
HAL Id: hal-04975909
https://hal.science/hal-04975909v1

Submitted on 4 Mar 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

SpineLoft: Interactive Spine-based 2D-to-3D Modeling
Alexandre Thiault, Telo Philippe, Amal Dev Parakkat, Elmar Eisemann,

Ramanathan Muthuganapathy, Takeo Igarashi

To cite this version:
Alexandre Thiault, Telo Philippe, Amal Dev Parakkat, Elmar Eisemann, Ramanathan Muthugana-
pathy, et al.. SpineLoft: Interactive Spine-based 2D-to-3D Modeling. CHI ’25: Proceedings of
the 2025 CHI Conference on Human Factors in Computing Systems, Apr 2025, Yokohama, Japan.
�10.1145/3706598.3713439�. �hal-04975909�

https://hal.science/hal-04975909v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

SpineLoft: Interactive Spine-based 2D-to-3D Modeling
Alexandre Thiault

LTCI-Telecom Paris, IP Paris

Palaiseau, France

alexandre.thiault@hotmail.com

Telo Philippe

LTCI-Telecom Paris, IP Paris

Palaiseau, France

telo.philippe@gmail.com

Amal Dev Parakkat

LTCI-Telecom Paris, IP Paris

Palaiseau, France

adp.upasana@gmail.com

Elmar Eisemann

Delft University of Technology

Delft, Netherlands

e.eisemann@tudelft.nl

Ramanathan Muthuganapathy

Indian Institute of Technology Madras

Chennai, India

emry01@gmail.com

Takeo Igarashi

The University of Tokyo

Tokyo, Japan

takeo@acm.org

Figure 1: Our system takes an image along with user annotations to compute an editable spine-rib system. Based on detected
edges and a user-defined spine, it generates a 3D model, extruding a user-defined cross-section (here, the cross-section was
chosen to be circular). Our solution addresses inherent problems of image-based systems (like missing edges and occluded
regions), and users can modify the geometry locally (Image from PixaBay - www.pixabay.com).

Abstract
3D artists (professionals and novices alike) often take inspiration

from sketches or photos to guide their designs. Yet, existing mod-

eling systems are not tailored to fully make use of such input.

Consequently, significant effort and expertise are needed when cre-

ating model prototypes or exploring design options. In this work,

we introduce a system to support the exploratory modeling pro-

cess by enabling the transformation of 2D image elements into

geometric 3D objects. Our solution relies on a novel 𝑑2 distance

function, supporting a region-based lofting process, and delivers

easily-editable 3D geometric "spine-rib" representations. The user

draws a spine, and the system generates and modifies a general-

ized cylinder around it, considering image edges. The proposed

approach, driven by simple user-defined scribble definitions, can

robustly handle various image sources, ranging from photos to

hand-drawn content.

CCS Concepts
• Applied computing → Arts and humanities; • Theory
of computation → Computational geometry; • Computing
methodologies → Shape modeling; • Human-centered com-
puting → Interactive systems and tools.

Keywords
Sketch-based 3D modeling, Image-based 3D modeling, 𝑑2 function,

Lofting, Interactive modeling

Author’s Copy

ACM Reference Format:
Alexandre Thiault, Telo Philippe, Amal Dev Parakkat, Elmar Eisemann, Ra-

manathanMuthuganapathy, and Takeo Igarashi. 2025. SpineLoft: Interactive

Spine-based 2D-to-3D Modeling. In . ACM, New York, NY, USA, 16 pages.

https://doi.org/10.1145/3706598.3713439

1 Introduction
Sketch-based modeling has gained much attention since it is typi-

cally easier to sketch in 2D than directly working on a 3D object.

A sketch can guide an artist during modeling, and it is even com-

mon to start with a 2D concept sketch, often involving existing

image sources for inspiration. Still, there is a separation between

the 2D information and the actual 3D modeling step. Our approach,

SpineLoft, will bring these two domains closer together by allowing

artists (professionals or novices) to transform 2D regions, even if

coarsely defined in a sketch or partially occluded, into a 3D element

to be used in their model design, relying only on simple user anno-

tations. To make our solution effective, we address the following

questions:

• Selection: How to easily support selecting regions of interest

from image references?

• Robustness: How to handle adverse conditions (occluded,

missing or ambiguous boundaries)?

• Editing: How to provide the possibility to influence the cre-

ation of 3D geometry in an intuitive manner?

To address region selection, we present a novel distance function

to create a hull. The user provides a scribble (spine), for which we

generate a set of outgoing edges around it (ribs), which, together
with user-defined cross sections, results in a 3D representation, con-

ceptually similar to an endoskeleton. All annotations can be loose

www.pixabay.com
https://doi.org/10.1145/3706598.3713439

A. Thiault, T. Philippe, A.D. Parakkat, E. Eisemann, R. Muthuganapathy, T. Igarashi

Figure 2: Comparison with the state-of-the-art method (3-sweep [10]). 3-sweep tends to fail on shapes with ambiguous edges,
such as this mug with a jagged shape profile (b), requiring the user to edit the input image extensively (c). In contrast, our
method based on a spine-rib representation (e) is more robust and generates a more plausible and smoother shape (f, g)

as SpineLoft automatically optimizes them following the image con-

tent. To achieve robustness, we rely on a rib length optimization to

handle partial occlusion or noisy boundaries, which are especially

common in hand-drawn content and photographs. Specifically, our

procedure follows an optimization that targets a smooth variation

of the ribs while trying to respect the region boundaries from the

image.

To address editing, we do allow user interaction to change the

rib length (either individually or as a group). Similarly, SpineLoft

supports user-defined cross sections (either drawn or selected from

a predefined set), which help influence the volumetric aspect of an

object inspired by traditional "lofting" techniques. Finally, we enable

spine deformations to ease the composition of different elements;

an existing spine-rib representation can be copied to a new spine.

This action can also be used to drive animations.

