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Figure 1: Shape representations generated by the proposed framework from non-uniform samples of Maple leaf boundary. (a) Representative
image, (b) Point set (113 points), (c) Reconstructed Curve, (d) Medial axis (Interior) and (e) Dominant points (DP) shown in blue circles.

Abstract

We present an incremental Voronoi vertex labeling algorithm for approximating contours, medial axes and dominant points
(high curvature points) from two dimensional point sets. Though there exist many number of algorithms for reconstructing
curves, medial axes or dominant points, a unified framework capable of approximating all the three in one place from points
is missing in the literature. Our algorithm estimates the normals at each sample point through poles (farthest Voronoi vertices
of a sample point) and use the estimated normals and the corresponding tangents to determine the spatial locations (inner
or outer) of the Voronoi vertices with respect to the original curve. The vertex classification helps to construct a piece-wise
linear approximation to the object boundary. We provide a theoretical analysis of the algorithm for points non-uniformly (€-
sampling) sampled from simple, closed, concave and smooth curves. The proposed framework has been thoroughly evaluated
for its usefulness using various test data. Results indicate that, even sparsely and non-uniformly sampled curves with outliers

or collection of curves are faithfully reconstructed by the proposed algorithm.

CCS Concepts

eComputing methodologies — Computer graphics; Shape analysis; eTheory of computation — Computational geometry;

1. Introduction

Recovering shape representations of an object from its boundary
samples is a fundamental yet challenging problem in a number
of fields such as computer graphics, computer vision, computa-
tional geometry, photogrammetry and reverse engineering [Lee00,
Wanl4, MBS16]. A handful of representations such as contours
and skeletons, derived from the point set, provide valuable insights
into the geometry of the corresponding object. These representative
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geometric structures play a significant role in shape analysis, es-
pecially by boosting the computational performance and reducing
the storage requirements. In this work, we develop a multi-purpose
Voronoi based framework for extracting curves, medial axes and
dominant points from non-uniform and possibly sparse data, sam-
pled from the boundaries of geometric objects. Figure 1 showcases
various shape representations extracted by the proposed framework
from the points sampled along the contour of a maple leaf. Our
shape representations range from highly detailed polygonal curves
(Figure 1(c)) that span the input points to dominant points driven,
coarse polygonal approximations (Figure 1(e)) that achieve high-



2 J. Peethambaran & A. Parakkat & A. Tagliasacchi & R. Wang & R. Muthuganapathy / Curve reconstruction

level of data compression. Further, it also approximates medial
axes(Figure 1(d)) of the object from its input samples.

Any simple closed curve divides the plane into a bounded and
unbounded region. Voronoi vertices in the unbounded region can
be labelled as outer while Voronoi vertices in the bounded region
can be labelled inner. The labeling can give reasonable cues about
various geometric structures representing the original curve. For
instance, a Voronoi edge connecting inner and outer intersects the
original curve. Consequently, its dual Delaunay edge can be used
as a linear approximation to the corresponding curve portion. Sim-
ilarly, all the Voronoi vertices lying in the bounded region approxi-
mates the interior medial axis, which can be captured via the corre-
sponding dual Delaunay edges. While these observations are pretty
standard in curve reconstruction domain and there have been many
attempts to exploit these ideas in curve reconstruction, e.g. power
crust [ACKO1], a unified framework that handles curves, medial
axes and high curvature points (referred to as dominant points) is
surprisingly missing in the literature.

We introduce a simple incremental Voronoi vertex labeling al-
gorithm to extract these shape representations from points sampled
from simple closed curves. Our algorithm heuristically computes
the poles at each input sample, where the poles estimates the nor-
mals at samples [DWO1]. Then, it uses these estimated normals and
tangents at sample points along with the Voronoi branching pattern
for the vertex classification and subsequently construct a piece-wise
linear approximation to the boundary and the interior medial axis
of the original curve. Extreme curvature portions induce specific
labeling patterns of the voronoi diagram and these labeling pat-
terns are utilized to identify dominant points on the input curve.
A theoretical evaluation of the incremental labeling algorithm for
smooth curves is provided under €-sampling model [ABE98] and
we demosntrate the practical potentials of the algorithm via several
experiements and comparison with the state-of-the-arts.

2. Related Work

In this section, we briefly review the existing literature on curve
reconstruction, medial axis extraction and dominant point identifi-
cation in two-dimensions.

2.1. Curve Reconstruction

Over the past few decades, a number of approaches have been pro-
posed for curve reconstruction. Curve reconstruction deals with
the task of constructing a polygonal chain faithful to the original
curve from its sample data. Most often, input data, acquired through
sensors or extracted from images, consists of noise or outliers.
These defect-laden data often pose a great challenge to the curve
reconstruction problem. A few methods [Lee00, Wan14, CFG*05,
dGCSAD11] can deal with the reconstruction of curves from noisy
input data. However, most of the Delaunay/Voronoi based recon-
struction techniques interpolate the input data and consequently are
less tolerant to noise.

Curve reconstruction from an arbitrary data, insufficiently sam-
pled from an unknown original curve, is highly infeasible [ABE9S].
A few conditions on the sampling are needed to guarantee a faith-
ful reconstruction of the original curve. Under uniform sampling,

where the adjacent points are sampled at a distance less than a
threshold value, many algorithms such as o-shape [EKS83] and r-
regular shapes [Att98] are known to work with reasonable accuracy.
However, uniform sampling condition leads to dense sampling all
over the curve, including the areas where a sparse sampling would
be sufficient.

To capture the local level of details at each point sampled on
a smooth curve, highly detailed portions of the curve demand a
dense sampling whereas the portions that encapsulate less details,
can be less densely sampled. Based on this observation, Amenta,
Bern and Eppstein [ABE98] introduced a non-uniform sampling
model called e-sampling (Definition 4), where the sampling den-
sity varies with the local feature size on the curve. Using the idea
of e-sampling, they proposed crust algorithm which guarantees to
construct a piece-wise linear approximation to a smooth curve, for
certain € < 0.252. Subsequently, a few variants of crust such as
nearest neighbor crust [DK99] and a locally defined crust [Gol99]
were proposed. It is remarkable that nearest neighbor crust algo-
rithm, though very simple in conception, improved the value of €
to 0.333 from 0.252. Later, conservative crust [DMROO], that re-
constructs a collection of open and closed smooth curves was de-
scribed. Compared to the previous crust algorithms, conservative
crust showed better resistance towards noise and outliers at the ex-
pense of a parameter tuning.

