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Figure 1: A sample user drawn sketch, Sampled point set and Connected sketch

Abstract

Given a planar point set sampled from an object boundary, the process of approximating the original shape is called curve

reconstruction. In this paper, a novel non-parametric curve reconstruction algorithm based on Delaunay triangulation has

been proposed and it has been theoretically proved that the proposed method reconstructs the original curve under ε-sampling.

Starting from an initial Delaunay seed edge, the algorithm proceeds by finding an appropriate neighbouring point and adding

an edge between them. Experimental results show that the proposed algorithm is capable of reconstructing curves with different

features like sharp corners, outliers, multiple objects, objects with holes, etc. The proposed method also works for open curves.

Based on a study by a few users, the paper also discusses an application of the proposed algorithm for reconstructing hand

drawn skip stroke sketches, which will be useful in various sketch based interfaces.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Line and

curve generation

1. Introduction

Given a point set S ∈ R2 (where S= {v1, ...,vn}) sampled from

an unknown curve ∑, the curve reconstruction problem is to con-

struct a polygonal chain from S which best approximates ∑. It is

a challenging problem because of the fact that the problem is ill-

posed [Ede98]. It is a relevant problem because of its wide ap-

plications in various fields like computer graphics, computational

geometry, computer vision, image processing etc.

1.1. Related Work

One of the earliest works in this area is α-shape [EKS83], proposed

as a generalisation of the convex hull of a set of points. The shape

of the point set is characterised using its Delaunay triangulation.

The output depends on the parameter α.

Figueiredo and Gomes [FMG] proposed an Euclidean minimum

spanning tree to approximate the curve. The algorithm initially

finds an approximate single open curve. It then uses a heuristic-

based approach for reconstructing disconnected and closed curves,

if any.

‘Crust’ is a family of algorithms that uses both the Voronoi di-

agram as well as the Delaunay triangulation of the input point set

S, either independently or in tandem. The crust [ABE98] contains

an edge if and only if there exists an edge in Delaunay triangu-

lation of S
⋃

V , where V are the vertices of the Voronoi diagram,

both of whose endpoints are in S. Nearest Neighbor crust (nn-
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Figure 2: Point set with different features along with our output , (a) Open curve, (b) Sharp corner, (c) Object with outliers, (d) Multiple

objects, (e) Sparse point set, (f) Object with holes.

crust) [DK99] contains edges between all nearest neighbours in the

input point set along with the shortest edge from vertices of degree

one which makes an angle of more than π/2. The algorithm is non-

parametric and works in any number of dimensions. It has been

proved that the nn-crust will approximate the input curve under

certain sampling conditions. Conservative crust [DMR00], a para-

metric approach, contains edges after removing certain edges of the

Gabriel graph generated from the Delaunay triangulation whose B-

disk is a Voronoi-disk.

Giesen [Gie99] proposed a travelling salesman sroblem (TSP)

based approach to generate a closed polygon. The algorithm is de-

signed assuming the input is a single closed curve. The algorithm

was further improved by Dey and Wenger [DW01] to handle open

curves with corners and end points based on normal and angle in-

formation.

de Goes et.al. [dGCSAD11] proposed an optimal transport based

approach that generates the final curve by greedily relocating ver-

tices and collapsing edges of the Delaunay triangulation of the in-

put point set for optimizing the local assignment and for minimiz-

ing the increase of total transport cost between the point set and

triangulation respectively. The main advantage of the algorithm is

that it can reconstruct the approximate curve from a noisy point set.

There are quite a few approaches viz. [DKWG08, GDJ∗11,

PM15,MPM15] that can be classified as Delaunay sculpting meth-

ods which remove edges in a particular order. χ-shape [DKWG08]

generates a simple polygon by successively removing Delau-

nay edges based on a user given parameter χ. In simple shape

[GDJ∗11], the edges are removed if they satisfy a set of param-

eters and their selection criteria. It also ensures a simple polygon

as an output. Shape hull [PM15], a non-parametric algorithm re-

moves a triangle if its circumcenter lies outside the shape and re-

constructs a single curved boundary. The ec-shape algorithm is a

non-parametric algorithm for reconstructing a simple polygon. In

ec-shape [MPM15], an exterior edge gets removed if it is longer

than the local neighbouring edges.