The main objective of SpineLoft is to aid novice users who are

new to 3D modeling. Traditional 3D modeling systems based on

polygonal modeling (i.e., as used in the popular software Blender)

require users to interact with a 3D scene and to understand the un-

derlying 3D shape representation (polygons), which is challenging

for novices. In SpineLoft, we aim to alleviate these difficulties by

enabling users to create 3D models with simple 2D interactions that

are quick to perform. From these simple 2D interactions, we create

a spine-rib system that helps bootstrap the creation process yet re-

tains editability over the final 3D shape.While the focus of SpineLoft

is to encourage creativity and exploration among novice users, it

can also be used by advanced users. It can serve for rapid proto-

typing before refining the results further in advanced modeling

software. In summary, our work makes the following contributions:

• A novel explicit 𝑑2 distance function to compute non-

intersecting gradient lines from a user-drawn spine. This

explicit computation is both easy to implement and efficient,

making it readily reusable for various interactive tasks, of-

fering advantages over the widely used Euclidean distance

function.

• A region extraction algorithm relying on user annotations,

which can address noisy or missing edges in the input, mak-

ing it useful in creating interactive image cut-out tools simi-

lar to Lazy Snapping [35].

• A related lofting method built on a rib length optimization

to quickly create 3D shapes from erroneous images.

• An interface to define/interact with the spine-rib representa-

tion (a novel representation for 3D modeling), handling dis-

crepancies, like occlusion/noise/missing data, with respect

to the reference image. Additionally, it prioritizes editability,

recognizing that novice users are more likely to make errors.

2 Related Works
The related work for SpineLoft can be classified into two categories:

Sketch-based 3D modeling and Playful Interfaces.

Sketch-based 3Dmodeling: Sketch-based 3D modeling literature

is too vast to cover completely in this paper, which is whywe restrict

ourselves to the most-related solutions and refer the interested

reader to various existing surveys [5, 6, 31, 41, 62].

Teddy [23] is a seminal system where a fixed input boundary

is inflated to create a 3D shape. The method can be extended to

support general input images [8], relighting [43] and animation [7].

The latter papers, RigMesh [7] and MonsterMash [16], generate

3D models by assembling parts created in a single-view model-

ing interface. While these two approaches rely on circular cross-

sections, NaturaSketch [40] proposes a simple inflation mechanism

that involves a user-defined distance function to modify the object’s

cross-section. Andre et al.[1] use a user-drawn boundary stroke and

scaling factor to define a sweeping surface. Yet, the input has to be

drawn from a fixed viewpoint - making it difficult for novice users.

Peng et al. [45] introduced a sculpting-based system with a focus

on animation, but it is mainly useful for repetitive spatiotemporal

tasks.

CreatureShop [61] allows users to define regions in an input

image but uses simple inflation. Bernhardt et al. [2] use painted 2D

regions in an implicit-based 3D modeling approach, giving control

over the blending, depth, and thickness.

Gingold et al. [19] used a generalized cylinder fitting based on

user annotations to create the desired model. Shtof et al. [51] in-

troduced an interactive geometric snapping tool relying on a sim-

ple drag-and-drop modeling interface. 3-Sweep [10] extends the

method to extract and manipulate objects in a single photograph.

While being an inspiration, 3-Sweep is limited with respect to edits

and control over cross-sections. Further, the effect of occlusions

or missing edges can lead to undesired artifacts (Figure 2). It is

worth noting that these methods often rely on a Euclidean distance

function, which, as explained in Section 3.1, might not always give

the desired results.

SpineLoft: Interactive Spine-based 2D-to-3D Modeling

Figure 3: Comparison of the 𝑑∞ and 𝑑2 gradient lines asso-
ciated with a spine represented in dark blue. Isolines show
equal distance values. 𝑑2 results in more smoothness and
avoids merges inside concavities. Whereas, the 𝑑∞ function
leads to singular gradients at some points in space and thus
would yield intersecting ribs.

Some solutions are less general, requiring 3D skeletons [3], or

focusing on particular content, like garments [18, 48], or trees [11],

animals in a side view [17], or animal heads [37]. Other similar

works that are worth mentioning include the use of 3D scaffolds

[25, 26] and reference RGB-D images [34] to create 3D models, but

are typically targeting expert users, take much time and effort, or

are designed only for initial prototyping.

Deep learning has had a major impact on 2D-to-3D modeling

tasks. Including sketch-based retrieval [59], single-view automatic

3Dmodeling [21], single-view interactive 3Dmodeling [32], normal

estimation techniques [22] and multi-view modeling [15]. However,

user control and related editing are limited for these cases.

Mesh deformation is a well-studied topic in 2D [9] and 3D [24],

including advanced deformation techniques using multistroke con-

tour drawings [28] or pose/gesture drawings [4, 20]. Nevertheless,

few of these techniques are integrated directly into the creation

process, which is crucial for prototypical modeling as targeted in

this work.

Different from traditional interactive modeling techniques [16,

19, 40, 61], which take images as a reference over which the user has

to trace the desired shape (a time-consuming task), our objective

is to utilise cues extracted from the input photograph (from the

wild) to ease the modeling process. Further, it is worth mentioning

that though sketches act as an intuitive and simple medium for

3D modeling, it is not restricted to these alone. Many systems

combine user inputs with computer-vision techniques to create 3D

models from various sources, such as multi-view stereo [46], multi-

view images [60], unordered photo collections [53] and videos [57].

Another important direction involves using geometric constraints

[36] or interactive sculpting [14, 54] to iteratively refine a basic

shape into the desired 3D model.

Playful Interfaces: Thanks to the tools that enhance user en-

gagement and enjoyment in a playful exploratory manner [47], the

concept of "Playful Interfaces" has gained attention in HCI research.

Not only are such interfaces accessible to novice users (including

children),but they also improve user experience by providing an ap-

pealing and intuitive interaction. While the literature has explored

such interfaces for a variety of tasks, such as creative design [30],

sketch processing [42], color interaction [52], and programming

[38], their application in the context of sketch-based modeling for

novice users remains a promising direction. Such playful inter-

faces can lower the entry barrier for 3D modeling, making it more

Figure 4: Result of Segment Anything Model (SAM) [27] on
the image shown in Figure 2. (a) The automatic segmentation
and (b-e) different steps of interactive segmentation.

enjoyable and less intimidating while potentially increasing user

motivation, encouraging experimentation and, ultimately, leading

to improved learning outcomes. In contrast to works in this direc-

tion [23], our main objective is to further simplify the modeling

process by providing users with the support to draw inspiration

from existing images/photographs. It is worth noting that these

images/photographs serve only as references while giving complete

creative freedom to the user. They are supported in conceptualiz-

ing their ideas while being encouraged to explore and experiment

(please refer to Section 4).