Crust and its variants fail in theory as well as in practice, for
curves with sharp corners [DW02]. Using a different sampling con-
dition for corner areas, Giesen [Gie99] showed that the traveling
salesman tour of a point set densely sampled from a single closed
curve X (possibly with corners), represents the correct reconstruc-
tion of X. In his work, the tangents (left and right) at any point
on the curve must make a non-zero angle for a guaranteed recon-
struction. By formulating traveling salesman problem in terms of
a linear program and applying the ellipsoid method, Althaus and
Mehlhorn [AMO1] showed that the traveling salesman tour can
be found in polynomial time for curve reconstruction. Dey and
wenger [DWO1] described a heuristic called gathan that handles
corners and endpoints and subsequently, in [DWO02], they extended
’gathan’ to reconstruct a collection of piece-wise smooth closed
curves with provable guarantee. Funke and Ramos [FRO1] intro-
duced the concept of angular sampling where the angle determined
by any edge (pi,pz) in the correct reconstruction and any other
sample point p3 is upper bounded by a constant, 6,4;.. Under this
sampling, they proposed an algorithm based on empty B-balls to
handle a collection of curves with corners and end points.

Despite two decades of research, curve reconstruction is still
an active problem among the computational geometry and com-
puter graphics research communities. Recent research trends tar-
gets aspects such as improved sampling conditions [OMW16], re-
constructing from fewer number of samples and curves with sharp
corners [OM13], reconstruction from unstrutured and noisy point
cloud [OW18], unified frameworks for curve and shape recon-
struction [MPM15], and applications of curve reconstruction to
hand drawn sketches [PM16]. The proposed algorithm is a mod-
ified extension of the water flow based labeling algorithm proposed
in [PPM15]. Compared to [PPM15], we have described the label-
ing framework in a formal setting with an additional technique for
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dominant point detection and the algorithm has been validated us-
ing extensive experiments.
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Figure 2: Relation between medial axis and Voronoi diagram. As
the sampling rate increases, the Voronoi vertices converge to the
medial axis.[Image courtesy: [TDS*16]]

2.2. Medial Axis Approximation

The medial axis of a curve C is defined as closure of the set of points
in the plane which have two or more closest points in C [ABE98].
It is a powerful shape descriptor, widely used in shape analysis and
feature extraction [FECO02]. Approximating the medial axis from
the Voronoi diagram of points sampled along the boundary of ob-
jects has been addressed in [Gol99, FEC02,BA92, Bra94, GMP07a,
ACKO1, AKO1, AM97]. Brandt and Algazi [BA92, Bra94] showed
the relationship between the medial axis of a continuous regular
shape and the Voronoi diagram of the points sampled along the
border of the shape. Later, Fabbri et al. [FEC02] proved that all
Voronoi vertices are also medial axis points (refer to Figure 2).
More recent techniques generate the medial axis by minimizing the
quadric error [LWS™15] or one-sided Hausdorff distance [ZSC*14]
between the input shapes and the medial spheres. The research on
medial axis computation from defect laden point clouds is still ac-
tive, e.g, [ZC18] proposed an algorithm to construct compact me-
dial axis from noisy and or occluded point clouds via approximat-
ing the signed distance function by a sparse optimization technique.
A recent survey on medial skeletons providing formal definitions,
a taxonomy of 3D skeletons and 3D shape skeletonization can be
found in [TDS*16]. In our method, the set of inner Voronoi ver-
tices obtained as a result of Voronoi vertex labeling approximates
the interior medial axis of C (as shown in Figure 1(d)). We observe
that our medial axis approximation is related to the union of inner
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Voronoi balls centered at Voronoi vertices. Hence the theory de-
veloped in [GMPO07a] is equally applicable to the proposed medial
axis extraction.

2.3. Dominant Point Detection

In [Att54], Attneave observes that “the information on a curve
is concentrated at points where the curve changes direction most
rapidly”. This seminal observation led to many other subsequent
approaches for finding the curvature extrema on the boundary of
a planar object, see Figure 1(e). These extrema, commonly known
as dominant points (DP), can suitably describe the curve for both
visual perception and recognition [Wu02].

Research on dominant points primarily focused on highly com-
pressed linear polygons (obtained through DPs) that best approx-
imate the input shape. In general, polygonal approximation tech-
niques based on dominant points fall in one of the three categories:
sequential approaches, split-and-merge approaches and heuristic
approaches [Mas08]. Sequential approaches employ ideas such
as longest possible line segments with minimum possible errors
[RR93], region of support of each point [TC89, MS03] or mini-
max technique [KD82]. Split-and-merge approaches mainly differ
in the manner that the curve has been split and this splitting proce-
dure range from boundary segmentation [Ram72] through cornerity
index [GDNO04] to slope difference [HAA94]. Heuristic approaches
for polygonal approximations mainly use either dynamic program-
ming [Dun86,Sat92] or genetic algorithms [HS99,PNK98, YIN9O9].
Existing methods, mostly proposed in pattern recognition domain,
target at polygonal approximation of digital curves. Conversely, we
adopt a computational geometry approach to extract high curvature
points from non-uniform boundary samples of known/unknown ge-
ometric objects.

Unbounded cell

Figure 3: Voronoi diagram of a set of curve samples

3. Algorithm

We begin by defining the fundamental geometric structure, i.e., the
Voronoi diagram, upon which the entire algorithm is designed, and
introduce a few terminology relevant for discussing the incremental
labeling algorithm.
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3.1. Definitions and Notations

Let C be a smooth, simple and closed curve (1-manifold) embedded
in R2. Let P be a set of n points sampled from C and Conv(P)
denotes the convex hull of S. Further, d(p,q) = ||p — ¢||, denotes
the Euclidean distance between two points p, g € P.

