
A

An Empirical Study on Randomized Optimal Area Polygonization of
Planar Point Sets

Jiju Peethambaran, Amal Dev Parakkat, Ramanathan Muthuganapathy
Advanced Geometric Computing Lab, Department of Engineering Design, Indian Institute of

Technology, Madras, India

While random polygon generation from a set of planar points has been widely investigated in the literature,

very few work address the construction of simple polygon with minimum area (MINAP) or maximum area

(MAXAP) from a set of fixed planar points. Currently, no deterministic algorithms are available to compute

MINAP/MAXAP as the problems have been shown to be NP-complete. In this paper, we present a greedy

heuristic for computing approximate MINAP of any given planar point set using the technique of randomized

incremental construction. For a given point set of n points, the proposed algorithm takes O(n2 logn) time

and O(n) space. It is rather simplistic in nature and hence very easy for implementation and maintenance.

We report on various experimental study on the behavior of randomized heuristic on different point set

instances. Test data have been taken from SPAETH cluster data base and TSPLIB library. Experimental

results indicate that the proposed algorithm outperforms its counterparts for generating a tighter upper

bound on the optimal minimum area polygon for large sized point sets.

Categories and Subject Descriptors: C.2.2 [Computational Geometry]: Randomized Algorithms

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Randomized algorithm, Minimal area polygon, Maximal area polygon,

Incremental algorithm, Convex n-gons

1. INTRODUCTION

Polygonization of a planar point set S, is a way in which all the points in S can be
connected to form a polygon [Denee 1988]. Combinatorial optimization problems such
as area and perimeter optimizations of polygonizations are of particular interest to re-
searchers due to its applications in pattern recognition and image processing [Fekete
2000; Denee 1988]. In [Peethambaran et al. 2015], the authors point out that the three
dimensional versions of area optimization, i.e. minimum/maximum volume simple
polyhedronization have the potentials to play a significant role in futuristic applica-
tions such as 4D printing and surface lofting. The area optimization problem referred
to as minimum area polygonization (MINAP) asks for simple polygon with a given
set of points for which the enclosed area attains the minimum [Fekete 1992]. Perime-
ter optimization of polygonization, commonly known as geometric travelling salesman
problem (TSP) focus on computing the minimum circumference polygon that passes
through all the points (or vertices) in the given set. In combinatorial geometry, TSP
problems have been extensively studied and several fast approximation algorithms
have been proposed [Goyal 2010].

Even though, both TSP and MINAP problems are computationally hard, optimizing
the enclosed area of a polygon is analyzed to be more difficult than the minimization
of its perimeter. In [Boyce et al. 1985], the authors point out that “while a shorter
perimeter implies that the vertices are well localized, small area does not indicate the
proximity of the vertices”. Fekete [Fekete 1992] substantiates this argument by con-
sidering a tour as a set of line segments and a polygonal region as a set of triangles.
Vertices of a short edge are necessarily at a close distance but a smaller area triangle
can have its vertices far apart as in the case of very thin triangle. Further difficulty
arise from self intersections of polygons. While self intersections do not occur automat-
ically in the case of polygon with minimum perimeter, it is algorithmically difficult to
build up a simple polygon from triangles [Eppstein et al. 1992; Fekete 1992]. Depend-
ing on the spatial distributions, the number of polygonizations [Sharir et al. 2011],

ACM Journal on Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 Jiju Peethambaran et al.

vary drastically among different point sets of same size. For instance, it is found to
be exponential in n for some point sets [Denee 1988], where as for convex point sets
it is found to be 2n. Finding the number of polygonizations is shown to be NP-hard
[Muravitskiy and Tereshchenko 2011] and hence, for point sets of appreciable sizes,
it is extremely difficult to find the optimal solution from the corresponding set of all
feasible simple polygonizations.

Little seems to be studied about minimum area polygonizations of fixed points in the
plane, although polygonizations, especially randomized polygonizations raised some
interest [Auer and Held 1998; Zhu et al. 1996]. A prominent work in the area of ran-
domized polygon generation can be found in [Auer and Held 1998]. A similar work on
random generation of x-monotone polygons from a set of points is presented in [Zhu
et al. 1996]. In the area optimization domain, a pioneering work by Fekete [Fekete
2000], establishes the NP-completeness of minimum weight polygon or maximum
weight polygon of a vertex set, a result which leads to the NP-completeness proof
of corresponding area optimization problems. Tereshchenko et al. [Muravitskiy and
Tereshchenko 2011] propose a polynomial greedy approximation algorithm for com-
puting the minimal area simple polygon of a planar point set. The proposed greedy
algorithm takes O(n4) time and O(n) space. They show that a preliminary prepro-
cessing of the set of points can further improve the time complexity of the approxi-
mation algorithm at the expense of increased memory usage. Their optimized greedy
approximation algorithm takes O(n3) time and O(n2) space. An impossibility of a con-
stant factor approximation algorithm for MINAP is also stated in [Muravitskiy and
Tereshchenko 2011].

In [Taranilla et al. 2011], the authors suggest three different strategies (greedy-
MAP, RS-MAP and ACO-MAP) to approximate the minimum area polygonization of
planar point sets. The described heuristics employ either a locally optimal choice on
the point selection (greedy-MAP) or a random search over the space of feasible solu-
tions (RS-MAP) or ant colony optimization (ACO-MAP) strategy. Recently, the authors
proposed randomized heuristics for polyhedronization of three dimensional point sets
with minimum and maximum volumes [Peethambaran et al. 2015]. In this paper, we
present simple, randomized and greedy algorithms for constructing optimal area (both
minimum and maximum area) polygonizations of planar point sets of any size. Besides
the intrinsic interest in obtaining the minimum area polygonization of a given set of
points, such randomized heuristics for polygon generation can be used to generate
large sized random geometric structures (polygonizations with possibly the optimum
area) to test and evaluate other geometric algorithms working on polygonal inputs.

The rest of this paper is organized as follows. In Section 2, we explain the incre-
mental construction of minimal area simple polygon and maximal area simple polygon
with running time analysis. Section 3 analysis the correctness of the proposed algo-
rithm and put forwards a few hypotheses about the optimal area polygonization. Com-
putational results and implementation details are presented in Section 4. We compare
our randomized MINAP algorithm with the existing MINAP algorithms in Section 5.
We conclude the paper in Section 6.

2. INCREMENTAL CONSTRUCTION

We start with an overall idea of MINAP construction. Let S={p0,p1,p2,...,pn−1} denotes
a set of n points and each point pi is represented by its x and y coordinates. Pi is an
ordered set of points on the polygon in counter clockwise (CCW) direction after the ith

execution phase (notionally, points in Pi are used similar to array indices) and Ei is the
edge set after the ith execution phase. We use RAND MAXAP and RAND MINAP
to refer to randomized incremental algorithm for MAXAP and MINAP, respectively.

ACM Journal on Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

Minimum Area Polygonization A:3

Simple polygon generated using RAND MINAP and RAND MAXAP are referred to as
randomized MINAP and randomized MAXAP respectively.