Water Distribution Model-crust (WDM-crust) [PPM15] is based

on a water flow analogy on the Voronoi diagram of S. The algorithm

is non-parametric and can handle outliers in the input point set.

Most of the existing curve reconstruction algorithms depend on

tuning a parameter, and at times, require more than one parame-

ter to be tuned. The process of tuning even a single parameter is

very tedious. There is no well-defined approach, and a trial and

error method is usually needed to find parameter(s) that might gen-

erate the desired output. For example α-shape [EKS83], χ-shape

[DKWG08] etc. require a single parameter, Gathan [DW01] re-

quires two parameters and simple shape [GDJ∗11] requires three

parameters to be tuned. Other approaches that also use parame-

ter(s) are conservative-crust [DMR00] and optimal transport [dGC-

SAD11].

Some of the algorithms are feature-specific, i.e., they are mainly

designed for reconstructing objects with some particular features.

The algorithm in [FMG] has been designed to work for reconstruct-

ing a single open curve, whereas heuristics have been employed

for disconnected or closed curves. These heuristics are not guaran-

teed to work for some inputs as the Euclidean minimum spanning

tree may not always give a branching point between disconnected

curves. The crust algorithm [ABE98], though a non-parametric

one, has been designed for handling smooth curves. The algo-

rithm in [Gie99] cannot handle a set of curves or open curves. NN-

crust [DK99] and conservative-crust [DMR00] algorithms appear

to have been designed for reconstructing only smooth curves. The

Shape hull algorithm [PM15] only works for specific case of curves

called divergent-concave shapes (please see [PM15] for more de-

tails). The ec-shape [MPM15] may fail to remove non-boundary

edges in some particular cases where all circles are empty and the

edge is still not a part of the shape. χ-shape, simple shape, shape

hull and ec-shape algorithms have been designed such that the re-

sult will always be a single simple polygon and hence they cannot

handle objects with holes, open curves, and multiple objects. The

limitation of WDM-crust [PPM15] is that it cannot handle open

curves as well as objects with holes.
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Figure 3: Illustration of our algorithm. Dotted edges are linked edges and extremity vertices are in blue - (a) Point set (b) Delaunay

triangulation. The algorithm starts with the shortest (seed) edge e12 between vertices v1 and v2. All the linked edges from the vertices are

shown (dotted lines). (c) Shortest from the linked edges is then picked - e23. Linked edges from extremity vertices v1 and v3 are also shown.

(d)-(f) Algorithm continues (g) The linked edges from v24 and v25 are shown. (h) As the distance between them is less than all the distances

of the linked edges, the edge between v24 and v25 is added (‘closable’ condition). (i)-(l) - The algorithm starts again from unvisited vertices

with a seed edge and continues. (m) Output curves.

1.2. Our work

In this paper, an algorithm that is non-parametric (i.e., that does not

require a user parameter for reconstruction) and can also handle

variants in inputs such as closed curves, open curves, multiple ob-

jects and curves having features such as sharp corners is presented.

The proposed algorithm is based on the Delaunay triangulation of

the set of input points. Though such an algorithm has many appli-

cations, in this paper, it has been employed for sketch completion.

Various sketch based interfaces, including 2D to 3D conversion

techniques [OSJ11] need the user to give a single stroke (con-

tinuous tracing) closed sketch as input, a hard one for a novice

user or requiring processing of the sketch such as stroke group-

ing [LWH15]. Based on a user study, we found that it is easier

to follow image-assisted skip stroke sketching (user leaves small

gaps between each strokes [GJ12] and s/he can start/end anywhere,

i.e., unordered). Hence, our paper also discusses the usage of the

proposed curve reconstruction algorithm for connecting such skip

stroke sketches appropriately. The algorithm can be embedded in

an image-assisted sketch based interfaces (such as [OSJ11]) to fa-

cilitate automatic connection of skip strokes in sketches.

The following are the major contributions of the developed algo-

rithm for curve reconstruction:

• The algorithm is non-parametric and hence avoids the need to

specify a user-defined parameter.

