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Abstract

Reconstruction problem in R
2 computes a polygon which best approximates the geometric shape induced by a given point set,

S . In R
2, the input point set can either be a boundary sample or a dot pattern. We present a Delaunay-based, unified method

for reconstruction irrespective of the type of the input point set. From the Delaunay Triangulation (DT ) of S , exterior edges are

successively removed subject to circle and regularity constraints to compute a resultant boundary which is termed as ec-shape and

has been shown to be homeomorphic to a simple closed curve. Theoretical guarantee of the reconstruction has been provided using

r-sampling. In practise, our algorithm has been shown to perform well independent of sampling models and this has been illustrated

through an extensive comparative study with existing methods for inputs having varying point densities and distributions. The time

and space complexities of the algorithm have been shown to be O(n log n) and O(n) respectively, where n is the number of points in

S .
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1. Introduction1

Given a finite set of points S ⊆ R
2, reconstruction problem2

computes a polygon which best approximates the geometric3

shape induced by S [1]. The major challenges of the recon-4

struction problem are the facts that it is ill-posed and there is5

little success in phrasing it as an optimization problem [1]. It is6

an extensively studied problem because of the existence of var-7

ied applications and the application specific nature of the output8

[2]. Quantifying how much the output approximates S is a dif-9

ficult task [1] and thus there are different outputs for the same10

point set. The output highly differs with human cognition and11

perception [1] and it is dependent on heterogeneity in density12

and distribution of S .13

Algorithms for reconstruction are based on the sampling of14

the input shape, which is of two types. One category of input15

consists of points sampled only from the boundary of the object,16

termed as boundary sample [3] or curve sample [4], as shown in17

Figure 1(a). The other category consists of points sampled from18

the whole object termed as dot pattern [3] or object sample [4]19

as shown in Figure 1(b). We use RBS to denote reconstruction20

from a boundary sample (Figure 1(c)) and RDP for reconstruc-21

tion from a dot pattern (Figure 1(d)) respectively.22

Algorithms for reconstruction can also be classified as two23

types: Delaunay based and non-Delaunay methods. As our al-24

gorithm is Delaunay based, we focus our discussion mainly on25

Delaunay based methods. One of the earliest attempts to char-26

acterise a set of points in the plane was by Edelsbrunner et al.’s27
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Figure 1: (a) Boundary sample. (b) Dot pattern. (c,d) Reconstructed shapes (ec-

shapes in this paper) of the boundary sample and the dot pattern. (e) Delaunay

triangulation of boundary sample. (f) Delaunay triangulation of dot pattern.

α-shape [5]. Another one (though in 3D) is the sculpting al-28

gorithm by Boissonnat [6]. In [7], sculpting strategy is based29

on the length of the boundary edge of tetrahedron where as in30

[4], it is based on the circumcircle of an exterior triangle. The31

reconstruction in [8] is done by a greedy simplification of De-32

launay triangulation using a series of half-edge collapse opera-33

tions that minimizes the increase of total transport between the34

input point set and the triangulation. Galton and Duckham pro-35

posed an algorithm for characteristic shape (χ-shape), where36

the longest edge from the Delaunay triangulation was removed37

if it satisfied certain conditions [9]. Family of crust algorithms38

based on Delaunay Triangulation were introduced to capture39

various features of a point set [10, 11, 12]. Regular interpolants,40

which are the polygonal approximations of planar curves are41

introduced in [13]. RBS based on γ-graph is presented in [14].42

Ball pivoting algorithm [15] is a non-Delaunay method which43

starts with a seed triangle and proceeds by pivoting a ball to get44

the next point. Join and glue are the main topological operations45

performed in the algorithm which adds and deletes edges re-46

spectively. Simple shape algorithm [3] presents a non-Delaunay47
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approach for reconstruction that can handle both dot patterns as48