3 Spine-rib based modeling
3.1 Design Rationale
Inspired by skeletal systems widely seen in many organic shapes,

we adopt such a structure for our intuitive approach to sketch-

based 3D modeling. Our spine-rib system allows users to easily

conceptualize 3D shapes by focusing on a central axis (spine) and

its associated cross-sections (ribs). The simplicity of this represen-

tation makes it accessible to novice users with little to no modeling

experience, enabling them to create 3D models with minimal input.

The modeling process starts with the user drawing an approximate

spine of the object to be modeled (an easy task to do, thanks to

the flexibility to draw imprecise spines and the natural ability of

users to infer spines). Once the spine is drawn, the system can then

compute the corresponding ribs - automating a significant portion

of the modeling process.

Though ribs can be imagined as line segments orthogonal to

the spines, automatically computing them is not trivial. The simple

solution for computing ribs would be to follow the gradient of

a simple Euclidean distance function, which, while intuitive, is

not differentiable everywhere (because the function min is not).

Its gradient discontinuities correspond to the local maxima of the

distance function. Consequently, multiple points that follow the

gradient from different starting positions can converge to the same

discontinuity, causing intersections (as shown in Figure 3). Yet,

more complex distance functions based on heat equations, while

avoiding intersections, can be computationally expensive.

To address these challenges, we introduce a 𝑑2 function that is

differentiable and has continuous gradients to provide a smoother

and more stable gradient field. Using our 𝑑2 distance function w.r.t.

the user-drawn spine, we can define ribs as the two points ascend-

ing the gradient that will follow parallel paths when approaching

each other, preventing intersections. This function allows for the

automatic computing of non-intersecting ribs, making the model-

ing process more accessible and less error-prone for novice users.

A. Thiault, T. Philippe, A.D. Parakkat, E. Eisemann, R. Muthuganapathy, T. Igarashi

During modeling, these ribs can then act as a guide for a lofting

surface. As the ribs are just lines projecting out of the spine, we de-

termine endpoints based on their intersection with reference image

edges. However, due to occlusions or variations in image intensity,

accurately identifying correct rib endpoints can be challenging.

Even powerful segmentation tools like SAM (Segment Anything

Model) [27] may struggle to consistently and precisely identify the

required boundaries, as shown in Figure 4.

To overcome these challenges posed by the inconsistencies in

the input reference image, we implement a rib length optimization

technique to eliminate noisy or erratic ribs. As a consequence, we

can reduce the need for manual corrections and create a cleaner

and more coherent 3D model. Nevertheless, we also provide an

interactive rib editing functionality where the users can click and

drag individual ribs or edit multiple ribs simultaneously to provide

flexibility. With this balance of an automatic approach and inter-

active editing, we ensure that the final 3D model aligns with the

user’s intentions.

3.2 Overview
The overview of SpineLoft is illustrated in Figure 1. The user selects

an input image, which can be photos, illustrations, or sketches.

Then, a region of interest, which is to be converted, is selected by

having the user draw a scribble (referred to as spine - in the spirit

of curvy skeletons [3]) along the region. From the spine, outgoing

edges (referred to as ribs) are generated that respect the boundary

of the region but can be user-adjusted. From this input, the method

follows a lofting procedure to derive a corresponding 3D shape of

the modeled part.

SpineLoft has been built with ease of use in mind. Therefore, we

need to robustly process the image input, handling missing edges

or noise. Further, imperfect user input will be common and should

still lead to a successful lofting process, which requires the spine to

be adapted and the generated ribs to be constructed carefully.

In the following, we will describe the steps of our solution in

detail. We first explain how to produce ribs in an iterative process.

We take steps from the spine along a suitable path (Sec. 3.3.1) until

reaching a region boundary, as indicated by an edge detector. To

handle occlusions and imperfections in the input image, we rely

on a rib length optimization procedure (Sec. 3.3.2). To allow for

larger expressiveness, the user can also interact with the resulting

rib-spine system (Sec. 4). Finally, the original spine is improved

based on the computed extent of the ribs, and a final 3D shape is

generated. The latter is obtained by weaving a cross-section along

the spine, following its orientation and using the ribs to determine

the scale (Sec. 3.4).

3.3 Technical details
3.3.1 Generating Ribs. The rib construction starts with the user

drawing an initial spine on top of the reference image (without

self-intersections or loops, and approximately going through the

center of the required region). The spine consists of points that are

defined by 2D-pixel coordinates along the curve. Yet, it would be

insufficient to simply extend the ribs orthogonally outward from

these spine points, as it could lead to intersections that will not

result in a valid lofted geometry.

Instead, we offset these 𝑘 spine points only by a value of 𝜖 in

both normal directions (for our experiments, 𝜖 is set to half the

minimum distance between two consecutive spine points), which

allows us to construct a hull 𝐻0 composed of 2 ∗ 𝑘 points around

the spine (the blue polygon in the center of Figure 3). To avoid rib

crossings, we will define a distance function to 𝐻0 in image space.

The gradient of this distance function will be used to drive the rib

generation (where each ‘rib’ is associated with a single distance

value). Starting from the hull 𝐻0, we iteratively follow the gradient,

using an Euler method with an adaptive step size depending on

the gradient’s magnitude. This trajectory will define gradient curve.
Naturally, following the gradient will avoid rib intersections and

make them initially orthogonal to 𝐻0’s boundary.