DEFINITION 1 Voronoi cell (V) [O’R98]:

A Voronoi cell of p € P is the set of all points in the plane that are
closer (or at least equidistant) to p than any other point in P:
Vpy={x € R? | d(p,x) < d(q,x), where p # ¢, Vq € P}

Outer medial axis

Convex hull bi-tangent

Medial ball

Pseudo-concavity

(a) Pseudo-concavity

(b) Smooth

Figure 4: [llustration of pseudo-concavity and bi-tangent neigh-
borhood portions of a simple closed curve in 2D. In Figure 4(b),
pseudo-concave portions between blue and green points represent
the bi-tangent neighborhood convergent (BNC) portions.

Voronoi diagram (VD) of P, denoted by Vor(P) is the subdivi-
sion of the plane into Voronoi cells with one cell V), for each point
p € P. The locus of points on the plane that are equidistant from ex-
actly two points, p and ¢ is called a Voronoi bisector and a point that
is equidistant to three or more points in P is called a Voronoi vertex.
A simply connected subset of Voronoi bisectors is called a Voronoi
edge. The VD consists of bounded and unbounded voronoi cells.
A cell V), is unbounded if the sample p lies on the convex hull of
P. Unbounded Voronoi cells induce what is called as infinite edges,
whose one vertex lies at infinity. All Voronoi vertices except the
vertex at infinity are finite. We use the term Extreme Voronoi Vertex
(EVV) to refer to the finite Voronoi vertex of an infinite Voronoi
edge (refer to Figure 3). Observation 1 states a property of EVV
which is exploited in the proposed incremental labeling.

OBSERVATION 1 An extreme Voronoi vertex of a Voronoi dia-
gram always belongs to two unbounded and one bounded voronoi
cells

DEFINITION 2 Delaunay triangulation (Del(P)) [O’R98]:
The straight line dual graph of Vor(P) results in a planar triangula-
tion called as Delaunay triangulation of P, Del(P).

Pseudo-concavity. We assume that C is positively oriented
(counter clockwise) closed, smooth and simple curve in 2D (refer
to Figure 4(a)). A medial ball B(c,r), centered at ¢ € medial axis of
C with radius r, is a maximal ball whose interior contains no points
of C [ABE98]. Let E be the set of all open connected regions of
Conv(C) \ C. Each region given by the closure E, is defined as a
pseudo-concave region (PCg) of C (Figure 4(a)). The portion of C
in each PCp is called pseudo-concavity, denoted by PC. The edges

of Conv(C) in each pseudo-concave region are called convex hull
bi-tangents (BT:vx). Every pseudo-concavity is capped by exactly
one convex hull bi-tangent.

The curve C is closed and concave and therefore, consists of con-
vex and concave portions. We consider two sets, a concave set Ceer
consisting of all the pseudo concavities of C and a pseudo-convex
set Cevx, containing all the portions of C except Ceev, i.€. C \ Cecv-
Note that the intersection of Ceyx and Ceey consists of bi-tangent
points belonging to Conv(C).

Bi-tangent Neighborhoods. Based on the radii of medial balls
[ABE9S], we characterize a property of the curve portions of C, ly-
ing in the vicinity of the bi-tangents. The medial balls of a pseudo-
concavity, C tend to increase or decrease as it traverses through the
outer MA lying in Cr. The region in PCg, where the medial ball
monotonically increases or decreases is defined as a rolling interval
of the medial ball.

DEFINITION 3 Bi-tangent neighborhood convergence (BNC):
Bi-tangent neighborhoods of a pseudo-concavity, C is said to be
convergent, if the radius of the medial ball decreases monotonically
in the first rolling interval, as it rolls along the outer medial axis of
C from the convex hull bi-tangent end to its interior.

In the case of smooth, concave and closed curves, viewed from
the convex hull bi-tangent end, one can observe that the curves
leading to the interior of C in the neighborhood of convex hull bi-
tangent, appears to be always converging. Figure 4(b) shows an ex-
ample of BNC concave curve with a few pseudo concavities, each
having a rolling interval (the curve portions between the bi-tangent
points (blue colored) and the red points) where the radii of its me-
dial ball decreases as it rolls along the corresponding outer MA
from the convex hull bi-tangent.

Sampling Condition. Most of the reconstruction algorithms im-
pose certain criteria on the sampling in order to provide theoretical
guarantees on the reconstruction. A widely used sampling criteria
is e-sampling [ABE98], where the sample spacing along the curve
is determined by the the local feature size (Ifs) of the input curve
(Ifs of samples in particular). Local feature size at a point p on C,
LFS(p) is the distance from p to the closest point on the medial
axis of C. A formal definition of €-sampling follows:

DEFINITION 4 e-sampling [ABE9S8]: For a constant € > 0, C is
said to be e-sampled by a finite set of samples P, if Vp € C,3s € P
such that || p — s|| < eLFS(p).

3.2. Incremental Labeling in Pseudo-concavities

In any closed curve, concave components pose great challenges for
reconstruction. Hence, we explain the labeling procedure by taking
a concave portion of a simple closed curve. Labeling for convex
curves is rather simple and direct. All the voronoi vertices are ini-
tially labelled as outer (illustrated using the dark blue blue points
in Figure 5(a)). Incremental labeling in a pseudo-concavity starts
with a EVV. Under dense sampling, each pseudo-concavity has at
least one EVV lying outside the Conv(P) as established in Lemma
3.1. An extreme Voronoi vertex (EVV) has exactly two unbounded
Voronoi cells due to the infinite edge and one bounded Voronoi cell
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Figure 5: lllustration of incremental labeling in a concave portion of a closed planar curve. In the figure, red dots constitute the input points
sampled from the curve, green and dark blue vertices respectively represent the inner and outer (w.r.t original curve) Voronoi vertices in the
classification. Incremental labeling starts from a EVV and progresses towards the high curvature points in the concavity

adjacent to it (OBSERVATION 1). The EVV is paired with the sam-
ple of its adjacent bounded cell. Starting from the EV'V the labeling
process progresses to any unvisited outer Voronoi vertex adjacent
to it. A few outer Voronoi vertices undergo label transitions from
outer to inner during the incremental labeling process.