well as boundary samples.49

1.1. Motivation50

In general, reconstruction, irrespective of the type of input,51

has many applications in various fields. Reconstructed bound-52

ary unambiguously defines a valid object on these points and53

can be used for initial design of an artifact, for numerical anal-54

ysis, or for graphical display [14]. Map generalization [2] is one55

among many other applications of reconstruction in the field of56

Geographical Information Systems (GIS).57

It is to be emphasised that RBS has an equivalent problem58

in three-dimension (3D) which is popularly known as surface59

reconstruction where as the problem of reconstruction from dot60

pattern has no equivalent problem in 3D. Hence, the reconstruc-61

tion problem is very much relevant in two-dimensions (2D) it-62

self as the host of recent applications (such as GIS and biomed-63

ical image analysis) indicate. Almost all the approaches for64

reconstructing from either type of input depend on at least one65

input parameter which is difficult to identify. Moreover, most of66

the current approaches deal with only one of the input type and67

not both (except [3]). The approaches that work for RBS may68

not work for RDP and vice versa, illustrating the requirement of69

a unified approach. Most algorithms have been tuned to work70

only for one kind of input (such as Crust [10], which has been71

tuned for boundary samples). Hence, the major motivation in72

this paper is to provide an approach for reconstruction that is73

independent of the nature of the input.74

Our algorithm differs mainly from other sculpting algorithms75

in its sculpting strategy. We use circle (three types of circles)76

and regularity constraints as the strategy where as in [4] it is77

based on a combination of circumcenter and circumradius of78

Delaunay triangle. An optimal transport-driven approach is79

proposed in [8]. The constraints imposed on removing an edge80

depends on Euclidean Minimum Spanning Tree and Extended81

Gabriel Hypergraph in [7]. In [15], decision on whether to in-82

sert an edge to the boundary is made using a pivoting ball where83

as simple shape algorithm in [3] replaces a selected edge of ini-84

tial convex hull with two new edges using a selection criteria85

value which depends upon edge length, closeness of points and86

angle formed by the two new edges. In [6] the sculpting strat-87

egy is based on the maximum distance in the sculpture.88

1.2. Our contributions89

• A unified approach for RBS as well as RDP has been pro-90

posed.91

• An empty circle approach using DT has been proposed.92

• Theoretical guarantee as well as extensive experiments93

have been provided to evaluate the proposed approach.94

• Demonstrated that the approach works well where other95

algorithms have restrictions.96

(a) (b) (c) (d)