2.1. MINAP Construction

The first step of our approach is to select three random points from the point set S
and construct a triangle, △2=P2={p0,p1,p2} (please note that the subscripts are used
to denote the random generation of points from the set S), which represents the initial
polygon, with the edge set E2={e0,e1,e2}. In the ith iteration, hull size is defined as
the number of points on the previous polygon (Pi−1). An edge ei is represented by
pipi+1mod(hull size). Once the initial triangle has been constructed, the algorithm runs
for n− 3 iterations, where each iteration i, consists of the following steps.

(1) Select a point pi uniformly at random from the set S-Pi−1.
(2) Check whether the point lies interior/exterior to the previous polygon Pi−1.
(3) If the point lies interior to Pi−1, then find the largest area non-intersecting triangle

△i that the point pi makes with the edges of Pi−1. Let us denote the triangle as
△i={pq,pi,pr} where pq, pr∈Pi−1. Remove △i from the polygon Pi−1 by adding the
edges and the point pi at the appropriate position. Update edge set and vertex set
as Ei=Ei−1∪{pq,pi}∪{pi,pr}-{pq,pr} and Pi=Pi−1∪pi.

(4) If the point lies in the exterior/on of the Pi−1, then find the smallest area non-
intersecting triangle △i that the point pi makes with the edges of Pi−1. Let us
denote the triangle as △i={pq,pi,pr} pq, pr∈Pi−1. Add △i to the polygon Pi−1 by
adding the edges and the point pi at the appropriate position. Update edge set and
vertex set as Ei=Ei−1∪{pq,pi}∪{pi,pr}-{pq,pr} and Pi=Pi−1∪pi.

(a) (b) (c)

(d) (e) (f)

Fig. 1. Incremental construction of minimal area simple polygon.(a)Point set (b) The initial random triangle
(c)-(d) Incremental construction (e) Final polygon

The various steps in generating MINAP of a point set are depicted in the Figure
1. A set of six points is given in the Figure 1(a). An initial triangle P2={p0,p1,p2} is
formed by selecting 3 points uniformly at random from the given point set as shown
in Figure 1(b). This triangle becomes the initial polygon. In the next iteration, the

ACM Journal on Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 Jiju Peethambaran et al.

selected point (p3) lies to the interior of the previous polygon P2. There exist three
non-intersecting triangles formed by p3 with the edges of P2 as shown by the dashed
and dark lines in the Figure 1(c). The largest area triangle, △p0,p3,p2 is excluded from
P2 to form the next polygon P3. The chosen point(p4) in the next iteration, lies to the
exterior of P3. The point p4 produces four triangles with the previous polygonal edges,
which comprises of two non-intersecting and two intersecting triangles as shown in the
Figure 1(d). The smallest area triangle from the non-intersecting triangles, △p4,p3,p2

is added to form the current polygon P4. A similar procedure is followed in Figure 1(e)
which lead to the MINAP generation of the given point set in Figure 1(f).

In each iteration, one of the remaining points in S is added to the current polygon
which leads to the construction of an approximate minimal area polygon at the end. A
simple polygon is generated because in each iteration, a triangle which does not have
its edges intersected with the edges of the previous polygon (referred to as valid tri-
angle) is either added to the polygon or removed from the polygon. A valid triangle is
found out by employing a classical line-sweeping algorithm [Berg et al. 2008] described
in Section 2.2.

2.2. Intersection Checking through Line-sweep Technique

(a) (b) (c) (d)

Fig. 2. Valid triangle removal through Line sweeping and walking techniques.

Candidature of a triangle to be added or removed from an intermediate polygon Pi−1

can be determined in O(n log n) time by using the classical line sweeping algorithm for
line-line intersection checking [Berg et al. 2008]. The idea can be described as follows:
Assume that new point under consideration, pi is interior to Pi−1 as shown in Figure 2
(a). Let Ei−1 be the set of all edges of the polygon Pi−1 (black edges in Figure 2 (b)) and
L be the set of all line segments formed between pi and vertices of Pi−1 (orange colored
edges in Figure 2 (b)). The fact that Pi−1 is a simple polygon ensures that Ei−1 does
not have any intersecting edges except the intersections at the end points which is
considered as a degenerate case. Similarly, all the line segments in L share a common
end vertex pi and therefore, no mutual line segment intersections occur in L (assuming
general position). Hence, the algorithm uses a line-sweep method to find out the edges
from L, that intersect with the edges in Ei−1 (refer to Figure 2 (b)). All the intersecting
edges are discarded to get the set of edges (Figure 2 (c)) which possibly form valid
triangles with the previous polygonal edges.

The vertices of Pi−1 which induce non-intersecting edges with pi are marked with a
label (represented using blue colored vertices in Figure 2 (c)). An O(n) walk over Pi−1

is performed to identify the largest area (or smallest are) valid triangle which can be
constructed with pi as one of its vertices. While walking, if the adjacent vertices pq&pr
of Pi−1 are marked, then it implies the existence of a valid triangle, △pipqpr. Further,
to find out the largest (or smallest) area triangle, the triangle area information is also
updated during this walk. Once the required triangle is identified, it is removed (or

ACM Journal on Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

Minimum Area Polygonization A:5

ALGORITHM 1: RAND MINAP(S,n)

Input: A set of n planar points, S={p0,p1..pn−1}.
Output: Minimal Area Simple Polygon of S.
Randomly pick three points from the set S. Label it as p0,p1 and p2;
Initialize P2={p0,p1,p2}, edge set E2={(p0,p1),(p1,p2),(p2,p0)} and hull size=3;
for i:=3 to n-1 do do

select a point pi uniformly at random from S \ P ;
Construct L consisting of all the edges formed by pi with the vertices of Pi−1;
Apply line sweeping on Ei−1 ∪ L and update L with non-intersecting edges;
if pi∈ interior of Pi−1 then

Walk over Pi−1 and remove the largest area △pqpipr from Pi−1;
end
else

Walk over Pi−1 and add the smallest area △pqpipr to Pi−1;
end
Empty the list L;
set hull size=hull size+1;
update the set Pi={p0,p1,p2..,pq,pi,pr...p(hull size−1)} and edge set
Ei={(p0,p1),(p1,p2),(p2,p3),..,(pq,pi),(pi,pr)};

end
return Pn−1 and En−1;

added) to Pi−1 to construct the current polygon, Pi (Figure 2 (d) shows the output of
MINAP). A similar procedure can be applied for pi, if it lies exterior to Pi−1.

The pseudo code of the overall approach is presented in Algorithm 1.

2.3. MAXAP Construction

The maximal area simple polygon construction uses an approach similar to the method
described for MINAP construction in the Section 2.1. The only difference occurs when
excluding or including the triangles in each iteration. Instead of excluding the largest
area non-intersecting triangle if the point lies inside the current polygon, MAXAP con-
struction excludes the smallest area non-intersecting triangle. If the point is exterior
to the current polygon, the algorithm includes the largest area non-intersecting tri-
angle to the current polygon. A modified version of the pseudo code (RAND MINAP)
given in the Algorithm 1 can be used for the MAXAP construction as well.