(@) (b)

Figure 6: lllustration of Lemma 3.1.

LEMMA 3.1 Vor(P), where P is densely sampled (€-sample) from
a smooth, closed, pseudo-concave and planar curve C, has at least
one finite Voronoi vertex outside Conv(P)

Proof Without loss of generality, we consider the bi-tangent neigh-

borhood convergent portions (definition 3), gb and Lﬂ) of a pseudo-
concavity C, in the counter-clockwise direction of C (Figure 6 (a)).
Let Xy constitutes the convex hull edge capping C where x € P and
y € P are either p and/or g or neighborhood points of p and/or g (re-

fer to Figure 6 (b)). Let z € P be the sample belonging to either gb or
cﬁ? that is closest to either x or y. Under a dense sampling, an empty
circle passing through x, y and z is always possible whose circum-
center lies outside Conv(P) (shown in Figure 6 (b)) and hence the
lemma. [

The condition that triggers the label transition of a Vorornoi
vertex is based on the normal estimation technique proposed in
[AB98]. Amenta and Bern [AB98] observed that Voronoi cells of
P, where P is €-sampled from a curve, C, tend to elongate in the
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direction of the normal at each point. In [AB9S], the authors de-
fine poles, which are two extreme Voronoi vertices of V), for each
sample point p. In the case of curves, the reason for which the line
passing through p and any of the two poles estimates the normal at
p is explained in [DWO1].

For a Voronoi cell V), of a sample point, the outer Voronoi ver-
tex where the labeling process starts, represents its source Voronoi
vertex (SVV). Each sample p in P has its own Voronoi cell V,,, and
hence one of the vertices of V), subjected to the labeling procedure,
is guaranteed to be the SVV of p.

Figure 7: A bounded Voronoi cell with the normal (red line with
arrow) and the tangent (green colored dashed line) of the sample,
outer (green points), and inner (red points) Voronoi vertices.

Consider a bounded Voronoi cell V), and its source Voronoi ver-
tex (represented as Bj) along with its owner point p as shown in
Figure 7. The line L, orthogonal to B), p divides the plane into
two half planes designated as H;(p) and H,(p). Using the vector,
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(Bp — p) and L, we present the state transition rule for a Voronoi
vertex in our model in Definition 5.

DEFINITION 5 Label transition rule:

Let B; be an outer Voronoi vertex of a Voronoi cell V), of a sample
point p and B, be the source Voronoi vertex of V), B; is labelled as
inner if Bp and B; lie on either side of L

Algorithm 1: IncrementalLabel(B)
Input: Branch Voronoi vertex, B
Let p be the unpaired sample in the three Voronoi cells of B;
Pair p with B;
Apply state transition rule (Definition 5) to B in Vp;
if there are no neighboring outer and unvisited vertices for B
then
5 return;
end
7 else if there is one neighboring outer and unvisited vertex for
B then

BOWON -

£y

8 Let Byew be the outer neighboring vertex of B;

9 IncrementalLabel(Bew);

10 end

11 else

12 Let Beyy1 and B2 be the outer neighboring vertices of
B;

13 Incrementallabel(B,;.,,1);

14 IncrementalLabel(B),ey2);

15 end

Essentially, the source vertices estimates the poles of the samples
as established in Lemma 3.2 and consequently, the vector, (B — p)
and L approximates the normal and tangent at p, respectively. So,
all the Voronoi vertices of Vj, beyond p when viewed from B, are
labelled as inner. The justification is that the Voronoi vertices ly-
ing beyond the estimated tangent L of p also lie inside the original
curve and hence can be considered as inner. The labeling algorithm
advances to any neighboring unvisited outer Voronoi vertices of B,
(Figures 5(c)-5(f)) and is repeated until there are no neighboring
unvisited outer Voronoi vertices for the current B (refer to Figure
5(g)). The incremental labeling in pseudo-concavities is presented
in Algorithm 1. While the first recursive call (Line 7 of Algorithm
1) helps to traverse a single Voronoi branching, the second recur-
sive call (Lines 11 and 12 of Algorithm 1) helps to traverse the
two new Voronoi branchings corresponding to two inner pseudo-
concavities. All the Voronoi vertices are visited exactly once during
the Incremental_Label() on B).

LEMMA 3.2 In Vor(P), where P is e-sampled from a smooth, con-
cave and closed planar curve C, source Voronoi vertex (Bp) of a
sample point p represents one of the poles of p

Proof Amenta et al. [AB98] has observed that the poles of the
Voronoi diagram of a sampling of a smooth curve converge to
the medial axis. Hence, under dense sampling (as € approaches to
zero) the positive pole of each sample lies on the exterior medial
axis. The incremental labeling procedure starts with the EVV of a
pseudo-concavity and EVV approximates one of the points in the
exterior medial axis. Hence, EVV represents the positive pole of the

sample from its bounded Voronoi cell. As the transition rule (Def-
inition 5) restricts the labeling procedure to the pseudo-concave
region, i.e. the labeling advances only along the Voronoi vertices
from the exterior medial axis of the pseudo-concave region, all the
source Voronoi vertices obtained through such a labeling represent
the poles of samples along the pseudo-concave curve portion. [

Algorithm 2: ExtractShapes(P)

Input: Point set P

Output: curve(P)

Construct Vor(P) and its dual Del(P);

Label all the vertices of Vor(P) including the INFINITE
vertex to outer;

Pair up the samples in unbounded Voronoi cells with
INFINITE vertex;

Construct a heap priority queue, PQ containing EVV's lying
outside the convexh ull of P, sorted in the descending order of
their circum radii of the dual Delaunay triangles;

while PQ not empty do

B=root(PQ), delete B from PQ;
Incremental_Label(B);

end

Extract the graph, curve(P) = {e | edge e € Del(P) and
Dual(e) has outer and inner vertices};

10 Extract the graph, MAT (P) = {e | edge e € Vor(P) and e has

either two inner or outer vertices};

11 return curve(P);
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We would like to point out that a similar labelling approach has
been adopted in [GMPO7b], to compute the medial axis (MA) of
the union of inner Voronoi balls. However, the method proposed
in [GMPO7b] depends on a locally defined crust [Gol99], for the
classification of Voronoi vertices. As opposed to this, the Voronoi
vertex labelling in our approach is based on an incremental ap-
proach and hence in addition to the MA approximation, our method
is also capable of reconstructing the boundary of the input sample.