Figure 2: (a) Non-empty diametric circle C1 (b)Empty diametric circle C2 and

non-empty chord circle C3 (c)Empty diametric circle C4 and non-empty mid-

point circle C5 (d) Regularity constraint

2. Preliminaries97

Let S = {p1, p2, p3, ..., pn} ⊆ R
2 be the input point set of n98

points. The line segment between two points pi and p j, includ-99

ing its end points, is termed as an edge, denoted as ei j. △i jk100

denotes the triangle formed by three points pi, p j and pk. De-101

launay Triangulation of the input point set S (which is a hyper102

graph of S ) is denoted as DT (S ). DT s of boundary sample and103

dot pattern are shown in Figures 1(e) and 1(f) respectively.104

DEFINITION 1 Exterior Triangle (ET ) of a graph is a triangle105

which has at least one edge which is not shared by any of the106

other triangle.107

DEFINITION 2 Exterior edge (EE) of an ET is the edge not108

shared by any other triangle in the graph. A vertex of an exterior109

edge is called an exterior vertex.110

DEFINITION 3 Chord circle of an edge ei j is a circle with ei j111

as its chord.112

DEFINITION 4 Midpoint circle of an edge ei j is any circle113

whose centre is the mid point of the edge.114

DEFINITION 5 Diametric circle of an edge ei j is a midpoint115

circle with diameter ||p j − pi||.116

Figure 2(a) shows a diametric circle C1 for an EE of an ET .117

It is to be noted that a diametric circle is associated only with118

an EE (of an ET ), where as the chord and midpoint circles are119

always associated with adjacent sides of the EE of the ET . A120

chord circle C3 having the same radius of diametric circle C2 is121

shown in Figure 2(b). Two chord circles are possible using the122

radius of C2 on the same edge. A midpoint circle C5 having the123

same radius of diametric circle C4 is shown in Figure 2(c).124

3. Algorithm125

3.1. Algorithm Idea126

Consider a diametric circle of an exterior edge e (Figure2(a)).127

The intuition is that, if the diametric circle is non-empty, then128

e is comparatively longer in the local neighbourhood. Even129

if the diametric circle of e is empty and the chord circle(s) or130

midpoint circle(s) of the adjacent sides of ET (whose exterior131

edge is e) is non-empty, then e is comparatively longer in the132

local neighbourhood. The non-emptiness of any of the three133

types of circle(s) indicates that the vertices of e might not be134

neighbours in the boundary of the original shape and e can be135

removed from the graph.136
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3.2. Regularity and Circle Constraints137

DEFINITION 6 A dangling edge e in G is a bridge [16] such138

that G-e has exactly one more component than G and one of the139

components in G-e is an isolated vertex, where G-e denotes G140

without e.141

Figure 2(d) illustrates a graph containing dangling edges (eac142

and ebd), bridge (ee f ) as well as junctions points (c, d, e and f ).143

Junction point is also known as cut vertex [16]. It is obvious144

that all dangling edges are bridges.145

Regularity Constraint - A graph is said to be regular if it146

does not have bridges, dangling edges or junction points.147

Circle Constraint - The exterior edge of an ET in a graph148

is said to satisfy circle constraint if any one of the following149

conditions is satisfied:150

• Diametric circle (say, radius R) of the exterior edge of the151

graph is non-empty (i.e., the circle contains at least one152

point of S ).153

• Any chord circle with the same radius R for any of the154

adjacent sides of the ET is non-empty ( a chord circle is155

available when 2R > the length of the adjacent side).156

• Any midpoint circle with the same radius R for any of the157

adjacent sides of the ET is non-empty ( a midpoint circle158

is available when chord circles are not available ie. when159

2R <= length of the adjacent side).160

3.3. Algorithm details161

The algorithm consists of two steps; (a) Removing an exte-162

rior edge (EE) (and hence the ET ) and (b) Check for termina-163

tion.164

Removing an exterior edge165

Initially, the graph (say, G) is DT (S ). The exterior edges of166

G are arranged in a priority queue (PQ) in the descending order167

of the edge lengths. First EE is taken from the PQ and checked168

for circle constraint. If it satisfies the constraint, then the graph169

G − EE (ie. G with out the EE) is checked for regularity. G170

is then updated to G − EE, if G − EE is regular. Broadly the171

exterior edge is removed if it satisfies the circle constraint and172

the graph without the edge is still regular. Removing an exterior173

edge implies that the corresponding ET is also deleted from174

the graph. The adjacent edges (which are still edges in some175

other triangles in the graph) of the removed ET are updated to176

exterior edges and added to the PQ, maintaining the descending177

order of the edge lengths.178

Check for termination179

An EE cannot be removed if it does not satisfy the circle180

constraint or the graph excluding the EE is not regular. The181

algorithm terminates when there is no possibility of removing182

any EE.183

Algorithm 1 gives the pseudocode for generating ec-shape,184

given a point set S . Time complexity of our algorithm de-185

pends on construction of DT , construction of PQ and its up-186

dation, checking circle and regularity constraints and removal187

Algorithm 1: ec-shapeConstruction(S )

Input: Input point set, S .

Output: ec-shape.

1: Construct a graph G = Delaunay Triangulation, DT (S ).

2: Construct a Priority Queue (PQ) of EEs of G in the

descending order of edge lengths.

3: repeat

4: Delete the EE of ET from the head of PQ and remove

it from G, if it satisfies the circle constraint and G − EE

is regular.