Unfortunately, using a standard distance function between a

point 𝑥 and surface𝑀 [44], defined as:

𝑑 (𝑥,𝑀) = inf

𝑦∈𝑀
|𝑥 − 𝑦 |

where 𝑦 represents points on 𝑀 , does not provide an explicit so-

lution in 2D. Related alternatives [58] typically result in coarse

distance approximations, which leads to a significant loss of small-

scale spine features. Instead, we define a natural generalized dis-

tance function between a point 𝑥 and a polygon 𝑃 , consisting of

vertices 𝑃0 to 𝑃𝑘−1, with perimeter 𝐴 =
∑𝑘−1
𝑖=0 ∥𝑃𝑖+1 − 𝑃𝑖 ∥.

The distance function of degree𝑛 between 𝑥 and 𝑃 is then defined

as an integral on the contour of 𝑃 [44]:

𝑑𝑛 (𝑥, 𝑃) = 𝐴1/𝑛
(∫

𝑃

∥𝑥 − 𝑦∥−𝑛 𝑑𝑦
)−1/𝑛

which when 𝑛 = 2, evaluates to:

𝑑2 (𝑥, 𝑃) =
√
𝐴

(∫
𝑃

∥𝑥 − 𝑦∥−2 𝑑𝑦
)−1/2

Different from Peng et al. [44], which used a 𝑑3 function (in a 3D

configuration), we use 𝑛 = 2, as it results in an explicit formulation

while yielding good results and being efficient/easy to use.

In this section, we explain the discrete formulation of our 𝑑2
function, and we redirect the reader to Appendix A for the complete

derivation. When the user draws a spine, we consider it a polyline

with an ordered set of points 𝑝𝑖 , with 𝑖 ranging from 0 to 𝑛. We

aim to compute the 𝑑2 distance between a point 𝑥 and the curve

(user-drawn spine). Due to the discrete nature of the curve, we use

a discrete sum:

𝑑2 (𝑥) =
√
𝐴√︃∫

Curve
∥𝑥 − 𝑦∥−2 𝑑𝑦.

=

√
𝐴√︃∑𝑛−1

𝑖=0 𝐼𝑛𝑡 [𝑝𝑖 ,𝑝𝑖+1]

where for each segment:

𝐼𝑛𝑡 [𝑝𝑖 ,𝑝𝑖+1] =
∫ 𝑝𝑖+1

𝑝𝑖

∥𝑥 − 𝑦∥−2 𝑑𝑦

=

∫ 𝑇

0

∥𝑞0 − 𝑡𝑞1∥−2 𝑑𝑡 after integrating by substitution

(𝑞0 and 𝑞1 are calculated from 𝑝𝑖 and 𝑝𝑖+1)

= 𝐼 (𝑋,𝑇 , segment i) − 𝐼 (𝑋, 0, segment i)

SpineLoft: Interactive Spine-based 2D-to-3D Modeling

Figure 5: Distance functions computed using (a) convolution,
(b) heat diffusion (with a grid size of 300x300 and a diffu-
sion time of 20000) and (c) our 𝑑2 function - computed in
0.0046s, 75.0918s, and 9.3727s respectively. Note the sharp
convergence of hulls in the result of convolution, making it
undesirable for our application. In comparison, heat kernel
and our 𝑑2 function give smooth hulls, but the computation
of hulls using heat kernel is comparatively costly.

𝐼 (𝑋, 𝑡, segment i) is the primitive of ∥𝑞0 − 𝑡𝑞1∥−2 with respect to t,

and T is the length of the segment.

When integrating, ∥𝑞0 − 𝑡𝑞1∥ is the Euclidean distance between

𝑥 and the point 𝑦 along the segment. We rewrite ∥𝑞0 − 𝑡𝑞1∥2 as a
quadratic function:

∥𝑞0 − 𝑡𝑞1∥2 = 𝑡2 + 2𝑡𝑏 (𝑥) + 𝑐 (𝑥)

which simplifies the integral calculation.

Expressing it as (𝑡 +𝑏 (𝑥))2 + 𝑣 (𝑥) (with 𝑣 (𝑥) > 0), we can easily

find the primitive of
1

(𝑡+𝑏 (𝑥))2+𝑣 (𝑥) and compute the integral. We

denote this primitive by 𝐼 .

Since the integral is linear, the integral of ∥𝑥 − 𝑦∥−2 over the
broken line is the sum of the integrals over each segment:∫
broken line

∥𝑥−𝑦∥−2 =
∑︁
𝑖

(𝐼 (𝑋,𝑇 , segment 𝑖) − 𝐼 (𝑋, 0, segment 𝑖)) .

Thus, the final expression for the function 𝑑2 of a segment is:

𝑑2 =

√
𝐴√︁∑

𝑖 (𝐼 (𝑋,𝑇 , segment 𝑖) − 𝐼 (𝑋, 0, segment 𝑖))
.

Using the linearity of the sum operator and applying the gradient

operator, we get the gradient of function 𝑑2:

∇𝑑2 = −
√
𝐴 ·

∑
𝑖 (∇𝐼 (𝑋,𝑇 , segment 𝑖) − ∇𝐼 (𝑋, 0, segment 𝑖))

2 (∑𝑖 𝐼 (𝑋,𝑇 , segment 𝑖) − 𝐼 (𝑋, 0, segment 𝑖))3/2

Figure 5 shows the hulls created using convolution surfaces [50]

and the heat equation [12] on a polyline with 2000 vertices. Though

much faster, with a running time of 0.0046 seconds, the convolution-

based approach could not capture important features of the input

curve. The solution using heat diffusion could satisfactorily capture

the important features, but it took around 75.0918 seconds to com-

pute. Moreover, the precision of heat diffusion heavily depends on

the grid size, diffusion time, and chosen time step. With our explicit

solution, we could get similar but precise results in 9.3727 seconds.

Also, compared to the heat diffusion, our 𝑑2 function is simpler

and more efficient as it provides a closed-form expression for both

the distance and its gradient at any given point; the heat diffusion

Figure 6: An illustration showing our 𝑑2 function used for
sketch stroke inflation.

requires running a simulation for every point on the grid, for a the-

oretically indefinite amount of steps. In contrast, our method does

not require a discrete domain definition. Finally, the calculation

of the 𝑑2 distance and gradient is solely dependent (and linearly

so) on the number of sections in the shape, making it especially

well-suited for our application involving strokes and polylines.