3.3. Curve and Medial Axes Extraction

We assume that no four points are co-circular and hence each finite
Voronoi vertex has a degree of 3. A pseudo code for curve recon-
struction is provided in Algorithm 2. It starts with the construc-
tion of Vor(P) and its dual Del(P). Each Voronoi vertex structure
is equipped with the label and visited fields to keep track of the
vertex label and the visited status during the incremental labeling.
All the Voronoi vertices are initialized to unvisited in the beginning.
Under dense sampling, extreme Voronoi vertices of infinite Voronoi
edges induced by any pair of adjacent samples from pseudo-convex
portions lie inside Conv(P). This is established for e-sampling in
Lemma 5.1, see Appendix. For convex portions, the convex hull
is a linear approximation to the original curve and hence, these
vertices also lie in the interior of the original curve. So, we label
all such EV'Vs as inner. All the remaining Voronoi vertices are la-
belled outer at the start of the incremental labeling process. In the
next step, a heap based priority queue, PQ of all the outer EVVs is
created, where the EVVs are sorted in the descending order of the
circumradii of the corresponding dual Delaunay triangles. In each
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iteration, the algorithm picks the root element from PQ and apply
the vertex labeling procedure given in Algorithm 1.

Once the incremental labeling has been applied to all the EVVs
in PQ, it extracts the curve and MAT from Del(P) by employing
Dual() function which gives the dual Delaunay edge of a Voronoi
edge. The algorithm has been designed to address closed curves,
and hence, we have avoided few conditions that may arise in the
cases of open curves. Nevertheless, these additional conditions may
be incorporated to extend the practical potentials of the proposed
algorithm.

The number of Voronoi vertices is linear in terms of the point
set size, n. Since each Voronoi vertex is visited exactly once in the
IncrementalLabel() procedure, WHILE loop of Algorithm 2 costs
only O(n). Other operations such as label initialization, and curve
and MAT extractions take linear time. As the number of EVVs are
very low compared to the input samples, PQ creation and heapify
costs are negligible. So, the worst case time complexity of the al-
gorithm is O(nlogn + klogk) where k = #EV Vs, and is mainly in-
curred due to the computation of Voronoi diagram.

Figure 8: Different labeling patterns on the Voronoi cells of domi-
nant points. Green and blue boxes depict examples of OIO and 101
patterns respectively.

3.4. Dominant Points Detection

The labeled Voronoi diagram obtained through the incremental la-
beling (Algorithm 1) can be further used to identify the points with
high curvature values (or dominant points). We observe that a few
of the vertices from the Voronoi cells of such points conform to
interesting labeling patterns. The patterns are formed out of the la-
bels of three consecutive Voronoi vertices along the Voronoi cell
boundary, where each pattern consists of vertices with same labels
at either side and a center vertex with a different label as shown
in Figure 8. Since, the Voronoi vertices are labelled either as inner
or outer, we have only two such labeling sequence referred to as
I0I and OIO patterns (here, inner is abbreviated as I and outer is
abbreviated as O). Under reasonably dense sampling along the cur-
vature portions, which is often guaranteed in non-uniform sampling
such as e-sampling, the Voronoi cells of points from curvature ex-
tremes tend to have either of /0! or OIO patterns on their Voronoi
cells. This observation leads to a simple and immediate extraction
scheme for DPs.

Input points with /Ol or OIO patterns on their Voronoi cells
are extracted as DPs subjected to one more constraints which fil-
ter out most of the false positives. We use a constraint similar to
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the state transition rule (Definition 5). Let ¢, 1,1, be the central and
the terminal vertices of an identified pattern (/O or OIO) over the
Voronoi cell of an input point p, respectively. We consider the line
L going through p and orthogonal to the vector cp. The pattern and
consequently the point is a qualified DP, if the central vertex ¢ and
the terminal vertices lie on either side of L. The DP extraction con-
sists of a linear traversal over the Voronoi cells, a constant circular
traversal over the vertices of a cell for identifying the discussed
patterns and a constant time location check for the pattern vertices.
Hence the time complexity of DP extraction is O(nlogn), mainly
due to Voronoi diagram computation.

4. Experimental Results

We implemented our algorithm in C++ using computational ge-
ometry algorithms library (CGAL). To evaluate the performance
of our approach, we tested it on points sampled randomly from
the contours of silhouettes from MPEG 7 CE Shape-1 Part B
and aim@shape repositories. A few data sets were generated from
the corresponding images using mesecina software [MGP07]. We
compared our algorithm with other Delaunay/Voronoi based algo-
rithms such as crust [ABE98], nearest neighbor crust [DK99], ec-
shape [MPM15], shape-hull [PM15b], and the recent algorithms
in [PM16] and [PMM18].

Reconstruction from Sparse Data. Sparse data represents a
major challenge to any type of curve reconstruction algorithm, es-
pecially, when geometrical or topological information of the orig-
inal curve is unknown. In practice, the porposed algorithm per-
formed well for a variety of sparse and non-uniform input data as
shown in Figure 9. For shapes such as the fish and the cup, the
results generated by our algorithm and ec-shape [MPM15] are no-
ticeably better as compared to the results of Delaunay based algo-
rithms. Intuitively, the normal and tangent based vertex classifica-
tion allows for a reasonably correct reconstruction even when the
sampling is sparse.

In [PM15b], the authors propose shape-hull algorithm that re-
constructs divergent concave curves and surfaces from their non-
uniform samples. We would like to point out that our algorithms
differ in the construction of curves. While the shape-hull algo-
rithm [PM15b] constructs curves by repeatedly eliminating bound-
ary Delaunay triangles subjected to circumcenter and regularity
properties, the proposed algorithm relies on an incremental Voronoi
vertex labeling based on the spatial distribution of Voronoi vertices
with respect to the original curve portions approximated by the tan-
gent lines at point samples. Further, [PM15b] has been tuned only
for reconstruction, where as the algorithm presented in this paper
can also extract medial axis as well as dominant points. Compared
to shape-hull, our algorithm nicely reconstructs divergent as well as
non-divergent concave portions of closed curves as shown in Fig-
ure 10. Please note that the monkey point set has a non-divergent
portion, which is well captured by our algorithm.