5: If EE is removed from G, add the adjacent sides of the

ET to PQ maintaining the descending order of the edge

lengths.

6: until No more EE in G can be removed.

7: return ec-shape, the exterior edges of the graph G.

of an EE from G. The non-emptiness of any circle of an EE188

implies presence of at least one vertex of the adjacent trian-189

gles of its ET . Hence checking circle constraint for EE of ET190

takes constant time because it is enough to check the points of191

two adjacent triangles of the ET . An ET is considered for re-192

moval only if it has exactly one vertex which is not exterior,193

which can be easily done by setting a flag for exterior vertices.194

Hence, regularity constraint can be ensured by checking the flag195

of the third vertex of ET (the vertex not part of EE) and it can196

be done in constant time. Removal of EE from G is of con-197

stant time because it is done by ensuring circle and regularity198

constraints. The two edges which replaces EE becomes part of199

PQ and one updation of PQ takes O(log n) time. The number200

of edges of DT is O(n) and hence the overall updation of PQ201

takes O(n log n) time. Initially, DT and PQ are constructed in202

O(n log n) time and hence over all complexity of our algorithm203

is O(n log n). As no extra space is needed for performing any of204

the steps in the algorithm, its space complexity is O(n).205

3.4. Illustration of Algorithm206

Figure 3 illustrates Algorithm 1 using the dot pattern shown207

in Figure 3(a). The DT , which is the initial graph G for the208

dot pattern, is shown in Figure 3(b). In this section, we denote209

an edge as ei, for convenience. The exterior edges are then210

put in priority queue in the descending order of their lengths.211

The longest one is picked at the beginning (e1 in Figure 3(c)).212

The diametric circle of e1 satisfies circle constraint and G − e1213

is regular. e1 is then removed (and its corresponding ET ) and214

edges e2 and e3 are updated (Figure 3(d)) as EEs and are added215

appropriately in the queue. G is updated to G − e1. Algorithm216

proceeds further and removes few more EEs (Figure 3(e)) along217

with updating G. When the algorithm encounters the edge e4,218

the diametric circle of e4 (Figure 3(f)) is empty. Since e4 is219

shorter than the other two edges of the ET , no chord circles220

are available. Hence, the midpoint circles (blue color in Figure221

3(f)) are used for testing the circle constraint using the radius222

from the diametric circle of e4. As one of the midpoint circles223

satisfies circle constraint, and G − e4 is regular, e4 is removed.224

The edges e5 and e6 (Figure 3(g)) are updated to EEs (and their225
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m)

Figure 3: (a) Dot pattern, (b) DT , (c) Diametric circle of e1, (d) e2 and e3 are added to the queue, (e) Intermediate graph, (f) Diametric circle of e4 becoming

midpoint circle for the adjacent sides, (g) e5 and e6 added to the queue, (h) Intermediate graph, (i) Empty diametric circle of e7 and chord circles of adjacent sides

(j) e7 and e8 added to the queue, (k) Empty diametric circles and four chord circles, (l) Final graph, (k) ec-shape

corresponding triangles as ET s) and added to the queue. G is226

updated to G − e4 . The algorithm continues further (Figure227

3(h)). Figure 3(i) shows an exterior edge e7, whose diametric228

circle is empty, whereas at least one of the chord circles is not229

empty. e7 is removed as G − e7 is regular and the queue and G230

are updated (Figure 3(j)). Figure 3(k) shows an EE where all231

the circles are empty and hence this edge cannot be removed.232

Figure 3(l) shows a graph when Algorithm 1 terminates. The233

exterior edges of G form the ec-shape (Figure 3(m)).