(a) Input (b) 48 sq. units (c) 32 sq. units (d) 37 sq. units

Fig. 3. Maximum area polygonizations generated by different algorithms. (a) Point set (b) Convex hull (c)
Result by [Fekete 2000] and (d) Our result. Area of each polygon is mentioned along with the sub figure.

ACM Journal on Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 Jiju Peethambaran et al.

In [Fekete 2000], Fekete put forward an O(n log n) algorithm (APPROX MAXAP) to
obtain maximum area polygonization. His construction employs a slope-based sorting
of input points with respect to a point on the convex hull and then joining the points
in the sorted order. A simple strategy based on Euclidean distance is also employed to
break the ties between points with the same slope. If the area of the resulting poly-
gon P is bigger than half the area of convex hull, the algorithm returns P , otherwise
a complementary simple polygon with respect to the corresponding convex hull is re-
turned. This simple construction guarantees to generate a simple polygon, whose area
is larger than half the area of the corresponding convex hull. The area upper bound
for any solution to MAXAP is the area of the corresponding convex hull and therefore,
the APPROX MAXAP, in a way, represents a 1

2 -approximation algorithm yielding fast
approximation to MAXAP. However, for certain point sets shown in Figure 3, our al-
gorithm returned better solution as compared to APPROX MAXAP. Our method has
the flexibility of choosing the best candidate from the feasible solution space, of course,
at the expense of several executions and running time. On the contrary, one of the
main advantage as well as the disadvantage of APPROX MAXAP is its adherence to a
fixed sequence of points for computing the required polygon. While the fixed sequence
helps in generating the solution quickly, it also limits the algorithms ability to further
explore and find out the best candidate from the solution space.

2.4. Complexity

Lemma 2.1 establishes the time complexity of the RAND MAXAP and RAND MINAP
algorithms.

LEMMA 2.1. RAND MINAP or RAND MAXAP runs in O(n2 logn).

PROOF. This is an obvious and straight forward statement. The loop for randomly
picking the points from the point set runs from 3 to n−1 , making a total of n−3 times.
In each iteration of this loop, an O(n log n) line sweeping is performed to create the
list of non-intersecting edges that the selected point forms with the vertices of Pi−1.
Walking over the polygon and picking the largest (or smallest) area triangle is achieved
in O(n). So the overall asymptotical running time is O(n2 logn+ n2) ≈ O(n2 logn).

One can argue that O(n2 logn) is the time incurred due to a single run of
RAND MINAP and therefore, the worst case time required for the overall strategy,
considering all the possible sequences of a point set of size n is O((n−1)!(n2 logn)). This
complexity is astronomically huge. However, the attractive feature of our algorithm is
that it chooses the sequences randomly and hence it is very likely that the sequence
leading to the optimal solution may be chosen in the very first run of RAND MINAP .
This implies that we get a solution of even large sized point set in O(n2 logn), which
is a clear advantage especially when considering that MINAP problem has only a few
approximate algorithms and brute force technique. On the space complexity, the algo-
rithm maintains three lists Pi, Ei and L, each having a size of O(n) and hence takes
no more than O(n) space, overall.

3. CORRECTNESS ANALYSIS

3.1. Existence of Polygonization

The authors [Peethambaran et al. 2015], have employed concepts such as trap regions,
minimal set of blocking points and local rearrangements to theoretically analyze the
existence of polyhedronization in 3D. We use the term valid sequence to refer to an
ordering of input points which when used by RAND MINAP leads to a simple poly-
gonization. In two dimensions, a trap region, T (P) of a polygon P , is a region in the
Euclidean plane from where no edges of P are completely visible (please refer to the

ACM Journal on Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

Minimum Area Polygonization A:7

grey-colored region in Figure 4(a))). In an iteration of RAND MINAP (), if the se-
lected point belongs to any of the trap regions of previous polygon (as shown in Figure
4(a)), it forms only intersecting triangles with the previous polygon and therefore, the
algorithm gets stuck. Current implementation deals with such points (lying in trap re-
gions) by allowing the re-execution of the algorithm, right from the start, possibly with
a different ordering of the input points. However, this implementation relies on the hy-
pothesis that at least one valid sequence exists for a planar point set and therefore, one
of its executions may encounter this sequence, thus producing a simple polygonization.
This clearly calls for an analysis on the existence of valid sequences for planar point
sets.

(a) (b)

Fig. 4. (a) An example of trap region (grey colored region) (b) Illustration of local rearrangement. In Figure
4(b), P is the previous polygon, q is the trapped point and {b} represents the minimal set of blocking points.

To resolve a trap region that may arise in any of the iterations of RAND MINAP ,
we employ a local re-arrangement technique on blocking vertices of previous polygon,
P . Vertices and edges of P that blocks the visibility of a point q ⊆ T (P) is referred to as
blocking vertices and blocking edges, respectively. A minimal set of blocking vertices
is the set of minimum number of vertices whose removal causes at least one edge of
P to be completely visible from q. Intuitively, a trap region can be resolved by a local
rearrangement of current polygonal edges. The process first, detaches the minimal set
of blocking points from P and then attaches the trapped input point, followed by the
detached points keeping the area constraint invariant. The process is illustrated in
Figure 4(b). Using the concepts of local rearrangement and trap regions, we outline
our arguments in favor of RAND MINAP in polygonizing a planar point set (refer to
Proposition 3.1).

PROPOSITION 3.1. For any finite set of planar points S where | S |=n, there exists
an ordering of points, which when subjected to the rules of RAND MINAP algorithm
generates a polygonization of S.

PROOF. Using induction on | S |= n, we try to show at least one valid sequence for
each of the cases. For n = 3, it is trivial to find that any permutation of points leads to
a polygonization. For n = 4, the valid sequence consists of points on the convex hull of
S followed by the interior point.

ACM Journal on Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 Jiju Peethambaran et al.

We hypothesise that claim is true for all sets of size k < n. Assume that a point q ∈ S
lies in T (Pn−1) where Pn−1 is a polygon of n − 1 points of S. Let Pn−1 be decomposed
into 2 sub sets of points, {Sr, B} where B = {b1, b2, ...bm}, is the minimal set of blocking
points and Sr = Pn−1 \ B. Using local rearrangements, the construction proceeds by
first polygonizing Sr to get Pr. Due to hypothesis, the points in Sr where | Sr |< n,
has a valid ordering which leads to polygonization. Then, q is attached to Pr followed
by attaching points in B keeping the volume constraint as invariant. Hence, for such
a configuration, an ordering which leads to the polygonization of Sr, followed by q,
followed by b1, b2, ...bm leads to a simple polygonization. During the construction if trap
regions arise again due to any point from B, a similar local rearrangement can be
done. Since, the 2D local rearrangements are possible as illustrated in Figure 4(b), we
conclude that there exists at least one valid sequence for any point set.

3.2. Optimal Area Polygonization of Convex Point Sets

A point set S is said to be convex point set, if all the points in S are co-located on
the convex hull of S. In this section, we show that RAND MINAP algorithm always
generates the optimal result for convex point sets. The optimal result is the convex hull
as it is the only simple polygon induced by a convex point set. Let Pi−1, be the current
polygon and pi be the point selected in the ith iteration of RAND MINAP algorithm,
then a potential triangle can be either of the following.