• The algorithm is not feature-specific and hence can handle open

curves (Figure 2(a)), sharp corners (Figure 2(b)), outliers (Figure

2(c)), multiple objects (Figure 2(d)), sparse data (Figure 2(e)),

and objects with holes (Figure 2(f)).

• Theoretically, the algorithm is justified using ε-sampling.

• Extensive qualitative comparison demonstrates that the devel-

oped algorithm performs better than or is comparable to various

existing algorithms.

• An application of the proposed method to an image-assisted

sketch completion has also been demonstrated.

2. Algorithm

Let DT denote the Delaunay Triangulation [BCKO08] of the set of

points S (the terms points and vertices are used interchangeably).

Let ei j represent the edge between the vertices vi and v j and di j rep-

resent the straight-line Euclidean distance between them. [ABE98]

has shown that, for smooth curves (that includes connected com-

ponents but not branches/self-intersections, see [ABE98] for more

details), under the ε-sampling [ABE98] condition on the input point

set, the piecewise linear approximation of the reconstruction of the

input is a set of connected subgraphs of the DT of S. Using this, the

basic idea of our algorithm is to build connected subgraphs from

DT. Nevertheless, we use a seed edge and the concept of extremity

vertices for ‘crawling through neighbours’ as opposed to using DT

in conjunction with Voronoi diagram as in [ABE98].

DEFINITION 1 Medial axis of a curve ∑ is the closure of the set

of points which have more than one closest points on ∑ [ABE98]

DEFINITION 2 Local feature size LFS(p) at a point p ∈ ∑ is the

least distance of p to the medial axis of ∑ [ABE98]

DEFINITION 3 A point set is called an ε-sample of a curve ∑,

if every point p ∈ ∑ has a sample within a distance ε ∗ LFS(p),
where 0 < ε < 1 [ABE98]

Initially, DT of S is computed and all the vertices are marked as

unvisited. It is also assumed that there are more than three vertices

in each of the connected subgraphs. Once the DT of the point set is

computed, the algorithm broadly consists of the following steps:

c© 2016 The Author(s)
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• Computing a seed edge from the unvisited vertices of DT.

• Crawling using the seed edge to build a connected subgraph.

• Termination of each connected subgraph.

• Finding subsequent subgraphs, if any.

2.1. Computing a seed edge from the unvisited vertices of DT

THEOREM 2.1 Let eab be the shortest edge in DT . Then va and

vb are adjacent points in the polygonal representation C of ∑.

Proof Suppose va and vb are not adjacent points in C, then based

on ε-sampling there exists another point vk adjacent to va such that

dak < dab which contradicts that eab is the shortest edge in DT .

Theorem 2.1 can also be argued using Theorem 12 in [ABE98].

DEFINITION 4 A seed edge ei j is the shortest edge in DT be-

tween two unvisited vertices vi and v j if vi and v j are the nearest

neighbours of each other.

Figure 3(a) shows a set of points and its DT in Figure 3(b). A

seed edge from DT is computed (e12 (in black) between the vertices

v1 and v2 in the Figure 3(b)). Both vertices have now been marked

as visited. Let G1 be a connected subgraph with vertices v1 and v2

and the edge e12.

DEFINITION 5 A vertex in a connected subgraph is said to be an

extremity vertex if it has degree (i.e. number of edges connected to

a vertex) one.

The vertices v1 and v2 of G1 are extremity vertices in Figure

3(b).

2.2. Crawling using the seed edge

At this juncture, both the vertices in G1 are extremity points. To

identify the next edge starting from either vertex v1 or v2, the edges

in the DT attached to the vertices v1 or v2 in the DT are looked at.

DEFINITION 6 Let vm and vn be the extremity vertices in G1.

All the unvisited vertices having edges with either vm or vn in DT

are termed as linked vertices. The corresponding edges are called

linked edges (for example, dotted edges in in Figure 3(b)) .