(a) (b) (c) (d)

Figure 4: (a) Non-empty Diametric circles (b) Non-empty chord circle (c) Pres-

ence of a point which makes the DT invalid (d) Valid DT

234

4. Theoretical Guarantees235

For RBS, we assume that input point set S is sampled from a236

polygonal object O using a modified version of (r, ↑) sampling237

specified in [4]. We refer the sampling as r-sampling which is238

defined as follows:239

DEFINITION 7 In RBS, an input point set S is sampled from a240

polygonal object O under r-sampling if it satisfies the following241

constraints:242

• Each pair of adjacent boundary samples lies at a distance243

of at most 2r.244

• Any pair of non-adjacent boundary samples lies at a min-245

imum distance of 2r.246

LEMMA 4.1 In RBS, assuming the input point set S is sam-247

pled from a polygonal object O using r-sampling, Algorithm 1248

removes the exterior edges that are not boundary edges.249

Proof Consider an ET △i jk ∈ DT between three points pi,p j250

and pk. Let di j denote ||pi-p j||. Assume exterior edge (pi,p j)251

is not a boundary edge. Three cases are to be considered for252

the proof: Case 1 - di j > 2r, dik < 2r and d jk < 2r : In this253

case, the diametric circle of (pi,p j) is non-empty. Hence the254

removal of (pi,p j) is valid. Case 2- di j > 2r, dik < 2r and d jk >255

2r: If the diametric circle of (pi,p j) is non-empty, then removal256

of (pi,p j) is valid. Otherwise, chord circle or midpoint circle257

of any of the other two edges is non-empty. If it is not, by the258

presence of a point outside all the circles, the DT is invalid.259

Hence non-emptiness of any of the circles implies removal of260

(pi,p j) is valid. Case 3- di j > 2r, dik > 2r and d jk > 2r : If261

(pi,p j) is longer than any of the other edges of ET , either of the262

three circles is non-empty. Otherwise, it reduces to case 2 of263

the proof.264

LEMMA 4.2 In RBS, assuming the input point set S is sampled265

from a polygonal object O using r-sampling, Algorithm 1 does266

not remove any of the boundary edges.267

Proof Consider an ET △i jk ∈ DT between three points pi,p j,268

and pk. Assume (pi,p j) is a boundary edge. If a diametric cir-269

cle of (pi,p j) is non-empty, ET has the other two edges also270

as boundary edges (Figure 4(a) ) and it violates r-sampling. A271

diametric circle is empty and at least one chord circle is non-272

empty (Figure 4(b) ) results in a polygon which is not simple,273

which contradicts the fact that ec-shape is a simple polygon.274

Both diametric and chord circles are empty and midpoint circle275

is non-empty (Figure 4(c) )implies an invalid DT whose valid276

DT is shown in Figure 4(d). Hence, Algorithm 1 does not re-277

move any of the boundary edges.278

COROLLARY 4.3 Following Lemmas 4.1 and 4.2, ec-shape279

is homeomorphic to a simple closed curve.280
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(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o) (p)

(q) (r) (s) (t) (u) (v) (w) (x)

Figure 5: (a)-(l) Boundary sample and ec-shape pairs for different inputs, (m)-(x) Dot pattern and ec-shape pairs for different inputs.