— a non-intersecting triangle ∆i, which is a potential candidate for removal from the
current polygon if the point pi lies in the interior of Pi−1 or

— a non-intersecting triangle ∆i, which is a potential candidate for addition to the
current polygon if the point pi lies to the exterior of Pi−1.

LEMMA 3.2. Let S be a convex point set, then each iteration of RAND MINAP on
S will have only one potential triangle.

PROOF. In each iteration i of RAND MINAP algorithm, the point set is divided
into i sub sets where each sub set, sub setk has only one unique edge ek (ek belongs
to the current polygon Pi−1) with which the points from sub setk may form a potential
triangle. We term this edge as friend edge. In the Figure 5, the polygon P2 divides the
point set S into sub set1 with friend edge e1, sub set2 with friend edge e2 and sub set3
with friend edge e3. If a new point is selected, the point can form only one potential
triangle as it lies in any one of the sub sets and the sub set has a unique friend edge e
associated with it. This scenario is attributed by the fact that all points lie on the con-
vex positions on the hull and a triangle consisting of a point from one sub set and non
friend edges can be made only at the expense of an intersection with the corresponding
friend edge. This makes that triangle a non potential one.

It is to be noted that all the potential triangles have its vertices on the convex hull of
S. Since all the points lie on the convex hull, while building the MINAP, no point is
trapped inside the current polygon.

LEMMA 3.3. RAND MINAP always returns an optimal solution for convex point
sets.

PROOF. Let S be a convex point set. The claim is easy to establish by contradiction.
We assume that RAND MINAP constructs a non-convex simple polygon, which is ob-
viously a non-optimal solution for S. However, the vertices of potential triangle, which
is the only non-intersecting triangle available in an iteration of RAND MINAP (re-
fer to Lemma 3.2), lies on the convex hull of S. Consequently, a non-convex polygon is
never generated for S by RAND MINAP which contradicts our assumption. Hence,

ACM Journal on Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

Minimum Area Polygonization A:9

Friend edge e1

Friend edge e2

Friend edge e3

Sub_set 3

Sub_set 1

Sub_set 2

Candidate Triangle

p2

p3

p0

p1

Fig. 5. Potential triangle in an iteration of RAND MINAP for a convex point set.

RAND MINAP always generates convex hull for convex point sets, which represents
the optimal solution.

3.3. ξerror Hypothesis

Lemma 3.4 shows the existence of a permuted sequence leading to an optimal MINAP
when used by the RAND MINAP algorithm for point sets of size n (when all points lie
at convex positions and all but one points lie at convex positions). This indicates that a
permuted sequence producing an optimal polygon exists for any point sets mentioned
in the above category. A poit set S is referred to as convex points if all the points in
S are co-located on the convex hull of S. The sequence producing optimal MINAP is
referred to as optimal sequence.

LEMMA 3.4. Given a set of n points in the general position, all of which are at convex
positions or all but one point are at convex positions, there exists at least one permuted
sequence of points which when subjected to the rules of RAND MINAP algorithm will
generate an optimal MINAP of S

PROOF.

(1) Base case, n=4: There arise two cases as the following.
(a) case 1:All points lie at convex position

When all points lie at convex position making up a convex quadrilateral, any
permuted sequence will generate the optimal MINAP as stated in the Lemma
3.3

(b) case 2:One point lies interior to the other three convex points

In this case, a permuted sequence consists of the points on the convex posi-
tions followed by the point at non-convex position. This will clearly produce an
optimal MINAP.

(2) When point set size is n
(a) case 1:All points lie at convex position

This is again a direct consequence of Lemma 3.3. When all points lie at convex

ACM Journal on Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 Jiju Peethambaran et al.

position making up a convex n-gon, any permuted sequence will generate the
optimal MINAP as stated in the Lemma 3.3.

(b) case 2:One point lies interior to the other n− 1 convex points

When only one point lies to the interior of the other points (convex (n-1)-gon),
any permuted sequence of points of convex (n-1)-gon followed by the point lying
interior will generate the optimal MINAP as shown in the Figure 6.

Pinterior

(a) Point set 9

Pinterior

(b) Optimal MINAP

Fig. 6. One point lying interior to a 8-gon and the corresponding optimal MINAP. The permuted sequence
consists of all points on the convex 8-gon followed by the interior point

Given a set of n points, there exists a convex hull of k points where k ranges from 3 to
n. We have examined for the existence of an optimal permuted sequence for point sets
of size n when the convex hull size, k=n or k=n − 1 in the Lemma 3.4. To explore the
remaining cases, when k=3 to n− 2, we use the notation ξerror, which is defined as the
difference between the area of the convex hull of the given point set and area of the
MINAP generated by the RAND MINAP. Intuitively, the largest ξerror should produce
the optimal MINAP.
ξerror is computed as follows. Assume that the convex hull has been computed from

the point set by the RAND MINAP algorithm. When the selected point lies interior to
the previous polygon, the area of excluded triangle is added to ξerror. When the point
lies exterior to the previous polygon, the area of the triangle included is subtracted
from ξerror. Finally we get the total ξerror. Using ξerror measure, we hypothesis that
a sequence of points on the convex hull in any order followed by a sequence of inte-
rior points, which generates the largest ξerror may generate the optimal MINAP. We
illustrate this principle for a point set of size 5 in the Figure 7.

4. EXPERIMENTAL STUDY

In this section, a detailed experimental study on the behavior of the algorithms has
been carried out. We conducted several experiments on different point sets to evaluate
the quality of RAND MINAP and RAND MAXAP algorithms. All computations were
performed on a machine having Intel Core i3-2330M processor with 2.20 GHz and 2GB
RAM. 20 trials were used to generate MINAP or MAXAP of each of the above point sets.
One trial consists of 100 execution which implies that, for a point set, the algorithm

ACM Journal on Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

Minimum Area Polygonization A:11

Fig. 7. Illustration of the relationship between optimal sequence and the largest ξerror for set of 5 points.
The sequence producing largest ξerror results in optimal MINAP as shown in Figure 7(f) as compared to the
one in Figure 7(c)

was run for 2000 times before making a conclusion on the lower bound/upper bound
on the optimal areas.

We generated random point sets of sizes 100, 150, 200, 250, 300, 400, 500 and 1000
for the experimental purpose. Some convex point sets (square(196), circle shape(70),
Elliptical shape(70) and Octagonal shape(100)) were also generated. In our experi-
ments, we were able to generate random MINAP and random MAXAP for point sets of
appreciable sizes, which include point sets of sizes 500 and 1000.

4.1. Implementation

The algorithms RAND MINAP and RAND MAXAP are implemented using C++ and
OpenGL in MS Visual Studio 2008. Random point selection is realized using the func-
tions srand() and rand() available in the header file stdlib.h. The function srand() is
used to initialize the pseudo-random number generator by passing the argument seed.
System time is used as the seed to the srand() function. When ever a point is added to
the polygon, algorithm mark it as used so that the point will be ignored when selecting
a random point in the future iterations. The major subroutines of the program consists
of point in polygon checking and intersection checking which are explained in Section
4.1.1.