DEFINITION 7 Of all the linked edges, the minimum distance

edge is called a candidate edge and the corresponding unvisited

vertex is called a candidate vertex.

v3 in Figure 3(c)) is the candidate vertex. G1 is updated with

the identified candidate vertex v3 and edge e23. This procedure can

be considered as ‘crawling through neighbours’ as it crawls from

an extremity vertex to the candidate vertex by looking only at the

neighbours of the extremity vertex. The candidate vertex v3 is then

marked as visited. Now, the extremity vertices of G1 are v1 and v3

and the ‘crawling through neighbours’ is repeated for the extremity

vertices v1 and v3.

The linked edges from v1 and v3 are shown in dotted lines in

Figure 3(c)). However, before adding another candidate vertex (say

v4) and its corresponding edge to G1 , the distance between the ver-

tices of the candidate edge is compared with the distance between

extremity vertices. The candidate edge is added to the subgraph

only if the distance between the vertices of the candidate edge is

Algorithm 1: Reconstruct(S)

Input: Input point set, S.

Output: Reconstructed Curve C.

1: Construct Delaunay triangulation, DT (S).

2: Mark all the vertices as unvisited.

3: repeat

4: Identify the seed edge. Initiate a connected subgraph with

the extremity vertices and the edge. Mark the extremity

vertices as visited.

5: repeat

6: Find the linked vertices and edges, and subsequently the

candidate vertex and edge (the distance between its

vertices is d).

7: Update the connected subgraph with the candidate vertex

and edge. Mark the candidate vertex as visited.

8: if number of edges in the subgraph is greater than two

then

9: Let d1 = distance between the extremity vertices.

10: if d > d1 OR no candidate vertex is available then

11: Update the subgraph with the edge between the

extremity vertices if the subgraph is ‘closable’.

12: Terminate the identification of the current

connected subgraph.

13: end if

14: end if

15: until

16: A connected subgraph from DT is created

17: until All the vertices in DT are marked visited.

18: return All the connected subgraphs.

lesser than the distance between extremity vertices. The graph G1

consists of the edges in black (and the corresponding vertices) in

Figure 3(d)) and the extremity vertices are v4 and v3. The process of

identifying candidate edges is then continued from the vertices v4

and v3 and the crawling continues thereafter (Figures 3(d),(e),(f))

2.3. Termination of the connected subgraph

An edge is no longer added to G1 if it satisfies one of the following

conditions:

• if the distance between the vertices of the candidate edge is

greater than the distance between the extremity vertices or

• when there are no linked vertices available.

The first termination condition implies that an edge can be added

between the extremity vertices and the connected subgraph can be

updated with the added edge if G1 is ‘closable’. A subgraph hav-

ing more than two edges is said to be ‘closable’ if one of its ex-

tremity point is second nearest neighbour of the other. Figure 3(g)

shows the extremity vertices v24 and v25. The distance between the

vertices of the candidate edge is greater than the distance between

the two extremity vertices. Hence, G1 is updated with the edge be-

tween vertices v24 and v25. The process of the computation of the

connected subgraph G1 is then terminated (Figure 3(h)).

c© 2016 The Author(s)
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2.4. Finding subsequent subgraphs

If there are any unvisited vertices in DT, the algorithm then pro-

ceeds to find the next seed edge, if any (Figure 3(i)) and the process

continues by identifying linked edges and then candidate edges as

mentioned in the previous sections (refer Figures 3(j),(k),(l)). The

extremity vertices in (Figure 3(l)) do not have any linked edges and

thereby no candidate edges are available. In Figure 3(l), the ‘clos-

able’ condition is not satisfied and hence the edges of the subgraph

form an open polygonal chain. Figure 3(m) shows the reconstructed

curves.

The pseudo code for the method is given in Algorithm 1. The

Delaunay triangulation computation takes O(nlogn) time. A prior-

ity queue has been used to efficiently find seed edges and it takes

O(nlogn) for insertion of all edges. Other checks can be efficiently

done in O(n) complexity. Hence, the overall time complexity of the

algorithm is O(nlogn).

2.5. Theoretical guarantee

Assume a simple closed curve ∑ has been sampled using ε-

sampling defined by Amenta et.al. [ABE98]. Suppose C be the

polygonal chain representation of ∑. Based on Theorem 2.1, we

start with the smallest edge in DT .