Proof The non-boundary edges are removed due to Lemma 4.1281

and the boundary edges are retained due to Lemma 4.2, hence282

ec-shape captures linear approximation of the original bound-283

ary and is homeomorphic to a simple closed curve.284

Due to the existence of interior points in the dot pattern, Def-285

inition 7 is modified by adding an additional constraint - A286

boundary sample is at a minimum distance of 2r with respect287

to any non-boundary sample. Topological guarantee for RDP288

can be proved in a similar way as it has been proved for RBS.289

5. Results and Discussion290

We implemented our algorithm in C++ using Delaunay Tri-291

angulation package and other geometric predicates available in292

Computational Geometric Algorithms Library [17]. It has to be293

noted that all the input point sets we have used for generating294

results and comparison purposes are generic in nature and do295

not follow any sampling model.296

Usually, in the area of reconstruction, the theoretical guaran-297

tee is provided under certain sampling models (see Section 4 for298

our sampling model). Nevertheless, in practise, such sampling299

models are rarely achievable [12] and hence it is important to300

establish that an algorithm performs on generic inputs, indepen-301

dent of the sampling models. The input point sets used in the302

paper are of varying point densities and distributions and not303

particular to any sampling model. Few inputs and outputs of304

the algorithm for both boundary samples and dot patterns are as305

shown in Figure 5. Our results in Figure 5 clearly points out that306

the algorithm can handle shapes with sharp features (ears of the307

animal shapes in Figures 5(b) and 5(n)), non-directed boundary308

sample [4] (left up part in Figures 5(d) and 5(p)), elongated re-309

gions (tail of the animal shapes in Figures 5(f), 5(r), 5(j) and310

5(v)), thin projections (feet of bird shapes in Figures 5(l) and311

5(x)), smooth curves (upper part in Figures 5(h) and 5(t)). Fig-312

ure 5 demonstrates that the algorithm can handle wide variety313

of shapes irrespective of the type of input point set.314

5.1. Comparison with existing methods315

We performed both qualitative and quantitative comparisons316

with the existing methods for both RBS and RDP. The existing317

methods we considered are Crust [10], NN-crust [11], α-shape318

[5], simple-shape [3], RGG for directed boundary sample [4]319

and χ-shape [9].320

Crust and NN-crust are algorithms designed for curve recon-321

struction. Simple-shape algorithm is a unified approach for322

RBS and RDP. Algorithm in [4] is for RDP under directed323

boundary samples. χ-shape algorithm uses DT for RDP (and324

hence amenable for RBS as well). We restricted our comparison325

to Delaunay-based methods because of the following reasons:326

(i) There are quite a few proven approaches whose codes are327

accessible and work in two-dimensions and (ii) The implemen-328

tation of the recent non Delaunay approaches does not seem to329

be available for two-dimensional reconstruction (such as [18]330

and [19], even though their 3D versions are available and work-331

ing).332

5.1.1. Qualitative comparison333

For RBS, Figure 6 shows the comparison of ec-shape with334

crust, NN-crust, α-shape, simple-shape and χ-shape. The first335

column of Figure 6 shows the boundary samples. From the336

outputs of crust and NN-crust algorithms (second and third337

columns of Figure 6), it can be observed that the outputs are338

not closed curves. Even when closed, it need not be a simple339

polygon (please see left down corner in Figure 6(p)). The α-340

shape, simple-shape and χ-shape (4th, 5th and 6th columns of341

Figure 6) show that the concavities of the input boundary sam-342

ples have not been captured well (even after parameter tuning),343
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

(o) (p) (q) (r) (s) (t) (u)

Figure 6: Inputs and outputs of RBS: 1st column - point set, 2nd - output of Crust algorithm, 3rd - output of NN-crust algorithm, 4th - α-shape, 5th - Simple-shape,

6th - χ-chape and 7th -ec-shape.

(a) (b) α=90 (c) (-1, -5, 4) (d) χ=4 (e) (f)

(g) (h) α=88 (i) (-1, -5, 2) (j) χ=4 (k) (l)

(m) (n) α=89 (o) (-1, -5, 5) (p) χ=5 (q) (r)

Figure 7: Inputs and outputs of RDP: 1st column - point set, 2nd - α-shape, 3rd - Simple-shape with parameters (pr1,pr2,pr3), 4th - χ-shape, 5th - output of [4] and

6th - ec-shape.

compared to ec-shapes (without any parameter) shown in 7th344

column of Figure 6.345

For RDP, we compare ec-shape with α-shape, simple-shape,346

χ-shape and output of [4]. We are not comparing ec-shape with347

the outputs of crust and NN-crust algorithms as they have been348

designed for RBS. Figures 7(a), 7(g) and 7(m) show the dot349

pattern on which RDP is performed. The fingers in the ob-350

ject are captured well by ec-shape (Figure 7(l)) than outputs351

of other methods (Figures 7(h)-7(k)). In the case of shape in-352

duced by the dot pattern of Figure 7(m), ec-shape (Figure 7(r))353

performs equally well as α-shape, simple-shape and χ-shape354

(Figures 7(n)-7(p)) and better than output of [4] (Figure 7(q)).355

5.1.2. Quantitative comparison356

In this section, experimentations on how the resultant shape357

varies with density and distribution of the point set have been358

performed and comparison with existing methods has also been359

discussed.360

For RDP, in both density and distribution cases, we per-

formed a quantitative comparison of ec-shape with α-shape,

simple-shape and χ-shape, by plotting point density Vs L2 error

norm [9].