4.1.1. Subroutines. The intersection between the edges is determined through classi-
cal line-sweeping algorithm [Berg et al. 2008]. Ray tracing [O’Rourke 1998] is used
to check whether the selected point lies interior or exterior to the current polygon.
Important subroutines used by algorithm 1 are the following.

— Interior(Pi−1,pi):This function returns TRUE if the point pi lies inside or on the
boundary of the current polygon Pi−1. Time complexity is O(n).

— Area(p,q,r):The function area(p,q,r) computes and returns the area of the triangle
formed by the points p,q and r in constant time. The function uses the expression
for the area of the triangle as a function of its vertex coordinates as given by the
formula: A(T) = 1

2 × (q0 − p0)(r1 − p1)− (r0 − p0)(q1 − p1) [O’Rourke 1998].

ACM Journal on Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 Jiju Peethambaran et al.

(a) Non-intersecting (b) Intersection

Fig. 8. Different types of intersections of the triangle with the previous polygon.

Fig. 9. Results of octagonal (regular polygon) point sets and its variants.

— Line sweep(Ei−1, L):It updates the list L with the non-intersecting edges that pi
forms with the vertices of Pi−1. In the non-intersecting case, the segments qp and
qr meet the vertices p and r respectively as shown in the Figure 8(a). When the
segments qp and qr cuts any of the previous polygonal edges, then it is considered
as an intersection. An example for intersection is shown in Figure 8(b).

— Walk(Pi−1, Ei−1, L): It picks up the largest/smallest area valid triangle by walking
along the previous polygon in linear time.

— Update(Pi−1,pi): Update function inserts the selected point in the appropriate po-
sition in the ordered list of points. The point will be inserted between the two neigh-
boring points with which pi forms a valid minimal/maximal area triangle. The com-
plexity of Update is O(n).

4.2. Computational Results

4.2.1. Random Point Sets. Figure 9 show the minimum area polygonizations for octago-
nal point set (an example of a regular polygon) and the variant point sets induced from
it. Additional points in the form of perturbance have been added to the octagonal point
set in Figure 9 (b) and an octagonal vertex itself is slightly moved towards the interior
to generate the point set of Figure 9 (c). Please note that, RAND MINAP algorithm
generates the optimal results for all the three point sets, for which intuitive optimal
solutions are known to us.

Table I & II report the maximum and minimum areas obtained in each trial of the
respective algorithm for various point sets. The last rows list the minimum and max-
imum areas along with the average, median and standard deviations of areas for 20

ACM Journal on Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

Minimum Area Polygonization A:13

(a) Octagon (100 Points) (b) Circle (70 Points) (c)

El-
lipse
(70
Points)

(d) Square (196 Points)

Fig. 10. Shapes generated by RAND MINAP for convex n-gonal point sets.

Table I. Minimum Area Table for Various Point Sets(in Sq. Units)

Trial No. Pointset100. Pointset250. Pointset300. Pointset500. Pointset1000.
1 624.5 13624.5 2702.5 43890.0 267088.0
2 635.5 15406.0 2640.0 46655.0 275839.5
3 618.5 16212.0 2859.5 40126.0 279085.0
4 623.5 16483.5 2768.5 43317.5 259935.5
5 608.0 14437.5 2824.0 41005.0 270605.0
6 655.0 18923.5 2819.0 43874.5 265872.5
7 667.5 16145.5 2810.5 41001.5 277434.0
8 661.5 16261.5 2758.5 44932.0 274999.5
9 695.0 14981.0 2901.5 41185.5 262591.0

10 624.5 15683.0 2677.0 41603.5 270501.0
11 644.5 15135.5 2940.0 43811.0 270207.5
12 647.0 15928.5 2769.0 41457.0 280472.0
13 604.5 15145.5 2507.0 41286.0 286047.0
14 635.0 17966.0 2585.5 43236.0 274134.0
15 771.0 14965.5 2648.5 42123.5 274364.0
16 618.5 16273.0 3059.5 41352.0 285153.5
17 617.0 16361.0 2573.5 42000.5 271355.5
18 594.0 16639.0 2809.5 43371.5 276404.0
19 630.5 15269.0 2808.0 43555.0 279136.0
20 629.0 14884.5 2803.0 44333.5 265091.5

Area ≤ 594.0 13624.5 2507.0 40126. 259935.5
Average 640.225 15836.275 2763.225 42705.825 273315.8
Median 629.75 15805.75 2786.0 42679.75 274249.0

Std. deviation 38.771 1186.879 132.778 1642.119 7043.885

trials. Recall that one trial consists of 100 executions of RAND MINAP algorithm. So,
the algorithm was run for 2000 times before taking the the bound value for the optimal
area for each of the point sets. Best area (minimum) value out of the 100 values has
been presented for each trial in the table. Our bound value on the optimal minimal
area for each point set is listed in the last row of the Table I.

4.2.2. SPAETH Cluster Data. We experimented with the point set data taken from
SPAETH cluster analysis database [Spaeth 2014]. Each input consists of differ-

ACM Journal on Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 Jiju Peethambaran et al.

Table II. Maximum Area Table for Various Point Sets (in Sq. Units)

Trial No. Pointset100. Pointset250. Pointset300. Pointset500. Pointset1000.
1 1697.5 43316.5 7208.0 111640.5 799223.0
2 1700.0 45230.5 6982.5 115282.0 724297.0
3 1677.5 42431.5 7300.5 116491.0 867238.5
4 1654.5 42866.5 7386.0 116191.5 717051.5
5 1712.5 43479.5 7098.5 112744.0 756729.5
6 1746.5 43267.5 7311.0 112834.0 713686.0
7 1731.5 44896.0 7088.0 116306.0 739367.0
8 1620.0 43626.5 7243.0 116415.0 715490.0
9 1705.5 44269.0 6924.0 115242.0 733364.0
10 1604.5 44789.5 7126.0 113844.0 714224.0
11 1767.5 44415.5 7255.5 113075.0 728068.0
12 1684.5 43757.5 7219. 114297.5 723059.0
13 1619.0 42907.5 7066.0 114219.0 746503.5
14 1638.5 43468.0 7058.0 111989.5 727794.0
15 1631.5 43406.5 7186. 113897.0 728596.0
16 1692.5 45086.0 7204.5 112821.0 721769.0
17 1680.5 44259.5 7001.0 113459.5 753409.0
18 1733.5 42628.0 7176.0 117897.5 969552.0
19 1666.0 44503.0 7083.0 111819.5 783217.0
20 1683.5 42810.5 7150.5 111598.0 711122.5

Area ≥ 1767.5 45230.5 7386.0 117897.5 969552.0
Average 1682.35 43770.75 7153.35 114103.175 753688.025
Median 1684.0 43553.0 7163.25 113870.5 728332.0

Std. deviation 44.741 857.72 118.167 1865.21 63105.373

Fig. 11. Results generated for point sets taken from [Spaeth 2014].

ent shaped clusters and hence represents a challenging input to evaluate the pro-
posed heuristics. Figure 11 illustrates the results generated by RAND MINAP and

ACM Journal on Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

Minimum Area Polygonization A:15

Table III. Approximate minimum areas and running times by RAND MINAP() for the test in-
stances taken from TSPLIB [Reinelt 2014] (areas in Sq. Units and time in seconds)

Test data Execution time. Approximate minimum area. Scaling factor
berlin52 2.022 405.719 25
bayg29 2.006 1030.319 25
att48 2.014 8264.27 25
a280 4.536 7.12 25

burma14 2.001 7.07 1
ch130 2.271 146.5 25
ts225 2.975 1443.75 200
rat99 2.153 150.73 6

kroB100 2.14 674.84 50
pr439 10.567 11.32 1000
lin318 4.564 972.02 50

ulysses22 2.002 18.26 1
u159 2.465 592.0 100
st70 2.037 0.858 50

RAND MAXAP for points having different clusters (area of each result is also men-
tioned in the brackets of corresponding figure).