Another alternative would be to work with kernel-based meth-

ods, but truncated kernels with a small time step cannot evaluate

gradients far off the spine. However, large kernels require the use of

an FFT to remain efficient, which has higher theoretical complexity.

In addition, it is unclear whether kernels provide stable estimates

for the gradient everywhere. For example, when a spine gets close

to itself, a large time step might fuse structures numerically.

The versatility of the proposed explicit 𝑑2 function extends be-

yond its immediate application in 3D modeling. For example, this

𝑑2 function can be used in applications such as computing curve

offsets [56], rasterization [33], animation [13], and vector art [39].

Figure 6 illustrates the result of a prototype that uses our𝑑2 function

to inflate hand-drawn strokes. As can be seen, while the thickness

increased, the sketch grew without merging nearby features. In ad-

dition, it is worth noting that the𝑑2 function possesses an important

property that allows for incremental updates when a segment of

the spine is moved, making it particularly useful for 2D animation

applications.

3.3.2 Rib length Optimization. The previous section described how
ribs grow following a gradient. We perform this iterative process

and stop when an edge in the input image is reached. These edges

stem from a Canny edge detector. Using all ribs directly might result

in incorrect shapes due to edges generated by unwanted occlusions

or noise in the input. To make the process more robust, we employ a

rib length optimization algorithm, relying on symmetry constraints

and edge information available on either side of the user-drawn

spine as outlined in Algorithm 1.

Algorithm 1 Rib Length Optimization Algorithm

1: procedure RibLengthOptimize(Ribs R, 𝑑𝑀𝑎𝑥)

2: 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = ∅
3: for 100 iterations do
4: Let random 𝑅𝑆 ⊂ 𝑅 with ∀𝑟 in 𝑅𝑆 : 𝑙𝑒𝑛𝑔𝑡ℎ(𝑟) < 𝑑𝑀𝑎𝑥

5: for 𝑔 ∈ {𝑅 − 𝑅𝑆 } with 𝑙𝑒𝑛𝑔𝑡ℎ(𝑔) < 𝑑𝑀𝑎𝑥 do
6: if Penalty(𝑅𝑆 ∪ {𝑔}) < 1.0 then
7: 𝑅𝑆 ∪ {𝑔}
8: if 𝑆𝐼𝑍𝐸 (𝑅𝑆)> Threshold then
9: Candidates = 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ∪ 𝑅𝑆

10: for 𝑐 ∈ 𝐶𝑎𝑛𝑑𝑖𝑎𝑡𝑒𝑠 do
11: c = completeViaInterpolation(c)

return 𝑎𝑟𝑔𝑚𝑖𝑛𝑐∈𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 Penalty(c)

A. Thiault, T. Philippe, A.D. Parakkat, E. Eisemann, R. Muthuganapathy, T. Igarashi

Figure 7: Superposition of the gradient curves of a user-drawn
spine and the blurred detected edges used to evaluate the
proximity of a point to a detected edge. Intersections are
highlighted in red. The algorithm tries to choose as many
points as possible in these red areas while satisfying other
smoothness constraints.

The algorithm selects a set of ribs with a minimal penalty (de-

fined below), and its endpoints are then interpolated to produce

ribs for gradient curves that were not selected. In case the candi-

date list is empty, we would have to restart the function with an

increased maximum distance 𝑑𝑀𝑎𝑥 . In practice, the algorithm can

be implemented without a candidate list but by tracking a mini-

mum. Similarly, sorting the ribs by length would make the selection

according to 𝑑𝑀𝑎𝑥 very simple.

Penalty Energy. We define the penalty energy as the simple sum

of three terms:

• Distance Penalty: This penalty ensures that the rib endpoints
stay close to the image edges. To compute this, we first blur

the Canny edge image with a normalized box filter (kernel

size: 1% of the image width - resulting in a figure similar to

Figure 7). Depending on the pixel color 𝑝 at the endpoint of

the rib, we define the distance penalty as 0 if the pixel color

is between 200 and 255 (close to the edges), or 1 − 𝑝/200
otherwise (pixel far from the edges).

• Neighbor Penalty: This penalty ensures that neighboring

ribs have a similar length (distance to the spine) - or in

other words, maintains consistency between adjacent ribs.

Let the ribs be separated by distance 𝑠 on the hull 𝐻0,

for corresponding steps 𝑍1 and 𝑍2 along the ribs, while

following the gradient, the penalty energy is defined as

3×𝑚𝑎𝑥 (0, |𝑑2 (𝑍1)−𝑑2 (𝑍2) |/𝑠−1/4). This penalizes large dif-
ferences in rib lengths relative to their separation, ensuring

smooth transitions between neighboring ribs.

• Opposite Penalty: This penalty ensures that the ribs have their
respective step points located at similar distances w.r.t. the

spine (trying to maintain symmetry). Given the associated

points 𝑍1 and 𝑍2 from the stepping points on both sides of

the spine, the penalty energy is defined as 0.25 × |𝑑2 (𝑍1) −
𝑑2 (𝑍2) |/𝑑2 (𝑍1).

In case no direct neighboring or opposite ribs exist, we inter-

polate 𝑍2 from the nearest already added neighboring ribs. The

trade-off between these penalty measures was empirically chosen.

The effect of the penalty criteria are shown in Figure 8. As can be

seen, the rib-length optimization on distance criteria alone resulted

in ribs that are jutting out of shape on one side (Figure 8(b)), as

the algorithm tried to find a smooth solution where edges were

missing (joint between the hind leg and tail). Having constraints

Figure 8: Effect of different terms in the penalty energy. (a)
User-drawn spine (in red color - please note that this is the
only user interaction in this example), (b) Penalty energy
with only distance to edge, (c) with distance to edge and sim-
ilarity to previous rib, (d) with distance to edge, similarities
to previous and next ribs, (e) with all our penalty criteria
(Image courtesy: PixaBay).

on neighboring ribs leads to stretched or contracted ribs (Figure

8(c-d)). Once we used all the penalty criteria, as demonstrated in

Figure 8(e), we could get the desired rib structure.

