorithm 2: MULTIPLE_HOLE_DETECTION( S ). 

Input: Input point set, S. 

Output: Hole(s), H. 

1: Reconstruct outer boundary using an outer boundary 

reconstruction algorithm [5,15,17]. 
2: G = Outer boundary reconstructed triangulation of S. 
3: H = ∅ . 
4: repeat 
5: P =HOLE_DETECTION( G ). 
6: H = H 

⋃ 

P . 
7: G = G − P . 
8: until P = ∅ 

9: return H. 
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3.3.1. Illustration of the algorithm 

Illustration of the working of our algorithm using a teapot

shape is given in Fig. 9 . The point set and its Delaunay trian-

gulation are shown in Fig. 9 (a) and (b), respectively. The outer

boundary reconstructed triangulation denoted as G ( Fig. 9 (c))

is computed using an outer boundary reconstruction algorithm

[5,15,17] and is used as input to our algorithm. Fig. 9 (d) shows the

valid highest area triangle � 1 (blue in color) and it is considered

as the initial hole. The three adjacent triangles of � 1 are shown in

green color in Fig. 9 (e) and are pushed into priority queue ( PQ ), in

the descending order of their areas, because the hole is likely to

grow towards the neighboring highest area triangle. The triangle

� 2 from the head of PQ (green color triangle in Fig. 9 (f)) is popped

out and disk constraint is checked for the edge e i which is shared

between � 1 and � 2 ( Fig. 9 (g)). The diametric disk on e i is non-

empty as shown in Fig. 9 (g), hence there is no need to check non-

emptiness of other disks. G − e i is checked for regularity and since

it satisfies regularity, e i (in turn � 2 ) is removed from G and the

new edges (as shown in black color in Fig. 9 (h)), are added to the

intermediate hole. The intermediate hole is updated as shown in

Fig. 9 (i) and the adjacent triangles of � 2 which are not part of the

intermediate hole is pushed into PQ and PQ is updated in the de-

scending order of the area of triangles. Among the triangles which
re there currently in PQ (green colored triangles, adjacent to the

ntermediate hole in Fig. 9 (j)), the highest area triangle is popped

ut and the disk constraint is checked. The diametric disk on e j is

on-empty as shown in Fig. 9 (k) and the regularity constraint on

 − e j is also satisfied. The edges of G ( Fig. 9 (l)) and the interme-

iate hole ( Fig. 9 (m)) are updated. After repeating the process fur-

her, another intermediate hole obtained is as shown in Fig. 9 (n).

he adjacent triangles of the intermediate hole which are in PQ

urrently are shown in green color ( Fig. 9 (o)). The highest area tri-

ngle among them is popped from PQ and consider the edge e k on

hat triangle ( Fig. 9 (p)). The diametric disk on the edge e k of the

riangle is empty as shown in Fig. 9 (q) and there is no chord disk

xisting on any of the adjacent edges of e k , so the non-emptiness

f midpoint disk is checked. Midpoint disks on both the adjacent

dges of e k are empty as shown in Fig. 9 (r) and (s). Hence, e k is

etained as an edge on the boundary of the hole. This process is

epeated until PQ is empty. The updated G and the reconstructed

ole are as shown in Fig. 9 (t). Only one hole is detected in this ex-

mple ( Fig. 9 (t)). For multiple hole detection, Algorithm 1 is called

epetitively from Algorithm 2 until all the holes are detected. 

.4. Complexity analysis 

Algorithm 1 for single hole detection has O ( n log n ) and O ( n ) as

ime and space complexity, respectively, where n is the number of

oints in S . The time complexity is O ( n log n ) because the major

teps of Algorithm 1 and their time complexities are as follows: 

• Identifying a valid highest area triangle (Step 1 of Algorithm 1 )

takes time complexity of O ( n ), because checking whether all

three points of a triangle are marked with a flag, is performed

only once and the overall number of comparisons for finding

out the valid highest area triangle is the number of triangles,

in the worst case. Note that the number of triangles in a DT is

O ( n ). 
• The time complexity for construction of priority queue and its

updation (Steps 6 & 11 of Algorithm 1 ) is O ( n log n ). 
• Checking disk constraint on an edge (Step 9 of Algorithm 1 )

takes constant time because, for one edge removal, only a con-

stant number of adjacent triangles has to be checked. 
• Checking regularity constraint on G − e i j (Step 9 of Algorithm 1 )

takes constant time because it can be done by checking

whether p k of � ijk is already marked with a flag, before remov-

ing e ij . 