L2error norm =
area((O − Re) ∪ (Re − O))

area(O)

where O and Re are original and reconstructed shapes respec-361
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(a) (b) (c)

Figure 8: (a) Original shape (b) Reconstructed Shape (c) Symmetric difference

between original and reconstructed shapes

tively and − operator denotes the set theoretic difference. Given362

a point set, O, Re and their symmetric difference(colored re-363

gion) is shown in Figure 8.364

Figure 9 shows the results for F shape with different point365

densities for α, simple, χ (best shape obtained on visual in-366

spection after tuning parameters) and ec-shapes. From the plots367

shown in Figure 10, it can be noticed that L2 error norm is less368

in the case of ec-shape, compared to other shapes, illustrating369

that our approach performs better than the existing approaches370

for input point sets having varying densities.371

The number of sharp corners between the two straight lines372

in the shape of alphabet F is more compared to other examples373

of G and f shapes taken for experimentation. When the point374

density increases the length of the edges of the DT formed in375

those sharp corners decreases. The lesser length edges of DT376

are removed later compared to longer edges and the sharp cor-377

ners are not captured well when the point density increases and378

hence the L2 error norm increases with increase in point den-379

sity in the case of plot of the alphabet F, where as in the plots of380

alphabets of G and f, the error norm decreases with increase in381

the point density.382

To experiment on how variation in point distribution affects383

ec-shape, we took four cases of point distribution: (i) non-384

random(NR), where all the points are of fixed distance from385

each other (ii) semi random dense boundary(SRDB), where the386

points are semi-randomly distributed [9] and boundary is dense387

(iii) semi random sparse boundary (SRSB), where the points388

are semi-randomly distributed and boundary is sparse and (iv)389

random (R), where all the points are randomly distributed. L2
390

error plot for α, simple, χ and ec shapes for the alphabets a, L,391

and S shapes are shown in Figure 11.392

(a) α=69 (b) (-4, -5, 1) (c) χ=1 (d)

Figure 9: F-shape with point density 0.02656: 1st column - α-shape, 2nd -

Simple-shape with parameters (pr1, pr2, pr3), 3rd - χ-shape, and 4th - ec-shape.

We observe that, in the cases of SRSB and random distri-393

butions, our algorithm does not perform very well, in general,394

(reconstructed shape from a random distribution is shown in395

Figure 12(a)), which is not the case for NR and SRDB. We in-396

troduced a parameter u for diametric circle (i.e., u ∗ diameter,397

u ∈ [0, 1]). We observed that the results improved quite a bit398

(Figures 12(b) and 12(c)) by tuning the parameter u for ran-399

(a) (b) (c)

Figure 10: Illustration of performance of RDP in different point densities : (a)

Plot for F-shape (b) Plot for G-shape (c) Plot for f-shape

(a) (b) (c)

Figure 11: Illustration of performance of RDP in different point distributions :

