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• Definition 
“Given a finite set of points in R3, polyhedronization deals  
with constructing  a simple polyhedron such that the vertices 
of the polyhedron are precisely the given points.” 
• Applications 

 -Molecular polyhedron structure synthesis. 
 -Boundary representation of input points in Computer   
   Graphics, Computer  Vision &  Distance Image    
   Processing. 

      

               

      

          

  

  

 

• FACE problem by S.P Fekete [FP93] 
“Let 2 ≤ d and 1 ≤ k ≤ d. Given a finite set S of points in d-
dimensional Euclidean space.  Among all simple polyhedra that 
are feasible for vertex set S, find one with  the  smallest volume  
of its k-dimensional faces.” 

• Minimal(Maximal) Volume Polyhedronization (MINVP
(MAXVP)) 
 “Given a finite set S of n points in R3, find the simple polyhedron 
with the smallest (largest) volume from all the simple polyhedra 
(having triangular faces) that are feasible for  the  vertex set S.”  
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[FP93] FEKETE S. P., PULLEYBLANK W. R.: Area optimization of simple polygons. In Proc. 9th Annu. ACM 
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Results 
 

 
Approximate MINVPs generated for Prismatic  
Point Sets. 

MINVPs   and/or MAXVPs 
generated for  Pyramid Point 

Sets. 
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Approximate MINVPs  & MAXVPs generated 

for Point Sets of different sizes. 

 
Optimal MINVPs generated by 

RAA_MINVP algorithm for 
point sets of size 5. The results 
are verified using brute force 

approach. 

 
 
• To address the following questions: 
-What are the performance guarantees of both the algorithms? 
- Does there exist an input configuration for which the approach fails for every  
possible ordering of points? 
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• RAA_MINVP-Randomized Approximation Algorithm 
Let S={p0,p1,…,p(n-1)} denotes the point set.  
 
 
Select four points uniformly at random from S and form an initial tetrahedron P. 
 
 
In each iteration, it chooses one point q uniformly at random from S\P. 
Determines  the position of q relative to the previous polyhedron P and does 
one  of the following. 
 
 
 
 
 
 
 
 
 
 
 
 

        Once the iterations are completed, algorithm returns the 
final polyhedron (The set of faces). 
• RAA_MAXVP  
The initial polyhedron is the convex hull of S.  The iterations are pretty much 
similar to the iterations of RAA_MINVP. Both differs only in steps 1 & 2.  
 
 

                                 

Algorithm 
      

 1. q lies interior to P? ->exclude from P, the largest volume tetrahedron that  
 q  makes with any of the visible faces of P. 

 3. q lies on an edge of P?-> divide the adjacent faces of that edge into  
 four new  faces by including q as the common vertex of all the four faces. 

 4. q lies on a face of P?-> divide the face into three new faces by including  
 q as the common vertex of all the three faces. 

•  q lies interior to P? ->exclude from P, the smallest volume tetrahedron that 
  q  makes with any of the visible faces of P and vice versa. 

 2. q lies exterior to P?-> add to P, the smallest volume tetrahedron that  
 q  forms  with any of the visible faces of P.  

Initialization 

Iterations 

Termination 
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