Time complexity of Algorithm 2 for multiple hole detection is

 ( h ∗n log n ), where h is the number of holes detected. No extra

pace (memory) than O ( n ) is required for Algorithm 2 , implying

hat the space complexity is O ( n ). 

. Theoretical analysis for hole detection 

Consider an original polygonal object O with zero or more

oles. We provide a theoretical guarantee by showing that only the

oles present in O are reconstructed. Due to the regularity con-

traint, our algorithm guarantees that any hole detected is a poly-

on. The correctness of each reconstructed hole is guaranteed by

roving that each hole has edges between every pair of adjacent

amples of corresponding hole boundary of O . Note that the adja-

ent boundary samples are those points which are consecutive on

he hole boundary of the polygonal object. Those points which are

ot adjacent are non-adjacent. 

For reconstruction of boundary sample and reconstruction of

ot pattern, we assume that an input point set S is sampled from

n original polygonal object O using r -sampling (see Definition 9 )

nd a modified version of r -sampling [15] , respectively. Let e ij be

n edge between the points p i and p j on a triangle � ijk in G . Let B
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Fig. 9. Illustration of hole detection algorithm: detecting the presence of a hole and expanding it to obtain the hole boundary. 
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Fig. 10. (a) Circumcircle of � fgh (b) � ijk with || p i − p j || < 2 r , || p i − p k || > 2 r , 

|| p j − p k || > 2 r (c) Empty diametric disk on e ij (d) Non-empty midpoint disk on 

e ik (e) Valid Delaunay triangles, Curved part in (b)–(g): intermediate hole (f) � ijk 

with || p i − p j || < 2 r , || p i − p k || > 2 r , || p j − p k || < 2 r and e jk is already detected 

as an edge on the hole boundary (g) Graph which does not satisfy regularity con- 

straint after removal of e ij . 

 

s

L  

1

P  

F  
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C  
nd NB denote the set of boundary and non-boundary edges of a

ole, respectively. ROB denotes the reconstructed outer boundary. 

efinition 9. In RBS, an input point set S is sampled from a polyg-

nal object O under r -sampling if it satisfies the following con-

traints: 

• || p i − p j || < 2 r, for all pairs of adjacent hole boundary samples

p i , p j ∈ S . 
• || p i − p j || ≥ 2 r, for all pairs of non-adjacent hole boundary

samples p i , p j ∈ S . 

emma 4.1. Assuming r-sampling, the circumcenter of a valid highest

rea triangle � fgh in G lies inside a hole region iff � fgh lies inside the

ole boundary. 

roof. In order to prove the forward direction of Lemma 4.1 , it is

nough to prove its contrapositive: if � fgh does not lie inside the

ole boundary, then the circumcenter of � fgh does not lie inside

he hole region. For all the other types of triangles except obtuse

riangle, circumcenter lies on or inside the triangle itself. Hence,

t is enough to prove that there does not exist an obtuse triangle

 fgh outside the hole region whose circumcenter is inside the hole

egion as shown in Fig. 10 (a). If there exists � fgh outside the hole

egion, whose circumcenter is inside the hole region, then there

xists an edge on the hole boundary which lies between the cir-

umcenter and e fh . Due to r -sampling, there are edges on the hole

oundary within the distance 2 r , which implies there is a Delaunay

riangle with at least one point in the circumscribing circle of � fgh 

 Fig. 10 (a)). This contradicts the circumcircle property of Delaunay

riangulation and thus the existence of the obtuse triangle � fgh . 