4.2.3. TSPLIB Benchmark Data. One of the major difficulty in experimenting with
heuristics for MINAP is the absence of a publicly available benchmark data. Even
generating test data for MINAP is a good contribution in this area. Apart from the
random test data that we generated, we also experimented with the data sets avail-
able in TSPLIB benchmark data [Reinelt 2014] which is mainly meant for evaluating
TSP heuristics. We used symmetric TSP data that includes national TSPs (A national
TSP consists of points representing cities of a country, For eg. Burma), VLSI data sets
etc.. We tested the proposed RAND MINAP() using a collection of 14 TSP instances.
Table III reports on best minimum areas obtained for various test instances along with
the running time for one execution of the RAND MINAP() algorithm. For a few point
sets, the area of the polygonization were too large to be accommodated in the data type
and hence we scaled down the coordinates of points using a factor (scaled down factor
for each point set is mentioned in the last column of Table III). Figure 12 shows few
interesting results from our experiment on TSPLIB benchmark data sets.

4.3. Area Fluctuation

In order to study the behavior of RAND MINAP and RAND MAXAP algorithms for
different data sets, we constructed area fluctuation graphs from the Table I, II and the
minimal areas of convex point sets. An area fluctuation graph is a line graph showing
the area values in all the 20 trials for each of the mentioned point sets. A straight hor-
izontal line in the graph increases the probability of that area being the optimal area.
In the graph 13(a) of general point sets, none of the lines are steady as opposed to the
straight lines of convex point sets shown in 13(b). Steady lines in the area fluctuation
graph of convex points can be justified by Lemma 3.3, which states that RAND MINAP
always returns the optimal results for convex point sets. Area fluctuation graph for
RAND MAXAP is shown in Figure 13(c). We can observe non-straight lines in area
fluctuation graph of RAND MINAP/RAND MAXAP, for general point sets. This is be-
cause, there might be several random sequences leading to an exponential number
of different randomized MINAPs/MAXAPs resulting in non-straight lines in the area
fluctuation graphs. It is an expected behavior of the algorithm for general point sets.

4.4. CPU Time Distribution among Subroutines

Table IV lists the CPU time allocation among three major sub procedures for point sets
of sizes 300, 500 and 1000. Line sweeping and walking subroutines with complexities

ACM Journal on Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 Jiju Peethambaran et al.

(a) pr439 (b) ts225

(c) u159 (d) ulysses22

Fig. 12. Randomized MINAPs for different test data from TSPLIB [Reinelt 2014].

of O(n logn) and O(n) respectively, steal a major portion of the overall execution time
of both the algorithms. The term other in Table IV refers to all the remaining work
done by the randomized algorithm which include random point selection and counter
clock wise orientation of the points. All these methods account for the next portion in
the CPU time. The procedures Interior() and Update() uses negligible amount of CPU
time.

Another observation that can be drawn from Table IV is regarding the point set size
and CPU time usage by different procedures. As the point set size becomes larger, the
percentage of CPU time spent in the intersection checking grows proportionately. CPU
time usage by the methods in other category has an inverse proportionate relation

ACM Journal on Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

Minimum Area Polygonization A:17

(a) MINAP of General Point Sets (b) MINAP of Convex Point Sets

(c) MAXAP of General Point Sets

Fig. 13. Area Fluctuation Graphs for MINAP and MAXAP based on the areas given in Tables I and II. 13(b)
is constructed from another minimum area table for convex point sets given in Appendix

with the point set size. So it is evident from the Table IV that improving valid triangle
picking (through Line sweeping and walking) procedure should yield a considerable
overall speed up for both the algorithms.

Table IV. CPU Time Distribution Among Different Subroutines

Algorithm Subroutine
% of CPU Time

Pointset300 Pointset500 Pointset1000
Line sweep & Walk 52.103 % 67.842% 77.592%

RAND MINAP Interior 0.039% 0.043% 0.018%
Update 0.598% 0.064% 0.033%
Other 47.297% 32.050% 22.357%

Line sweep & Walk 55.175% 72.849% 89.941%
RAND MAXAP Interior 0.114% 0.039% 0.047%

Update 0.114% 0.019% 0.041%
Other 44.596% 27.092% 9.969%

5. COMPARISON

To the best of our knowledge, there do not exist benchmarks publicly available for MI-
NAP problem that allow us to compare our results. Hence, we compare RAND MINAP
algorithm with an approximation algorithm [Muravitskiy and Tereshchenko 2011] and

ACM Journal on Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 Jiju Peethambaran et al.

Table V. Running Time of MINAP Algorithms for Smaller Point Sets

Point set size
Execution Time(Seconds)

RAND MINAP PERMUTE REJECT APPROXIMATE MINAP
8 2 2.423 2.001
9 2 6.544 2.002

10 2 55.773 2.002
11 2 682.033 2.003
12 2 9315.623 2.003

Table VI. Comparison of RAND MINAP with APPROX MINAP for Larger Point sets

Point set size
Execution Time(Seconds) Minimum Area (Sq. Units)

Speed up factor
RAND MINAP APPROXIMATE MINAP RAND MINAP APPROXIMATE MINAP

150 2.28 30.06 2160.5 2593.5 13.18

200 3.19 58.58 2597.5 2673.0 18.38

250 3.94 170.99 13624.5 17824.0 43.36

400 8.63 1358.63 2657.0 2961.0 157.43

a brute force algorithm in Section 5.1. We also evaluate RAND MINAP algorithm for
its performance on different sized point sets. Further, we measure the speed up that
RAND MINAP gained against APPROXIMATE MINAP and PERMUTE REJECT as
the point set size increased. The details are presented in Section 5.1.2

5.1. Comparison of MINAP Algorithms

5.1.1. Complexity of the algorithms. The minimal area polygonization (APPROXI-
MATE MINAP) proposed by Muravitskiy et al. [Muravitskiy and Tereshchenko 2011]
is a greedy approximation algorithm with a non-constant approximation factor. The
worst case time complexity of APPROXIMATE MINAP is O(n4). A preliminary pre-
processing of the set of points can further improve the time complexity of the approx-
imation algorithm to O(n3) but at the expense of increased memory usage [Murav-
itskiy and Tereshchenko 2011]. Though the authors [Muravitskiy and Tereshchenko
2011] talk about the optimization of the proposed greedy algorithm, it is not so clear
whether they have incorporated the optimization in their implementation and hence
we have implemented the O(n4) greedy approximation algorithm for the comparison
purpose.