THEOREM 2.2 Let vc be a candidate vertex and ve be the corre-

sponding extremity vertex in a connected subgraph Cinter which is

not closable, then the vertices of ece are adjacent samples in C.

Proof The proof is by mathematical induction.

Base case: In the base case we consider that Cinter has only one edge

eee∗ which is the smallest edge in DT by Theorem 2.1. Since C is

closed every vertex has two linked edges in C. Therefore there ex-

ists another vertex vi such that eei ∈ C. However, by our algorithm

dce ≤ dei, thus vi = vc because otherwise the ε-sampling assumption

is violated, therefore ece ∈C.

Induction step: Assuming that all edges in Cinter are part of C we

prove that the next candidate edge ece will also be a part of C. By a

similar argument as above, we get a contradiction on the ε-sampling

assumption which proves ece ∈C.

By recursively following Theorem 2.2 it can be ensured that after

termination, all edges in Cinter are a part of C.

THEOREM 2.3 Let Cinter be a closable curve with extremity

points ve and ve∗ then eee∗ ∈C.

Proof Suppose eee∗ /∈C. Because C is closed, ve has degree two in

C, i.e. there exists some vi /∈Cinter such that eei ∈C. By ε-sampling,

we have dei < dee∗ which contradicts the fact that Cinter is closable.

Under ε-sampling, the ‘closable’ condition of adding an edge

between extremity vertices is also valid and hence the algorithm

guarantees exact reconstruction of a set of simple closed curves.

3. Results and discussion

Algorithm 1 has been implemented using the geometric kernel

CGAL [cga]. Figure 4 shows a few of the implementation results.

The figure indicates that the algorithm can perform well on a va-

riety of objects. Reconstruction of objects with holes has been

demonstrated on objects such as the coffee mug, teapot, windows

in a bus etc. The algorithm has also captured point sets having mul-

tiple objects, such as the EG logo. The logo also illustrates that

the algorithm has captured sharp corners quite well. Single closed

curves such as a horse, a dog etc. have also been captured well.

Other features such as small holes in the piston ring have also been

reconstructed well.

3.1. Qualitative Comparison

To assess the performance of the proposed algorithm, we perform

an extensive comparison of our algorithm with various reconstruc-

tion algorithms viz. α-shape [EKS83], crust [ABE98], nn-crust

[DK99], χ-shape [DKWG08], simple-shape [GDJ∗11], de Goes et

al. [dGCSAD11], ec-shape [MPM15] and wdm-crust [PPM15]. It

can be noted that our algorithm is non-parametric, whereas many

of the algorithms require tuning of at least one parameter. Hence,

the best perceived output has been presented for approaches that

require parameter tuning. Figures 5 and 6 present the compared re-

sults (do note that both figures are in landscape mode), where the

nature of the input is indicated at the left extreme (in landscape

mode), and the approaches used for comparison at the top of the

table. The input point sets used for testing have a wide variety of

characteristics, viz., simple objects, multiple objects, objects with

holes, sparse data, open curves, objects with sharp corners and out-

liers. It can be noted that there is no database of 2D point set (un-

like that of in 3D). The pink ellipses in the figures underline some

of the places where an algorithm has not been able to make the

right ‘connections’ for reconstruction. We would like to mention

that, for testing purposes, the input point sets used are generic and

do not follow any sampling criteria (ε-sampling is used for only

providing theoretical guarantee).

Clearly, our algorithm outperforms most of the algorithms in

most cases and is comparable in few other cases. For example, for

the ‘simple curve1’ (Figure 5), α-shape does not capture the dol-

phin’s fin correctly, crust gives disconnected objects as the output

and nn-crust results in a non-simple shape. Other approaches also

fail to capture the fin correctly, whereas our approach returns the

required output.

For ‘simple curve2’, α-shape adds triangles between tentacles

to the shape before taking the body, crust results in an object with

open edges and extra edges between tentacles, nn-crust gives two

disconnected objects. χ-shape returns the exact shape for this input,

though other approaches appear to have captured ‘wrong connec-

tions’ (regions indicated in pink ellipse) as can be seen from the

respective figures. Our approach once again performs better than

most and as good as χ-shape in this test point set.