(a) Plot for a-shape (b) Plot for L-shape (c) Plot for S-shape

(a) u=0.9 (b) u=0.8 (c) u=0.7

Figure 12: Illustration of parameter tuning for ec-shape for random point dis-

tribution

dom. Plots in Figure 11, which are obtained after employ-400

ing parameter tuning for the respective shapes in SRSB and401

random distributions, essentially show that our algorithm per-402

forms better or comparable with other algorithms. Overall,403

error measure from Figure 11 suggests that, in the case of non-404

random and semi-random dense boundary point distributions,405

ec-shape (without any parameter tuning) detects the boundaries406

with equal or less error with other parametric methods, where as407

in the cases of semi-random sparse boundary and random point408

distributions, the performance of ec-shape (with parameter tun-409

ing) is comparable with outputs of other parametric methods.410

Figure 13 illustrates the fact that even for sparse point sets, ec-411

shape captures the boundary better than the other methods.412

Simple Shape Algorithm (SSA) is a parametric method with413

no proven topological guarantee where as ec-shape algorithm is414

non-parametric except in sparse sampling, with proven topolog-415

ical guarantee. Termination condition of SSA [3] depends on416

the input type, but ec-shape algorithm has a common termina-417

tion condition for any input type. Algorithm in [4] is defined for418

reconstruction of dot patterns only where as ec-shape algorithm419

is a unified method for both dot patterns and boundary samples.420

As illustrated in 5th and 6th columns of Figure 7, non-directed421

boundary sample is captured well by our algorithm, but not by422

the algorithm in [4]. Please refer shape of alphabet F (Figure423

9(d) in our paper) and that of Figure 20(a) in [4] to observe that424

our algorithm detects sharp features better. Topological guar-425

antee specified for both papers differs because of the difference426

7



(a) α=88 (b) (-4, -5, 5) (c) χ=5 (d) u=0.92

Figure 13: Illustration of results in sparse distributions: (a): α-shape, (b):

Simple-shape with parameters (pr1, pr2, pr3) , (c): χ-shape, (d): ec-shape.

in sculpting strategies. In Ball Pivoting Algorithm(BPA), mul-427

tiple passes are needed to deal with unevenly sampled surfaces428

and BPA assumes samples distributed over the entire surface429

with a spatial frequency greater than or equal to an application430

specified value [15]. Theoretical guarantee under r-sampling is431

provided in our paper where as no guarantee is provided in [7].432

Even though our algorithm is a unified one for reconstruction433

of boundary samples and dot patterns and is able to detect many434

prominent features of the shape induced by the input point set,435

it has a few limitations:436

• Parameter tuning is required for detecting the boundary if437

the input point set is very sparse.438

• Our algorithm is not capable of detecting open curves.439

• Approaches using DT have the inherent disadvantage that440

noisy inputs cannot be handled. Our algorithm also suffers441

from the same.442

6. Conclusions and Future Work443

We have developed a unified algorithm for reconstruction of444

boundary samples as well as dot patterns in the plane as op-445

posed to dealing with them separately. This approach was made446

possible because of the use of DT . The algorithm is simple447

and easy to implement with a time complexity of O(n log n)448

and space complexity of O(n). The experimental results indi-449

cate that our algorithm is capable of detecting a wide variety of450

shapes having features such as sharp corners, concavities, thin451

regions etc. It is evident that our algorithm performs better than452

other approaches when the input data is not random or sparse,453

without the need to tune any external parameter. We have also454

proposed a parameter-based approach to handle very sparse and455

random data, which has shown to perform comparably in some456

cases (as well as better in few others) in comparison with ex-457

isting parameter-based approaches. We have provided theo-458

retical guarantee for reconstruction based on r-sampling. In459

practise, based on the extensive comparative study with exist-460

ing approaches, it can be observed that ec-shape approximates461

the original shape quite well, independent of the sampling of462

the input point set.463

One of the future works under consideration is island detec-464

tion in both reconstruction of boundary samples and dot pat-465

terns. It also remains to be seen if the approach can be modified466

to handle random/sparse data without parameter tuning. An-467

other pointer towards future work is the extension of our algo-468

rithm to three dimensions. One of the possibilities to extend the469

reconstruction to 3D is by using the circumsphere of an exterior470

facet instead of using diametric circle in 2D. In this direction,471

we are investigating on the modified circle and regularity con-472

straints which might handle the removal of exterior facets of an473

exterior tetrahedron.474
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