Reverse direction of Lemma 4.1 can be proved using a similar

rgument as that of the forward direction. It can be done by prov-

ng that there does not exist � fgh inside the hole boundary, whose

ircumcenter lies outside the hole region. �
If the circumcenter of a valid highest area triangle in G lies in-

ide a hole region, then it is said to be a potential triangle. 

emma 4.2. In RBS, starting from a potential triangle in G , Algorithm

 retains all e ij ’s ∈ B. 

roof. Let e ij be a boundary edge of a potential triangle � ijk in

ig. 10 (b). The curved part shown in Fig. 10 (b)–(g) represents the

econstructed intermediate hole. Three cases are considered: (i)

ase-1 : || p i − p j || < 2 r , || p i − p k || > 2 r , || p j − p k || > 2 r . The
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Fig. 11. (a) Hole with body-arm structure: 3-Arm with one fat triangle (b) 4-Arm with two fat triangles and a candidate edge e ij (c) Distorted body-arm structure with 

distorting edge e ij (d) Non-empty diametric disk C 1 (e) Empty diametric disk C 1 & Non-empty chord disk C 2 . 
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diametric disk is empty ( Fig. 10 (c)), because || p i − p j || is less

than both || p i − p k || and || p j − p k || . || p i − p j || > || p i − p k || and

|| p j − p k || ensures only midpoint disks exist. If ∃ p l ∈ any of the

midpoint disk ( Fig. 10 (d)) implies � ijk is an invalid Delaunay trian-

gle whose valid Delaunay triangles are shown in Fig. 10 (e). 

(ii) Case-2: || p i − p j || < 2 r , || p i − p k || > 2 r , || p j − p k || < 2 r . In

this case, if e jk is already detected as an edge on the hole boundary

(as shown in Fig. 10 (f)) then, even if one of the disks is non-empty,

e ij cannot be removed because of regularity constraint ( Fig. 10 (g)

shows the graph which does not satisfy regularity constraint after

removal of e ij ) and hence e ij is retained. On the other hand, if e jk 
is not already detected as a hole boundary edge: diametric disk on

e ij is empty because || p i − p k || > 2 r. Two cases arise here: both

disks on p ik and p jk are midpoint disks, disk on p ik , p jk are mid-

point and chord disks, respectively. In both the cases, as the corre-

sponding disks are empty, ∃ p m 

∈ midpoint disk on p ik contradicts

our assumption that � ijk is a valid Delaunay triangle. Suppose ∃ p l 
∈ chord or midpoint disk on p jk then it implies that � ijl is the hole

because of r -sampling. 

(iii) Case-3: || p i − p j || < 2 r , || p i − p k || < 2 r , || p j − p k || < 2 r .

In this case, all the three edges e ij , e ik and e jk are retained and � ijk 

is reconstructed as a hole. �

For the proof for removal of non-boundary edges from G , we

borrow the concept of a body-arm structure from [17] . In [17] , a

hole is visualized as a body-arm structure with a body surrounded

by a set of arms as shown in Fig. 11 (a), where a body is a set of

connected fat triangles (acute triangles) and an arm is a set of thin

triangles (obtuse triangles) attached to a fat triangle in the body.

Fat triangles in a body are connected in a linear fashion ie. each fat

triangle in a body is connected to at least one arm. Fig. 11 (a) and

(b) show a 3-Arm structure and a 4-Arm structure, respectively. For

further details on body-arm structure, please refer [17] . 

Definition 10. A candidate edge is an edge common to a pair of

fat triangles in a body-arm structure. 

For example in a body-arm structure with 4-arms, there exists a

candidate edge e ij as shown in Fig. 11 (b), whereas in the case of 3-

arms, there is only one fat triangle and hence there is no candidate

edge ( Fig. 11 (a)). 

Definition 11. If a fat triangle occurs in between the thin triangles

of an arm of a body-arm structure, then it is known as a distorted

body-arm structure. The edge which distorts the body-arm struc-

ture is known as a distorting edge. 