Not many of the algorithms can reconstruct a collection of

curves. Especially Delaunay sculpting based algorithms like ec-

shape, χ-shape, simple shape etc. cannot reconstruct a collection

of curves because of the regularity constraint (see [DKWG08] for

details). Alphabets ‘SGP’ in Figure 5 illustrate the case for ‘mul-

tiple objects’ case, where our algorithm captures the shape better

than other algorithms.
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Figure 4: Results of our algorithm on random shapes. The shapes have a wide variety of features and our algorithm has captured them.

Many of the algorithms (Delaunay sculpting based algorithms)

are designed to extract only outer boundaries whereas objects might

have inner boundaries as well. Some of the algorithms output false

open curves instead of holes. Our algorithm outperforms other al-

gorithms as it does not detect any false open curves, as can be seen

in ‘object with hole1’ and ‘object with hole2’ (last but two rows in

Figure 5). For ‘sparse point set’, most of the algorithms have been

found to be working reasonably well (see the last row of Figure 5).

Curve reconstruction algorithms are mainly focused on recon-

structing closed curves, and hence many algorithms fail to distin-

guish between closed and open curves. Our algorithm is capable

of detecting open curves as well (see ‘open curves1’ and ‘open

curves2’ in Figure 6). Among the other algorithms, crust captures

better than nn-crust and optimal transport based approach.

Sharp corners are one of the important features in a curve. ‘share

corner1’ and ‘sharp corner2’ in Figure 6 show the results of var-

ious algorithms for a shape with sharp corners. Our approach has

performed equally well or better than most other approaches. The

optimal transport based approach also appears to capture sharp cor-

ners better than other approaches.

Handling of outliers has also become crucial for reconstruction

algorithms. In this aspect, we have tested our algorithm by adding

a certain amount of points as outliers. ‘outlier 1 (16%)’ and ‘outlier

2 (37%)’ in Figure 6 illustrate that our approach can handle outliers

as well.

3.2. Discussion with other Delaunay-based approaches

Though our algorithm is based on DT, it differs from the existing

ones in the following aspects: (a) Unlike the sculpting approaches,

it does not remove the triangles only from outside and hence is not

restricted only to certain shapes (such as the one in [PM15]). (b) Al-

gorithms such as crust [ABE98] use a combined Delaunay/Voronoi

diagram, ours uses only the edges in the Delaunay. (c) Moreover,

since our approach crawls from the vertex of an identified edge, a

direct ordering of the vertices/edge becomes possible using simple

‘insertion’. (d) As already emphasized, our approach is indepen-

dent of any input parameter(s) unlike many other Delaunay-based

approaches. Though a user input parameter(s) adds flexibility, it is

often tedious to identify the right set of parameter(s) for a desired

output.

4. Sketch Completion

Sketch based interfaces have been shown to be useful in various

applications in fields of computer graphics, entertainment etc. 2D

to 3D conversion is an interesting and fascinating application using

sketch based interfaces, where a user will sketch in 2D to make a

3D model.

4.1. User Study

We conducted a user study to find out the difficulties faced while

sketching. The main findings are that the users found it difficult

to draw without a reference image. We also found a big improve-

ment when sketching was assisted using images (such as the one

in [dPI13]). Even in image-assisted sketching, the main problems

faced by users while drawing single stroke sketches are:

• Extreme difficulty in drawing complex sketches.

• Difficulty in drawing acute angled sharp corners which leads to

self intersecting curves.

• Difficulty in tracking long smooth curves, unless the user has

experience with sketch pads.

• Accidentally, users take their pen off while sketching.

• Users lose control of the pen after some time if the sketch is too

complex or big, because of pain.