The result of using this rib optimization can be seen in Figure

9. It can handle not only missing edges but also noisy boundaries

(typical when the user chooses the edge detection option over a

natural image). The efficiency of our rib length optimization on

a sample input is shown in Figure 10. Our solution automatically

generated a decent set of ribs despite the presence of noise and

missing data near and around the beak. Even if the automatically

computed ribs do not match the user’s expectations, they can be

easily edited, as explained next. Figure 10(f-g) shows a result after

rib adjustment.

3.4 Lofting
The final step of conversion transforms the rib-spine combination

into a 3D mesh based on a provided cross-section. The cross-section

can be chosen from a predefined set (containing simple shapes, such

as circles, rectangles, triangles, etc.) or sketched out by the user.

Once a cross-section is provided, the spine is first centered by

taking the midpoint along opposing ribs. The center of the cross-

section is then aligned with this midpoint (Figure 11) and scaled to

match the length of the ribs. Consequently, the shape’s borders will

coincide with the rib endpoints and, thus, with the edges detected

in the input image. The cross-section is then rotated and connected

with the cross-sections corresponding to the neighboring ribs. If

there is no neighbor, we triangulate the interior of the cross-section

to create a closed shape. Because the distance function is smooth

and the spine is centred with respect to the ribs, robustness is

increased, and a certain imprecision in the user annotations is

acceptable (see Figure 12).

The process is very fast and fluid in terms of interaction, as the

mesh is generated swiftly. Upon sweeping the spine, each pair of

ribs adds a new boundary piece to the 3D shape until it is complete.

4 User Interaction
The main interactions made available by our system, as demon-

strated in Figure 13, include:

• Rib editing: The presence of large occlusions or noise typi-

cally ends up in ribs that do not match the user’s expectation,

or sometimes the user uses the photograph just as a guide

and has to locally update the shape. In such cases, our inter-

face allows the users to directly manipulate the rib endpoints

SpineLoft: Interactive Spine-based 2D-to-3D Modeling

Figure 9: Effect of our rib length optimization. (a) User-drawn spine (in red color) (b) Spine-rib system automatically generated
using our system without rib length optimization, (c-d) Corresponding 3D model, (e) Spine-rib system automatically generated
using our system with rib length optimization, (f-g) Corresponding 3D model.

in two ways: either by simply dragging and dropping a rib

endpoint or by drawing strokes - to which the nearby ribs

will grow or shrink, thus, adjusting their lengths.

• Spine reposing: The operation that allows the reorientation

of a spine (e.g., to match a part to the rest of a created object).

Figure 10: Effect of rib length optimization on input with
noisy edges. (a) Input image, (b) Result of Canny edge detec-
tion, (c) User drawn spine (in red color), (d) Spine-rib system
generated using our method, (e) Spine-rib system after edit-
ing, (f-g) Final 3D model generated by our method.

Figure 11: User-drawn spine (a), spine rearranged after com-
puting ribs (b), and corresponding 3D model (c-d).

Figure 12: Top: User-drawn approximate spines, Bottom: Ribs
and updated spines computed by our system. The original
image is taken from PixaBay.

Here, the user selects a spine and draws a new stroke to

which the spine is aligned. Specifically, the user-drawn stroke

will be considered a new spine, but instead of computing

gradient-edge intersections and then applying the rib-length

optimization, we copy the ribs from the original reference

spine, scaled by the relative stroke length.

• Cross-section editing: During the lofting phase, our interface

provides a dictionary of common cross-section shapes. In

addition, a user can sketch and define custom cross-sections.

The supplementary video provides a demonstration of these

interactions in use.

5 Results and Discussion
Several results generated with SpineLoft using sketches (taken

as bitmaps) and photographs as reference images can be seen in

Figures 14 and 15. In several examples, object parts are generated

and composited (Figure 16) using several spines to define parts,

and defining appropriate cross-sections enables the creation of

complex objects. It has to be noted that SpineLoft supports shapes,

which do not lend themselves well to inflation or approximation

by generalized cylinders. Please note that the results can be further

smoothed as post-processing.

5.1 Comparison of Functionalities
In this section, we compare various key features of SpineLoft to

existing work and summarize the findings in Table 1.

• Type of input - Are general images supported as input? Many

sketch-based modeling methods, e.g., [1], [23], [7], [51], re-

quire an input sketch, whereas, SpineLoft uses images as

input.

• Ability to select parts - Can a user pick and selectively model

parts of an object? Inflation-based methods such as Ink-and-

Ray [55] and NaturaSketch [40] inflate complete boundaries

and lack a clear part definition. CreatureShop [61] and Andre

et al. [1] also require the user to define required boundaries

explicitly. In contrast, SpineLoft provides the freedom to

select the required parts alone.

• Editable - Is the resulting shape directly editable? Only

RigMesh [7], MonsterMash [16], and Ours have this func-

tionality. RigMesh enables modifying a 3D pose, which is

somewhat reflected by our method’s spine reposing. In ad-

dition, we support local edits like MonsterMash. Thanks to

A. Thiault, T. Philippe, A.D. Parakkat, E. Eisemann, R. Muthuganapathy, T. Igarashi

Figure 13: Spine reposing and rib deformation operations. (a) User-drawn spine in red color, (b) Corresponding 3D model, (c)
New user-drawn stroke in red color for reposing, (d) Resulting reposed 3D model, (e) User-drawn stroke in green color for
deforming spines, (f) Resulting 3D model.

Figure 14: Various results generated by our interface on sketch inputs. Each tuple shows the input sketch (along with the
spine-rib systems) and the resulting models.

Figure 15: Various results generated by our interface on image inputs. Each tuple shows the input image and the resulting model
overlayed on the appropriate part of the image. To illustrate the flexibility of our approach, we used low-polygon cross-sections.
Images are taken from PixaBay.

SpineLoft: Interactive Spine-based 2D-to-3D Modeling

Figure 16: Models generated by combining multiple spine-rib
systems and appropriate cross-sections

the spine-rib system, the results of SpineLoft can be easily

edited.