An example of a distorted body-arm structure is shown in

Fig. 11 (c), where � ijk is the fat triangle in between the thin tri-

angles and e ij is the distorting edge. 

Lemma 4.3. In RBS, starting from a potential triangle of a hole in G ,

Algorithm 1 removes all e ij ∈ NB (where e ij is an edge of � ijk ) if it

satisfies either of the following conditions: 
1. The hole is a body-arm structure with the length of the candidate

edge longer than either of its adjacent edges. 

2. The hole is a distorted body-arm structure with the length of the

distorting edge and the candidate edge(s) longer than their adja-

cent edges. 

roof. Case-1 : If the hole is a body-arm structure with only one

at triangle: Assume that the diametric disk on e ij is empty. Due

o the body-arm structure, there exists a thin triangle � ijl (purple

olored triangle in Fig. 11 (d)). Hence, p l is present in diametric disk

 1 , which leads to a contradiction to the assumption. The proof

olds for remaining non-boundary edges in the arms. Hence e ij ’s

re removed. 

Case-2 : If the hole has a body-arm structure with more than

ne fat triangle and the length of the candidate edge is longer than

ither of its adjacent edges: The diametric disk C 1 on the candidate

dge e ij is empty because of the fat triangle, as shown in Fig. 11 (e).

ue to the body-arm structure, there exists a thin triangle that has

 ik as one of its edges. The chord disk C 2 on e ik is non-empty be-

ause of the presence of the thin triangle ( Fig. 11 (e)). Hence e ij is

emoved. As in case-1, all other non-boundary edges of the body-

rm structure are removed. 

Case-3: The hole is a distorted body-arm structure with the

ength of the distorting edge & the candidate edge(s) longer than

heir adjacent edges: All the non-boundary edges of the body-arm

tructure up to the distorting edge is removed as in case-1 or case-

. The removal of distorting edge reduces to the proof of case-2

 Fig. 11 (e)). �

To summarize, the theoretical analysis ensures the correctness

f the reconstructed holes, assuming the input point set is sampled

rom an original polygonal object under r -sampling. This was done

y showing that all the boundary edges of a hole are retained and

ll non-boundary edges are removed (under specific conditions),

y our hole detection algorithm. 

For RDP, as there are non-boundary points (unlike RBS), its

uarantee can be proved in similar lines as that of RBS, assuming

 slight modification in r -sampling [15] . 

. Results 

We have used CGAL 4.3 [1] for implementation. To the best of

ur knowledge, there is no repository for 2D point sets with holes.

ence, the input point sets we used for generating results and

omparisons are either generated from 3D models of Engineering

hape Benchmark [12] by converting them to 2D shapes or cre-

ted by ourselves. Even though a sampling model is assumed for

heoretical proofs of our algorithm (reconstruction algorithms in

eneral are theoretically proved assuming a sampling model [2] ),

he algorithm has been tested on point sets not conforming to any

ampling model. For example, in the case of quantitative compari-

on of our results with other algorithms, we have used input point

ets with different point densities and distributions. 



S. Methirumangalath et al. / Computers & Graphics 66 (2017) 124–134 131 

Table 1 

1 st , 3 rd & 5 th columns: Boundary sample, 2 nd , 4 th & 6 th columns: Output of our algorithm. Concavities (in all the outputs) 

and sharp corners (last column of 1 st row) are captured well. 

Table 2 

1 st , 3 rd & 5 th columns: Dot pattern, 2 nd , 4 th & 6 th columns: Output of our algorithm. Concavities (in all the outputs) and 

sharp corners (last column of 1 st row) and multiple holes (outputs in 2 nd row) are captured well. 

Fig. 12. Comparative results of RDP with input point sets. Left bottom in each box characterizes the output: G - Good reconstruction of holes, N - Holes not detected. Some 

of the defects of reconstruction have been circled. 
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A few results of our algorithm for the boundary sample and dot

attern are shown in Tables 1 and 2 respectively. It can be noticed

hat the holes with various shapes for both BS and DP are cap-

ured. Concavities, sharp corners and multiple holes are captured

ell. It should be emphasized that our algorithm detects holes ir-

espective of the structure of the hole, without parameter tuning. 