As there are no other heuristics available for the MINAP generation problem, we
implemented an exhaustive search algorithm with a time complexity of O((n− 1)!) for
the comparison purpose. Brute force technique is referred to as PERMUTE REJECT,
which can be summarized as follows:

(1) Generates all the permutations of the point set, S
(2) Chooses a sequence which forms a simple polygon with minimum area

In terms of the computational complexity, the proposed algorithm (O(n2 logn)) per-
forms better than APPROXIMATE MINAP (O(n3)) and PERMUTE REJECT ((n−1)!)
algorithms.

RAND MINAP, APPROXIMATE MINAP and PERMUTE REJECT algorithms take
O(n) space where as the optimized greedy approximation algorithm takes O(n2) space.

5.1.2. Performance Evaluation. We evaluate the RAND MINAP algorithm for its perfor-
mance on various instances of point sets. Table V reports running times of all three
MINAP algorithms for smaller sized point sets. As PERMUTE REJECT takes expo-
nentially large time for larger point sets, we had to restrict our comparison for point
set instances of size at most 12. Table V indicates that RAND MINAP and APPROX-
IMATE MINAP take almost the same running time (approximately 2 seconds) for
smaller point sets, whereas PERMUTE REJECT takes much larger running time in
each of the point sets. This is certainly because of its exhaustive searching nature.

ACM Journal on Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

Minimum Area Polygonization A:19

5.1.3. Comparison of computed area. In the case of larger point sets, it is not straight for-
ward to verify optimal MINAP and hence RAND MINAP returns a polygonization with
an upper bound on the minimal area after repeated executions and updating on the
minimal area. It is to be noted that the PERMUTE REJECT takes longer time for large
point sets and no other method exists for verification. So we restricted our compari-
son among RAND MINAP and APPROXIMATE MINAP for larger point sets. Figure
14 through 17 show the comparison of RAND MINAP with APPROXIMATE MINAP
[Muravitskiy and Tereshchenko 2011] for a larger point set.

(a) Randomized MINAP (2160.5

Sq. units)

(b) Approximate MINAP (2593.5

Sq. units)

Fig. 14. Polygons Generated by RAND MINAP and APPROXIMATE MINAP for Point set 150

(a) Randomized MINAP (2597.5

Sq. units)

(b) Approximate MINAP (2673

Sq. units)

Fig. 15. Polygons Generated by RAND MINAP and APPROXIMATE MINAP for Point set 200

ACM Journal on Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 Jiju Peethambaran et al.

(a) Randomized MINAP

(13624.5 Sq. units)

(b) Approximate MINAP (17824

Sq. units)

Fig. 16. Polygons Generated by RAND MINAP and APPROXIMATE MINAP for Point set 250

(a) Randomized MINAP (2657

Sq. units)

(b) Approximate MINAP (2961

Sq. units)

Fig. 17. Polygons Generated by RAND MINAP and APPROXIMATE MINAP for Point set 400

Point set sizes have been restricted to a maximum of 12 for RAND MINAP Vs PER-
MUTE REJECT comparison as anything above it took enormous amount of time for
the completion of PERMUTE REJECT method. This is clear from the Table V. PER-
MUTE REJECT on a point set of size 12 took around 9315.623 seconds≃2.58 hours
for its completion. The results returned by the RAND MINAP were verified against
the optimal solution generated by the brute force method. RAND MINAP generated
optimal MINAP for point sets of smaller sizes. Figures 18 to 20 visualize some of the
results generated using all the three methods along with their areas.

Table VI lists minimal areas obtained by RAND MINAP and APPROXI-
MATE MINAP for various point sets. The readings clearly favor the RAND MINAP
algorithm as compared to the APPROXIMATE MINAP algorithm. For all the point

ACM Journal on Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

Minimum Area Polygonization A:21

(a) Permute MINAP

(712.5 sq.units)

(b) Approximate MINAP

(974.5 sq.units)

(c) Randomized MINAP

(712.5 sq.units)

Fig. 18. Point set of size 8 and corresponding PERMUTE MINAP, APPROXIMATE MINAP and
RAND MINAP.

(a) Permute MINAP

(553.53 sq.units)

(b) Approximate MINAP

(601.72 sq.units)

(c) Randomized MINAP

(553.53 sq.units)

Fig. 19. Point set of size 9 and corresponding PERMUTE MINAP, APPROXIMATE MINAP and
RAND MINAP

sets, RAND MINAP provides a tighter upper bound on optimal minimal area as com-
pared to the bound generated by APPROXIMATE MINAP.

5.1.4. Speed up factor. In order to further assess the performance of our algorithm
with other MINAP algorithms, we consider the speed up factor of the proposed al-
gorithm. Speed up factor is defined as the ratio of running time of RAND MINAP
to running time of the other MINAP algorithm under consideration. For example, if
we want to measure and compare the performance of RAND MINAP with APPROXI-
MATE MINAP for any point set S, we compute the speed up factor as in the equation

ACM Journal on Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 Jiju Peethambaran et al.

(a) Permute MINAP (b) Approximate MINAP (c) Randomized MINAP

Fig. 20. Point set of size 10 and corresponding PERMUTE MINAP, APPROXIMATE MINAP and
RAND MINAP (all three with an area of 15395.5 sq. units)

1.

speed upAPPROXIMATE MINAP =
running time of APPRIXIMATE MINAP for S

running time of RAND MINAP for S
(1)

Similarly we can define speed upPERMUTE REJECT .
For larger point sets, we compared RAND MINAP with APPROXIMATE MINAP.

Table VI lists running times and minimal areas obtained by these two algorithms for
various point sets. We consider only one execution of RAND MINAP for performance
analysis. Speed up factor is also mentioned in the last column of Table VI. An interest-
ing observation that can be drawn from the Table VI is on the relationship of speed up
factor with point set size. Both are directly proportional. It is obvious that the speed

up should be of
O(n4)

O(n2 log n) . We claim that such a speed up factor will be achieved at

some instant as the point set size increases further. The graph plotted between speed
up factor and point set size is presented in the Figure 21. The speed up curve further

reassures our claim on the convergence of speed up factor to O(n2

logn
).

Fig. 21. Comparison of RAND MINAP with APPROX MINAP in terms of Speed up achieved in an Execu-
tion for Different Point sets

5.1.5. Extension to higher dimensions. Extension to higher dimensions is a primary con-
cern for geometric algorithms. An algorithm gains more credibility if it can be easily
extended to higher dimensions or to 3D at least. RAND MINAP and RAND MAXAP
have been already extended to three dimensions [Peethambaran et al. 2015]. Instead

ACM Journal on Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

Minimum Area Polygonization A:23

of triangles, both the algorithms use tetrahedra for constructing minimal volume poly-
hedrons from the three dimensional point sets. The authors have implemented PER-
MUTE REJECT algorithm in three dimension. However, the experiments showed that
it is impractical for point sets of larger sizes(size ≥ 7). In fact, the estimated compu-
tational time by PERMUTE REJECT() for a point set of size 7 was more than half an
hour [Peethambaran et al. 2015]. This huge computational time is incurred due to the
exhaustive searching for all possible combinations of triangles [Veltkamp 1995]. The
time complexity of brute force method in 3D is at least Ω(n5.nv

v) [Veltkamp 1995] where
nv is the number of points in the set.