It needs expertise to draw 2D sketches in a single stroke as well

as resuming from the exact point where s/he left off. Figure 7(a)
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Figure 7: (a) Multistroke sketch with continuity between consecu-

tive strokes. (b) A sample sketch (c) Our sketch completion result

Figure 8: Sketch completion results: (a) A sample sketch (b) Our

result

Figure 9: Image assisted sketching experiment 1: (a) Reference Im-

age (b) Single stroke sketch and (c) Sketch with skip strokes drawn

by a novice user (d) Connected sketch returned by our algorithm

on (c)

Figure 10: Image assisted sketching experiment 2: (a) Reference

Image (b) Single stroke sketch and (c) Sketch with skip strokes

drawn by an intermediate user (d) Connected sketch returned by

our algorithm on (c)

shows an example of a user drawing in which the user is allowed to

draw using multiple strokes, with an additional condition that there

should not be any discontinuities between the lines. It is clear from

the figure that the user could not draw from the exact end point of

the previous stroke. It is usually easier to draw disconnected curves

which approximate the shape. Such disconnected curves are shown

in Figures 7(b) and 8(a).

4.2. Application of our algorithm to sketch completion

Figure 9(a) shows a reference image of a dragon we provided as

part of our user study to a selected group of candidates, most of

whom were novices to this task. Figure 9(b) is an image assisted set

of single stroke sketches drawn by a novice user. The users could

not track the correct boundary and all the users found it difficult

to draw the wings and fire flames because of its non-convex na-

ture and sharp features. Figure 9(c) is the dragon sketch drawn by

the same user using skip stroke style. To reconstruct the original

shape from the skip sketch, morphological thinning has been ini-

tially applied on the input sketch and a point set is generated using

software like [Roh14]. The generated point set is fed to our algo-

rithm to reconstruct the sketch. It is evident from Figure 9(d) that

our approach has performed the sketch completion task quite well.

Figure 10(a) is another reference image of an octopus we pro-

vided to the group of users. Even though the reference image is

quite simple to trace, because of the absence of minute features,

users found it difficult to do a single stroke (Figure 10(b)). Instead,

it was easier to follow skip stroke sketching pattern because of the

flexibility of taking out the pen out in between. Users found it very

helpful that they do not have to start from the end point of the pre-

vious stroke (Figure 10(c) shows the skip stroked sketch). Figure

10(d) shows the completed sketch using our reconstruction algo-

rithm.

All the users showed an ability to track the boundary, and sketch

more easily and comfortably using skip strokes. These discon-

nected lines can be connected using our algorithm to make the

sketch completed (the results for Figures 7(b), 8(a) are shown in

Figures 7(c), 8(b) respectively). Hence, we believe that our algo-

rithm will be extremely useful in sketch completion work, apart

from other areas where reconstruction is required. Figure 11 shows

the comparison of sketch completion with other reconstruction al-

gorithms, which demonstrates that our algorithm yields much su-

perior result (Figure 9(d)).

4.3. Limitations

Though our approach is simple to implement and has been demon-

strated on a wide variety of objects having different features such

as objects with holes, open curves, sharp corners and even objects

with outliers, the major limitation is that the approach cannot han-

dle objects with noise (Figure 12(a)) for which the reconstructed

output (Figure 12(b)) is not a desired one. Even if the objects have

a vertex with a degree more than two (T-junction is one such exam-

ple, Figure 12(c), self-intersecting curve is another), the algorithm

fails to capture the intended shape (Figure 12(d)) as it leaves the

curves open near the junction. For a set of open curves that are too

close to each other, the termination condition may not return all of

them as open curves. The proposed sketch completion is applicable

c© 2016 The Author(s)
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Figure 11: Sketch comparison with other reconstruction results. Other approaches either have unwanted connection, missing connections

or generated only outer boundary. Our algorithm’s result is shown in Figure 9(d).

Figure 12: Limitaions (a) Noisy input (b) Our algorithm fails (c)

T-junctions (d) Fails to capture the ‘closed’ T-junctions

only for image-assisted skip stroke sketching and not for free hand

sketching.

5. Conclusion

A simple Delaunay based algorithm for curve reconstruction has

been proposed in this paper. The proposed algorithm is capable

of reconstructing inputs with multiple objects, objects with holes,

sharp corners, objects with outliers, open curves and sparse point

set. Qualitatively, it has been demonstrated that our approach per-

forms better (or in some cases, comparable) with other approaches.

Future work involves modifying the algorithm to alleviate the lim-

itations as well as extension to 3D models.
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