.1. Comparison with existing methods 

We have compared our algorithm with six existing methods viz.

-shape [7] , RGG [17] , crust [2] , NN-crust [4] , topologically persis-

ent hole detection (TPHD) [13] & crawl [16] , for which the codes

ere available. We have performed both qualitative and quantita-

ive comparisons. For qualitative comparison, we have used point

ets generated from 3D models of Engineering Shape Benchmark

12] and those created by ourselves. For quantitative comparison,

e have created point sets of standard shapes like square, rectan-

le and polygons because any error measure (in this paper, L 2 -error

orm [5] ), compares the reconstructed shape only if it is from a

tandard shape, whose exact area can be computed. 

.2. Qualitative comparison 

Fig. 12 shows the comparison of our results for dot pattern with

-shapes and RGG (Crust, NN crust, TPHD & crawl do not work

or dot patterns and the algorithm in [8] does not detect the hole
oundary but detects only the approximate positions to place sen-

or nodes). G & N in left bottom in each box denote good recon-

truction of hole & hole is not detected at all, respectively. 

It can be observed that our results are as good as or better than

thers. Summarizing the comparison of RDP with other methods

nd ours: (i) our results capture small features like key hole better

han α-shape and RGG (ii) concavities are captured by our results

ither better than or equal to the other two methods. 

A few of the results for the qualitative comparison for bound-

ry sample are shown in Fig. 13 , which shows α-shape, RGG, crust,

N-crust, TPHD, crawl & our result in that order. Summarizing the

omparison of RBS with other methods and ours: (i) our results

apture small features like key hole better than α-shape and RGG,

nd equal to that of crust, NN-crust, TPHD & crawl (ii) sharp fea-

ures are captured better by our method than the other four meth-

ds and as good as TPHD & crawl (iii) concavities are captured by

ur results either better than or equal to other methods. It is to be

mphasized that our approach works independent of the type of

he input point set. 

.3. Quantitative comparison varying point densities & distributions 

For quantitative comparison, we have considered only the er-

or(s) caused by the reconstructed hole boundaries and not the

nes by the outer boundary, since we are comparing the perfor-
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Fig. 13. Comparative results of RBS with input point sets. Left bottom in each box characterizes the output: G - Good reconstruction of holes, N - Holes not detected. Some 

of the defects of reconstruction have been circled. 

Fig. 14. Plots for point density vs L 2 error norm along with original shape in the inset which show that L 2 -error is less in the case of our result compared to other methods. 
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mance of the hole detection algorithms. The error measure we

used for quantitative comparison is L 2 error norm [5] , which pro-

vides the symmetric difference between the areas of both the

set of holes, which provides a measure on how much the recon-

structed hole(s) differs from the original. If the value of L 2 error is

zero, that means there is no difference between the original and

reconstructed hole(s). 

We analyzed how L 2 error norm varies with point sets with dif-

ferent point density, where point density is the number of points

per unit area. From the plots shown in Fig. 14 , it can be observed

that our results have lesser L 2 error than the other two methods. 

We also analysed how L 2 error norm varies with heterogene-

ity in point distribution. We considered three types of distribu-

tions : (i) Random Dense Boundary (RDB)- where the points on the

hole boundary are dense and rest of the points are randomly dis-

tributed (ii) Random Sparse Boundary - (RSB) - where the points

on the hole boundary are sparse and the rest of the points are ran-

domly distributed and (iii) Random (R) - where all the points are
andomly distributed. Note that the term “boundary” in RDB and

SB refers to hole boundary and we compare only the hole bound-

ries and not the outer boundaries. Hence, for RDB, RSB and R, the

oints on the outer boundary are not taken into account, and only

he points on the hole boundary and those between outer and hole

oundary are considered. The plots in Fig. 15 show that in RDB and

SB our results are better than the other two methods. However,

n random (R) distribution, our results have more L 2 error than ei-

her of the methods. A few results used for obtaining the plots for

arying point distribution (RDB & RSB) and the plots for varying

he point density are shown in Fig. 16 . 