Table VII summarizes the comparison of the three algorithms for minimum area
polygonization.

As a final validation experiment, we took several point sets of size 10 and gener-
ated optimal MINAP using PERMUTE REJECT. Then we repeated the experiment
on RAND MINAP for these point sets. Though RAND MINAP took several runs, it
generated optimal MINAP for all the point sets. Figure 22 shows some of the optimal
minimal area polygons that we obtained during our experiments.

(a) Point Set 1 (b) Point Set 2 (c) Point Set 3 (d) Point Set 4

(e) Point Set 5 (f) Point Set 6 (g) Point Set 7 (h) Point Set 8

Fig. 22. Optimal Minimal Area Polygons generated by RAND MINAP and verified using PER-
MUTE REJECT for various point sets of size 10

Table VII. Summary of the Comparison

Point of comparison PERMUTE REJECT APPROXIMATE MINAP RAND MINAP
Nature of the Algorithm Brute force method Greedy approximation Randomized greedy

Time complexity O((n− 1)!) O(n3) O(n2 logn)
Space complexity O(n) O(n2) O(n)
Extension to higher dimension Difficult Relatively easy Easy
Optimal result always not always not always

ACM Journal on Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 Jiju Peethambaran et al.

6. SUMMARY AND CONCLUSIONS

In this paper, we have presented a simple, randomized and greedy algorithm for com-
puting the minimal area simple polygons (similarly, maximal area simple polygon) of
planar point sets. The proposed algorithm is guaranteed to construct optimal solutions
for certain point sets such as convex point sets and all-but-one convex point sets. The
proposed method performs better than the available MINAP algorithms in terms of
computational complexity of single execution.

One of the major difference between the proposed method and the existing MI-
NAP/MAXAP algorithms is the type of input sequence used for polygon construction.
Our method works on random sequences of input points whereas the existing algo-
rithms work on fixed sequence formed out of the algorithmic rules. Being a randomized
meta-heuristic, our strategy enjoys the flexibility of choosing the best candidate from
the solution space. On the contrary, one of the main advantage as well as the disad-
vantage of existing MINAP or MAXAP algorithms is its adherence to a fixed sequence
of points for computing the solutions. While the fixed sequence helps in generating the
solution quickly, it also limits the algorithms ability to further explore and find out the
best candidate from the solution space.

We conducted an empirical study, taking into account several performance mea-
sures for evaluating the proposed method. The proposed algorithm has been evaluated
on test data taken from standard repositories such as SPAETH [Spaeth 2014] and
TSPLIB [Reinelt 2014], a few large sized random point sets, convex point sets and a few
challenging synthetically generated data. In our study, the proposed RAND MINAP
algorithm always found to perform better than its counterparts for all the input data
used in our tests (Please refer to Figures 14-20). Since there exist no method for gen-
erating optimal minimal area polygonization to date, we firmly believe that heuristics
such as RAND MINAP with the ability of giving an upper bound on optimal minimal
area for polygonization is quite relevant. Further, this can be used for generating poly-
gonization test instances from large sized point sets (containing 1000 or 5000 points).
These test instances are very useful to evaluate other geometric algorithms that use
polygons as input data.

Based on our experimental results, Lemma 3.4 and the ξerror principle (Section 3.3),
we conjecture (Conjecture 6.1) on the existence of a permuted sequence leading to
optimal polygonizations for any set of planar points.

CONJECTURE 6.1. Given a set of n points in the general positions and k of which
lie at convex position where 3≤k≤n-2, there exists at least one permuted sequence for
which RAND MINAP algorithm will generate an optimal MINAP of S

It remains to be proved or disproved the Conjecture 6.1.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for their valuable comments to improve the manuscript.

Thanks to the anonymous reviewer for his/her suggestions to incorporate the plane sweep technique to

enhance the algorithmic performance.

REFERENCES

AUER, T. AND HELD, M. 1998. Rpg - heuristics for the generation of random polygons. In Proc. 8th Canad.
Conf. Comput. Geom. 38–44.

BERG, M. D., CHEONG, O., KREVELD, M. V., AND OVERMARS, M. 2008. Computational Geometry: Algo-
rithms and Applications 3rd ed. Ed. Springer-Verlag TELOS, Santa Clara, CA, USA.

BOYCE, J. E., DOBKIN, D. P., III, R. L. S. D., AND GUIBAS, L. J. 1985. Finding extremal polygons. SIAM
Journal on Computing 14, 1, 134–147.

DENEE, L. 1988. Polygonizations of point sets in the plane. Discrete Comput. Geom. 3, 77–87.

ACM Journal on Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

Minimum Area Polygonization A:25

EPPSTEIN, D., OVERMARS, M., ROTE, G., AND WOEGINGER, G. 1992. Finding minimum area k-gons. DIS-
CRETE COMPUT. GEOM 7, 45–58.

FEKETE, S. P. 1992. Ph.D. thesis. Ph.D. thesis, Department of Combinatorics and Optimization, University
of Waterloo, Waterloo, ON.

FEKETE, S. P. 2000. On simple polygonalizations with optimal area. Discrete & Computational Geome-
try 23, 1, 73–110.

GOYAL, S. 2010. A survey on travelling salesman problem. Midwest Instruction and Computing Symposium,
1–9.

MURAVITSKIY, V. AND TERESHCHENKO, V. 2011. Generating a simple polygonalizations. In Proceedings of
the 2011 15th International Conference on Information Visualisation. IV ’11. IEEE Computer Society,
Washington, DC, USA, 502–506.

O’ROURKE, J. 1998. Computational Geometry in C 2nd Ed. Cambridge University Press, New York, NY,
USA.

PEETHAMBARAN, J., PARAKKAT, A. D., AND MUTHUGANAPATHY, R. 2015. A randomized approach to vol-
ume constrained polyhedronization problem. ASME J. Comput. Inf. Sci. Eng. 15, 1.

REINELT, G. 2014. Tsplib database, http://www.iwr.uni-heidelberg.de/groups/comopt/software/tsplib95/.

SHARIR, M., SHEFFER, A., AND WELZL, E. 2011. Counting plane graphs: Perfect matchings, spanning
cycles, and kasteleyn’s technique. CoRR abs/1109.5596.

SPAETH, H. 2014. Spaeth cluster analysis datasets, http://people.sc.fsu.edu/ jburkardt/datasets/spaeth/spaeth.html.

TARANILLA, M. T., GAGLIARDI, E. O., AND PENALVER, G. H. 2011. Approaching minimum area polygoniza-
tion. In XVII Congreso Argentino de Ciencias de la Computacin.

VELTKAMP, R. C. 1995. Boundaries through scattered points of unknown density. Graph. Models Image
Process. 57, 6, 441–452.

ZHU, C., SUNDARAM, G., SNOEYINK, J., AND MITCHELL, J. S. 1996. Generating random polygons with
given vertices. Computational Geometry 6, 5, 277 – 290.

ACM Journal on Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