• Arbitrary cross-section - What cross-sections can be used?

Many existing methods use circular inflation, which results

in blobby shapes. NaturaSketch and 3-Sweep [10] define a

particular and limited set of cross-section choices. Andre et

al. [1] uses arbitrary cross-sections but requires them to be

drawn from a fixed viewpoint. SpineLoft enables arbitrary

cross-sections.

• Requires a clean boundary - Can noise and missing edges

be handled? 3-Sweep handles some small degree of miss-

ing/noisy boundaries but fails for larger occlusions and inac-

curacies. Thanks to the rib length optimization algorithm,

qualitative comparisons indicate that SpineLoft is more ro-

bust (see Figure 17).

• Riggable representation - Can the result be rigged? Though

not made explicit, some methods could be similarly suited

as ours, such as 3-Sweep, Gingold et al. [19], and a modified

MonsterMash in the spirit of RigMesh.

• Precise input - How precise do user annotations have to

be? Precise input is time-consuming and requires careful

interaction. The use of the smooth distance function and the

centering of the spine enables a degree of inaccuracy in the

user scribbles. It has to be noted that this functionality is

unique to SpineLoft.

5.2 Comparison of Results
We compared our results with those generated by 3-Sweep [10]

and two variants of SpineLoft: Case 1 (with the 𝑑∞ function and

without rib editing) and Case 2 (with the 𝑑2 function, without rib

length optimization, and without rib editing), and are shown in

Figure 17. We concentrate our comparison on 3-Sweep because it

is the only method, like ours, that uses an image as input and is

based on a spine-like stroke. For a more detailed comparison with

other sketch-based modeling tools, please refer to the Appendix B.

The 3-Sweep method employs a sweeping technique that can

handle minimal inconsistencies in the input image/sketch. However,

it is difficult to control the sweeping when there is bending in the

sweeping profile (as seen with the banana shape in Figure 17). Addi-

tionally, significantly missing edges present further difficulties (for

example, the copter in Figure 17), and non-circular cross-sections

often result in undesirable results (for a fair comparison, we used

circular profiles for most examples). In comparison with our easily

editable spine-rib system, the 3-Sweep method offers more limited

editing capabilities for the extracted 3D objects. It should be noted

that compared to our solution, 3-Sweep can better handle open

boundaries in sketches, as demonstrated in Figure 18.

In contrast, using the 𝑑∞ function resulted in self-intersecting

meshes (evident in the blobby shape and banana examples in Figure

17), while the 𝑑2 function without rib length optimization and rib

editing produced erroneous shape boundaries (as seen in the jar

and copter examples in Figure 17).

5.3 Limitations
While the SpineLoft is effective in easily creating a variety of shapes,

it lacks the flexibility to model complex geometries. These limita-

tions arise mainly due to the fact that SpineLoft essentially creates a

loft surface along a single 2D spine with orthogonal ribs. As shown

in Figure 19, some shapes that it cannot create include :

1. Multi-curvature surfaces - As SpineLoft computes ribs as line

segments orthogonal to the spine, it cannot represent sur-

faces with complex curvatures in multiple directions, such

as hyperbolic paraboloids (e.g., the shape shown in Figure

19(a)), as this requires simultaneous positive and negative

curvatures in different directions instead of simple orthogo-

nal ribs.

2. Rotational interpolation - As the ribs are in 2D and are or-

thogonal to the spine, it cannot create twisted structures

like pasta shapes (e.g. the shape shown in Figure 19(b)). Gen-

erating such a shape with high torsion or non-linear twist

would require ribs to rotate along the spine and, hence, re-

quire complex interactions and expertise, which our current

system does not support.

3. Non-uniformly scaled objects - As in other sweeping-based

interfaces (e.g., 3-sweep [10]), our method is not designed for

non-uniform scaling along the spine. Though SpineLoft al-

lows varying rib sizes along the spine, complex non-uniform

scaling operations cannot be performed using the current

interface, making it difficult to model objects like toothpaste

shown in Figure 19(c) - whose cross-section transforms from

a circle to an ellipse along the spine.

4. Shapes with non-planar spines - To make the interactions

accessible to novice users, we assume that the spines are

in 2D, making it difficult to generate 3D shapes like helical

structures (for e.g. the shape shown in Figure 19(d)) which

requires a 3D spine.

In addition to the shapes it can generate, our current interface

implementation has two minor shortcomings: it trims the user-

drawn scribbles on both ends while computing normals, which

leads to users drawing scribbles slightly longer than needed. In

addition, we do not add caps to the generated objects (Figure 3).

One could always close the shapes by trimming the appropriate

ribs if desired.

5.4 Preliminary User Evaluation
We conducted a user evaluation of SpineLoft through three distinct

studies, each targeting different aspects of the system. The first

study focused on novice users with little to no prior 3D model-

ing experience to evaluate the usability and intuitiveness of the

interface. The objective was to measure the learning curve and

initial user experience of novice users. The second study focused

A. Thiault, T. Philippe, A.D. Parakkat, E. Eisemann, R. Muthuganapathy, T. Igarashi

Method Properties
Image as
input?

Ability to
select parts? Editable ? Arbitrary

cross-section?
Require a

clean boundary? Riggable? Precise
input?

Teddy [23] No NA No No Yes No NA

Gingold et al. [19] As Ref Yes No No NA Yes Yes

Andre et al. [1] No Yes No Yes* Yes No Yes

NaturaSketch [40] As Ref No No Yes* Yes No NA

RigMesh [7] No NA Yes* No Yes Yes NA

3-Sweep [10] Yes Yes No No Yes Yes Yes

Snapping [51] No Yes No No Yes No Yes

Ink-and-Ray [55] No No No No Yes No NA

MonsterMash [16] As Ref NA Yes* No Yes Yes Yes

CreatureShop[61] As Ref Yes No No Yes No Yes

Ours Yes Yes Yes* Yes No Yes No

Table 1: Comparison of different methods. Many works support images as a reference (marked as "As Ref"), but only 3-sweep
and SpineLoft are designed to benefit algorithmically. Only our method is able to handle images with incomplete contours or
occlusion (compare Figure 2).