. Discussion 

Crawl, Crust and NN-crust work only for boundary samples,

nlike our unified method. The outputs of crawl, crust and

N-crust can be open curves (hence it is difficult to find out

hether they are holes), whereas the holes detected by our
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Fig. 15. Plots for point distribution vs L 2 error norm along with original shape in the inset which show that in RDB & RSB, L 2 -error is less in the case of our result compared 

to other methods. But, in Random (R) distribution, our result degrades its performance than α-shape and outperforms RGG (Fig. (a) & (c)) whereas our result is not as good 

as RGG but better than α-shape (Fig. (b)). 

Fig. 16. A few results used for obtaining Point distribution vs L 2 error norm plots & Point density vs L 2 error norm plots. 

Fig. 17. Our method: (a) BS (b) Valid highest area � in non-hole region (c) Initially 

detected hole (d) Result for RBS . 
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Fig. 18. (a)–(b) Hole with acute sharp angles is not captured even after increas- 

ing the point density. (c) Noisy input point set creates over-digging (d) Result of 

random distribution which over-digs. 
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ethod are polygons. RGG detects holes, only if the holes satisfy

 specified structure, unlike our method which is irrespective of

he structure. Summarizing the characteristics of the proposed hole

etection algorithm, our algorithm is: (i) simple, efficient and easy

o implement. (ii) non-parametric, which avoids parametric tuning.

iii) unified one for both boundary sample and dot pattern. (iv) de-

ects holes irrespective of their structure. (iv) capable of detecting

harp corners (if it is not acute angled), concavities and small fea-

ures like key holes. 

.1. Limitations 

Even if our method has many advantages, one of the limitations

f our method is that if the valid highest area triangle is not in

he hole region, our algorithm does not perform well ( Fig. 17 ). The

oundary sample and G are shown in Fig. 17 (a) & (b), respectively.

t can be seen that the valid highest area triangle � 1 (shown in

lue color in Fig. 17 (b)) is not in the hole region. (In this case � 1 

oes not have its circumcenter inside the hole boundary and hence

t is not a potential triangle as we pointed out in Lemma 4.1 .)

nitial hole reconstructed & four more holes detected further are

hown in Fig. 17 (c) & (d), respectively. Even if our algorithm does

ot work for boundary sample in this example, it detects the holes
ncluding the key hole in the case of dot pattern ( 2 nd row, 2 nd

olumn of Table 2 ). 

Our algorithm is not able to capture a hole which has acute

harp angles, even after increasing the point density, as shown in

ig. 18 (a) & (b). The reason is, the hole with an acute sharp angle

oes not satisfy the body-arm condition specified in Lemma 4.3 .

f a hole has non-acute sharp angles, our algorithm captures the

harp corners very well (Last figure on the first row of Tables 1 &

). If the input point set is noisy, the hole boundary is not captured

ell as shown in Fig. 18 (c). When the input point set is of ran-

om distribution, our algorithm degrades its performance by over-

igging ( Fig. 18 (d)) 

. Conclusion 

We have designed a strategy to detect the presence of a hole

nd developed a Delaunay triangulation based method for hole de-

ection of a planar point set which works both for boundary sam-

le and dot pattern. Our algorithm detects holes irrespective of the

tructure of the hole. We evaluated our algorithm both theoreti-

ally and experimentally. Theoretical analysis is provided under r -

ampling for specific hole structures. We have conducted extensive

omparative studies with the existing methods and demonstrated
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that our algorithm works better or comparable with other meth-

ods. We have also tested the algorithm with varying point den-

sities and distributions, showing a better performance under L 2 -

error norm. We also observed that it does not perform well in

random point distributions. Our method has been tested on input

point sets independent of sampling, with comparable or better per-

formance with other methods. If the highest area triangle detected

is not in the hole region, performance of our algorithm degrades.

One of the directions of future work is to detect holes in a noisy

point set and another one is an extension of this work to 3D. 
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