Collection of Curves. Our method also performs well in recon-
structing a collection of closed curves from a sparsely sampled data
as illustrated in the third row of Figure 9 and the top two rows
in Figure 11. All the Voronoi vertices including a set of vertices
between the samples of a pair of closed disconnected curves are
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Figure 9: Reconstruction results of various algorithms on sparse data.
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Figure 10: Reconstruction of monkey point set. In Figure 10(a),
blue box contains a divergent concavity [PM15b] and red box en-
capsulates a non-divergent concavity.

classified as outer in the beginning of the algorithm. Incremental
labeling on both the curves classify the interior Voronoi vertices
as inner and as a consequence, the proposed algorithm is able to
separate the collection of curves.

Robustness to Outliers. Most of the Delaunay/Voronoi based
algorithms interpolate the input data and hence found to be intoler-
ant towards outliers. For point sets having noise and outliers, curve
fitting techniques may be considered a more appropriate choice.
Curve fitting techniques, however make implicit assumptions on
the underlying curve, which is highly impractical for sparse and
non-uniform data. Since the incremental algorithm is also an in-
terpolating technique, rather than eliminating the outliers from the
results, we aim at showing the reconstruction of the original shape
while retaining outliers in the scene. A post-processing step for de-
noising the output may be applied to eliminate outliers. Figure 11
(3-5 rows) visualizes a few more reconstruction results in the pres-
ence of outliers. The results clearly indicates the superiority of our
algorithm in handling such inputs.

We experimented on a dove point set consisting of 54 points.

ec-shape Crawl Our result
[MPM15] [PM16]
Puzzle

Chess Hat

Input

[MPM15].  [ABE9S]

[PM16]

Our result

Figure 11: Reconstruction from collection of curves and curves in
the presence of outliers.
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Figure 12: Outlier experiment: All the stages of outlier injection, dove shape reconstructed by the proposed algorithm preserves fine
details as compared to a simplified reconstruction by deGoes et al. [dGCSADI11] and the reconstruction with curve artifacts in [PM16]
and [PMM18]. Outliers were generated using the software by deGoes et al. [dIGCSADI1].

Random outliers, expressed as a percentage of the point set size,
were injected to the input data as shown in Figure 12. Our approach
is noticeably better at dealing with the outliers constituting even
40% of the curve sample. Results by deGoes et al. [dGCSAD11],
loses many fine details of the dove shape even for 10% outliers.
However, a few artifacts appear in the reconstruction for 40%
outliers in all the algorithms. The reconstruction by [PM16] and
[PMM18] produce curve artifacts. Please note that, albeit the arti-
facts, dove shape has been well reconstructed by our method. This
is mainly due to the label transition failures which occur when the
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incremental algorithm starts with EVVs induced fully or partially
by the sparse outlier points. As a result, a continuous inner and
outer combination of Voronoi vertices do not arise in the premise of
outliers, thereby preventing them to be attached to the input curve.

Dealing with Sharp Corners. On closed and concave curves
with sharp corners, our approach performs better than other meth-
ods. For instance, the left horn of oni which is sharp and pointed
in Figure 13 is well captured by our algorithm as opposed to other
crust algorithms. Though optimal transport based approach recon-
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Figure 13: Reconstruction of oni data. (a) Point set (b) crust

[ABE9S8] (b) nearest neighbor crust [DK99] (d) result of
[dGCSADI1] (e) our result.
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Figure 14: Results of curves with sharp features.

structs both the sharp corners well, it loses several other details such
as neck of the oni. In contrast, our method not only captures the
sharp corners but also preserves other details of the original curve.
We would like to remark that a few work [DW02,Gie99,FR01] spe-
cially designed to work on sharp corners are expected to possibly
capture the correct boundary of Oni data.

Figure 14 shows our results for point sets with sharp features.
The incremental algorithm correctly reconstructs the shapes for
point sets in Figures 14 (a)-(b), for which all the TSP based al-
gorithms listed in [AMNSO00] fail.

Quantitative Analysis. We evaluate our algorithm quantita-
tively using L*-error norm measure on the points sampled from
the borders of various countries. L*-error norm is the area of the
symmetric difference between the original shape O and the recon-
structed shape as a proportion of the total area of the original shape
O [PM15a]. An zero value for L?-error norm implies that the two
shapes are equal in area and also their boundaries are aligned per-
fectly over each other. Fig.15 visualizes the symmetric difference
(L*-error) for the Luxemburg country shape with varying point den-
sities. Fig. 16 shows the L*-error metric of various algorithms for
varying point densities of different country shapes. Compared to
the competitors, the proposed algorithm performed well for most
of the country shapes. Please note that the test shapes were chosen
based on the sinusoidal characteristics of the boundaries. A qual-
itative comparison of the performance of various algorithms with
respect to the L*-error metric on Zambia shape is presented in Fig.
17. Compared to the other three methods in the figure, the pro-
posed algorithm is very successful in capturing the concavities of
the shape, even for the sparse input, as quantified in Fig 16(d).

Medial Axis Results: Figure 18 shows the reconstructed curves
as well as the medial axes for various non-uniformly sampled data.
Like any other approach, the approximation quality of our medial
axis algorithm is limited by the sampling density of input data and
the smoothness of the given curve. For a qualitative comparison,
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Figure 15: Illustration of L*-error metric.
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Figure 16: Variation in the accuracy of reconstruction (quantified
in terms of L%-error metric ) with the changing sample density of
various inputs.

we have also presented the MAT results of local crust [Gol99] algo-
rithm. For the given inputs, both the algorithms generated the same
MATs. The results seem reasonable as both these algorithms per-
form MAT extraction on the underlying labelled Voronoi vertices,
however, the labeling procedure differs considerably (see [Gol99]
for details).

Dominant Points of Different Data Sets: Figure 19 shows the
dominant points (blue circles) and the approximated polygons of
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Figure 17: A qualitative comparison of the curve reconstruction algorithms for Zambia point set with varying sampling densities. See Fig.

16(d) for the quantitative results.

various point sets. Polygons are approximated from the dominant
points ordered along the original contour. Usually, polygonal ap-
proximation algorithms on digital curves are evaluated using met-
rics such as compression ratio (CR:J#%), integral square
error (ISE), i.e., sum of squared distances of the curve points from
approximating polygon or figure of merit (FOM=,CS—§. In our set-
ting, which is mainly intended for extraction of shape structures
from non-uniform points rather than digital curves, we resort to an
evaluation based on qualitative analysis and the compression ratio.
Moreover, the curves reconstructed by our algorithm maintains no
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information on the vertex ordering along the curve which makes it
difficult to compute ISE values even if the ground truths are avail-
able.

The demonstrated results in Figure 19 indicate that the proposed
framework is capable of detecting DPs at significant locations on
the contours and consequently, generating polygons that preserve
the morphology of the shape with a reasonable accuracy. However,
for benchmark data such as chromosome and infinity, algorithms
[RR93,Wu03] perform better than the proposed method in terms of
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Figure 18: Medial Axes Gallery: MAT generated for various non-
uniformly sampled data by Local crust [Gol99](column 1) and our
algorithm (column 2).

5. 1 e N

Figure 19: Dominant points and the approximated polygons of var-
ious point sets. (a) Armadillo (CR=4.18) (b) Star (CR=8.65) (c)
Key (CR=3.64)(d)Aeroplane (CR=3.26)(e) Hand (CR=5.73)and
(f) Leaf (CR=4.52). Points in each set are ordered in counter-
clockwise direction and the polygons are reconstructed by simply
connecting these ordered points.

FOM as shown in Table 1 and Figure 20. Our method still detects
most of the DPs of these benchmarks. Our experimental study and
comparison reveals that the proposed DP detection scheme is more
suitable for non-uniformly sampled data with a high sampling rate
along the high curvature portions of the contours as shown in Figure
19.

Shape Method #DP  CR ISE FOM
Chromosome [RR93] 18 3.33 5.57 0.6
(n=60) [Wu03] 17 353 5.01 0.7
Our method 21 2.85 2535 0.1
Infinity [RR93] 12 375 599 0.6
(n=45) [Wu03] 13 346  5.17 0.7
Our method 24 1.88  4.43 0.4

Table 1: Statistical results of dominant point detection by different
algorithms. FOM values are truncated to one decimal place. A rel-
atively high value of ISE for the chormosome is caused due to the
lower pocket as highlighted in Figure 20.
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Figure 20: Dominant points of benchmark data detected by various
algorithms.

5. Conclusion

In this paper, we presented a multi-purpose Voronoi and Delaunay
based framework for curve reconstruction, medial axis approxima-
tion and dominant point detection. The key part of the framework
is a simple icremental technique that classifies the Voronoi vertices
into outer and inner with respect to the original curve. Under -
sampling model, it has been established that the incremental al-
gorithm constructs a piece-wise linear approximation to smooth,
closed and planar curves. Experimental results indicate that our
approach is capable of reconstructing curves from sparse data. It
also handles collection of curves succesfully, and captures sharp
corners, though the algorithm is designed for smooth and closed
curves. In the Delaunay/Voronoi based domain, only algorithms
such as conservative crust [DMROO] handles outliers, however at
the expense of parameter tuning. As opposed to this, our algorithm
found to perform well in the case of curves with outliers without
using any external parameter. In future, one can work on extending
the framework for the reconstruction of multiply connected curves
with a hierarchical incremental labeling.
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Appendix

In Appendix, we provide a few theoretical analysis and observation
about the proposed algorithm. Primarily, we aim to prove that the

reconstructed curve consists of only the edges between adjacent
samples of C. To argue for the correct reconstruction, we consider
convex ( Ceyx) and concave (Ceey) portions separately.

Pseudo-convex portions: To achieve correct reconstruction of
Cevx, all the finite Voronoi vertices, of infinite edges corresponding
to the adjacent samples from Ceyx, must lie interior to Conv(P). We
establish this claim in Lemma 5.1.

pvi\CI

Figure 21: (a) lllustration of Lemma 5.1.

LEMMA 5.1 In Vor(P), where P is e-sampled from C, EVVs of
infinite edges between the adjacent samples of the pseudo-convex
portions from Ceyy, lie interior to Conv(P)

Proof Consider two adjacent samples p,q € P from a pseudo-
convex portion C € Ceyx (refer to Figure 21) that lie at a maximum
distance of d(p,q) = €l fs(p). Let v be the finite Voronoi vertex of
the infinite edge between p and ¢q. We assume the contrary. i.e. v
lies outside Conv(P). Let r € P be a sample from C that induces
v. As v lies outside Conv(P), the sample r must be non-adjacent to
either p or ¢ along the curve. As v lies outside Conv(P), it also lies
outside the edge (p,q) € Conv(P) thereby making the Apgr ob-
tuse at . Consequently, d(p,q) > d(p,r). This implies that a non-
adjacent (along the curve) sample r lies within a sampling distance
of €l fs(s) for the sample p. This is a contradiction to the definition
of e-sampling and hence the lemma. [

Figure 22: lllustration of different SVVs in a pseudo concavity. Red
, green and blue dots represent EVV, middle SVVs and end SVV
respectively.

Pseudo concavities: The crucial part of the correctness proof
lies in establishing the faithful reconstruction of pseudo concavi-
ties. Each pseudo concavity has a branch line consisting of EVYV,
middle SVVs and end SVVs as shown in Figure 22. Usually, a
main branch line starts with a EVV and a sub branch line starts
with a middle SVV. A middle SVV can have either two or three
adjacent outer Voronoi vertices. An end SVV is a Voronoi vertex
whose two branching Voronoi edges are shared by three adjacent
samples p,q,r € P from C (refer to Figure 23(a)).

We consider a curve Voronoi disk [ABE98] B of radius € pass-
ing through two adjacent points p,q € P sampled from C (refer to

submitted to COMPUTER GRAPHICS Forum (9/2018).



J. Peethambaran & A. Parakkat & A. Tagliasacchi & R. Wang & R. Muthuganapathy / Curve reconstruction 15

(a) (®)

Figure 23: (a) Construction for Lemma 5.2 (b) A contradicting
case for Lemma 5.2.

Figure 23(b)). Without loss of generality, we assume the local fea-
ture size of the center of B to be 1 (Ifs(c) = 1). Due to Lemma 9
of [ABE98], we know that the angle formed by p and g at the curve
Voronoi vertex ¢ is T — 2arcsin 5. Let Bpvy is the bisector of the
chord gp. From Figure 23(b), it is easy to verify the following:

1L 1=§Va—¢

7’)
2. r= %
3. Zgevy =T 4 arcsin(§)
4. Zgpvy = arctan( 24?82)

Next, few lemmas have been proved under the assumption that
the Voronoi cell V), is a part of VD induced by a set of points &-
sampled from C.

LEMMA 5.2 End SVV and the other Voronoi vertices of V), lie on
either side of the line L perpendicular to B, p for € < 0.4

Proof In Theorem 14 of [ABE98], Amenta et al. showed that curve
Voronoi disks [ABE98] do not contain any vertices of Vor(P) for
€ < 0.4. We adapt their theorem to our algorithmic conditions and
establish the lemma (Refer to Figure 23 for an illustration). Con-
sider three adjacent samples p,q,r from an pseudo concavity of
Ceev that induce an end source vertex B). Let ej = (Bp,v;) and
ey = (Bp,vy) are the Voronoi bisectors of p,q and p, r, respectively.
Let B be a curve Voronoi disk passing through samples p and g
which is centered at the curve Voronoi vertex [ABE98] ¢. We show
that By and v; lie on either side of L, where L is the line passing
through p orthogonal to B)q.

Theorem 14 of [ABE9S8] implies that v; can move only along the
boundary or outside of B. Assume the case where v; approaches
the sample p along the boundary of B. vy crosses L only after co-
inciding with the sample p, during which, the line ¢; becomes a
non-bisector of p and ¢. This contradicts our assumption on ej.
Similarly, consider the case where v approaches the sample ¢
along the boundary of B. Suppose, it coincides with the point of
intersection of L with dB on its way as shown in Figure 23(b). The
angle subtended by the chord gv; at the point p must be half the
central angle (Zgcvy) subtended by it. i.e. Zgpv| = %chvl. On
substituting the values for r and / from Figure 23(b), we get the
Equation 1.

—

2+¢

arctan(
4—¢2

) = 5 (5 +aresin(2)) M

[\
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We can observe that the Equation 1 does not hold for any values of
€ in the interval [0, 1] (consequently for € € [0,0.4]). Hence, vertex
vy can not merge with the point of intersection of L and dB on its
way to g. Further, it can not move nearer to ¢ as it violates the
assumption that it orthogonally bisects the chord pg of B. Hence,
vi can lie only on or outside dB in the half plane opposite to the
one that containing B). Similar arguments hold for the vertex v, as
well and hence the lemma. [

(@)

Figure 24: [llustration showing the existence of active Voronoi ver-
tices in pseudo-concavities.

To show the existence of outer Voronoi vertices in pseudo-
concavities, we consider the construction in the inset of Figure
24. It consists of five samples three of which ¢, p, r are adjacent,
Voronoi cell V), of a sample p € P, its SVV (B)p) and Voronoi ver-
tices v; and v, adjacent to Bp lying in the pseudo concave region.
The samples s,¢ are adjacent to each other and non-adjacent to
p,q,r. Let L be the line orthogonal to B,p. We need to show that
vy lies in the half plane containing B, with respect to L. It is obvi-
ous from the Figure 24 that v; is either induced by A psr or Apst.
For the sake of argument, we assume that v, is a Voronoi vertex
induced by samples p, s and r.

Since we need the half planes to be unchanging, we will fix the
samples ¢, p,s and analyze the effect of the location of v, on r.
As vy moves away from L in H,, r also tends to move apart from
the samples p and s. This will ultimately cause a violation on &-
sampling as it is evident that d(p,r) will be greater than d(p,s)
and s is a non-adjacent sample of p. So, under a sufficiently dense
sampling, v, always tends to lie on or away from L in H;. A similar
argument holds good if we consider that v; is induced by A pst.

PROPOSITION 5.3 The curve reconstructed by the incremental
algorithm for a finite set of points P, where P is e-sampled from a
smooth, closed and planar curve C, contains an edge between every
pair of adjacent samples of C, for € < 0.4

Proof We argue for the piece-wise linear reconstruction of Ceyx and
Cecv. Due to Lemma 5.1, all the finite Voronoi vertices on the infi-
nite edges corresponding to adjacent samples from C are labelled
outer and subsequently the algorithm constructs a piece-wise lin-
ear approximation to Ceyy. We know that there exists at least one
finite Voronoi vertex corresponding to each pseudo concavity out-
side Conv(P) (Lemma 3.1) and hence the labeling happens for each
pseudo concavity of C. Lemma 5.2 ensures that the edges between
the adjacent samples in the pseudo concavities have outer and in-
ner Voronoi vertices. Further, it ensures that the labeling does not
get into the interior of C. Finally, existence of a proper branch line
that covers the entire pseudo concavity is captured in Figure 24. We
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conclude that under sufficiently dense sampling, the reconstructed
curve represents a piece-wise linear approximation to C, where C is
a smooth, closed planar curve. []

Medial axis: As a consequence of the Proposition 5.3, the curve
reconstructed by the proposed algorithm represents a piece-wise
linear representation to C. All the inner Voronoi vertices represents
the centers of the interior Voronoi disks. In [GMPO07b], the authors
established that the MA of C can be approximated from the centers
of the interior Voronoi disks of Vor(P) where P is €-sampled from
C for certain € < 0.207. Since MAT is an approximation from the
centers of interior Voronoi disks, the theory is equally applicable to
our medial axis approximation for concave and closed curves.
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