Input Sketch 3-Sweep
(without rib length optimization)

d2 function Our resultSpine-rib systemInput Sketch 3-Sweep Our result
(without rib length optimization)

d2 function Spine-rib system

Input Sketch 3-Sweep d2 function Our resultd∞ function Input Sketch 3-Sweep d∞ function Our resultSpine-rib system

Figure 17: Comparison of our method w.r.t. 3-Sweep, 𝑑∞ function and 𝑑2 function without rib length optimization.

Input Sketch 3-Sweep (without rib length optimization)
d2 function

(with rib length optimization)
d2 function Spine-rib system

(after optimization and editing) Final 3D model

Figure 18: An example of a sketch drawn with open and mul-
tiple strokes where 3-sweep works better. (a) Input sketch,
(b) Result of 3-sweep, (c) Our result without rib length op-
timization, (d) Our result with rib length optimization, (e)
Spine-rib system after editing, (f) Our final result.

on obtaining in-depth feedback from experienced users about the

capabilities and limitations of the system compared to existing pro-

fessional 3D modeling tools. The third study focused on users with

varying levels of modeling experience and was intended to explore

Figure 19: A few representative failure cases of our system.
Our system cannot model (a) Saddle-shaped surface with
double curvature, (b) Shapes with twisted/rotating profiles,
(c) Shapeswith non-uniform scaling, and (d) Helical structure
from a single sketch.

the creative potential of the system. The details of the study are as

follows:

Novice user study: Ten participants aged between 12 (with par-

ent’s consent) and 43 with little to no prior experience in 3D model-

ing volunteered to try our system. The users were shown the video

SpineLoft: Interactive Spine-based 2D-to-3D Modeling

of our demo (as in the supplementary video) and were allowed to

familiarize themselves with our system for 10-15 minutes. After

this phase, they were asked to complete three tasks of increasing

complexity: creating a cylinder (from a simple image of a rectangle),

a bird neck (using the reference image shown in Figure 1) and then

a mug from an image with occlusion (using the reference image

shown in Figure 2). We measured the task completion times and

conducted a post-study usability survey on 1-5-point Likert scale.

The survey focused on various aspects of our system - task un-

derstanding, user-friendliness, feeling of control, task completion

efficiency, helpfulness of spine-rib system, intuitiveness of spine

drawing, and satisfaction with the final 3D shape.

The results of the survey were highly encouraging. The mean

scores across all the usability metrics ranged from 4.0 to 4.5 (with

an average magnitude of deviations from the mean: 0.4 to 0.64)

- suggesting that our interface is intuitive and user-friendly for

beginners. In addition to the usability metrics, we also included

questions to understand the overall experience and intentions for

future engagement. The questions were about the enjoyment of

the user while using the system, future use for creative tasks, con-

fidence in using the system and the user’s willingness to create

more models. The responses to these questions were also encour-

aging, with mean scores varying from 4.3 to 4.5 (with an average

magnitude of deviations from the mean: 0.5 to 0.56). These high

scores, especially for enjoyment and intention for future use, were

particularly promising as they suggest that our system effectively

engages novice users and develops their interest in 3D modeling

activities. It is also worth noting that the average modeling time for

cylinder, bird neck and mug were 67s, 71s, and 162s, respectively -

demonstrating the ability to quickly create 3D models. To gain a

deep understanding of user perception, we also asked the partici-

pants two open-ended questions: "What did you like most about the

system?" and "What further improvements would you suggest?".

A thematic analysis of the answers to the question "What did you

like most about the system?" reaffirmed various strengths of our

system:

• Intuitiveness - users appreciated the ability to create 3D

models from 2D images with simple inputs.

• Editable ribs - the ability to manipulate ribs for fine-tuning

3D shapes was frequently mentioned as a positive feature.

• Ease of use for novice users - many participants, especially

those doing 3D modeling for the first time, found the system

accessible and enjoyable.

• Spine-rib metaphor - users found the spine drawing and rib

editing metaphor intuitive and useful for creating 3D models.

Participants also provided suggestions for future improvements,

including the recommendation to add color-coded feedback for

different modes (for example, a different color for ribs that will get

affected while deforming ribs) and an improved rib computation to

reduce the required edits and the time.

Expert user study: To gain insights from an experienced user

point of view, we asked four experts with over two years of 3D

modeling experience to evaluate our system. They were shown

the demo of our system and asked to model the faucet shown in

Figure 16. In addition, in the second part, they were asked to edit the

faucet to modify the shape as they wanted. The experts successfully

recreated the model in less than 3minutes and could easily modify it

to match their imagination. Once satisfied with the modeling, they

provided valuable qualitative feedback about the system. Thanks to

the ability to model directly from a reference image and the easy-

to-edit spine-rib representation, all of them unanimously agreed

that Spineloft would be a compelling alternative to their current

preferred 3Dmodeling software - ranging from Blender to Autodesk

Inventor.

• The workflow in itself seems pretty innovative. It would

be nice to use it for prototyping but not for very precise

modeling.

• It would be nice to have an automatic merging of individ-

ual parts and an option to edit the ribs long after its cre-

ation, whereas the current system, after creating a new spine,

makes the previous 3D model uneditable.

• It would be nice to have it as a plugin for some software,

such as Blender, so that I can build over the prototypes I

create.

• Having an option to manually add or delete ribs would be

beneficial (especially while using it for CAD modeling).

Study exploring creative potential: Our third user study ex-

plored the creative potential of the system. To round up our model-

ing tool, we added simple inflation tools - using Delaunay inflation

[43] - and planar-sheet extrusion to craft elements like spheres,

antlers, and wings. The composition of all parts created is done via

Meshmixer [49], which fuses the components.

We tested SpineLoft with 12 users aged between 15 (with parent’s

consent) to 46 years, of which only two had some prior modeling

experience. We showed them the demo of our system and allowed

them to explore it for 30 minutes. After that, we asked them to

model some imaginary characters by mixing and matching parts

from different images. Figure 20 shows a few models they created,

and it took 10 to 20 minutes for them to create the complete model

(including the time for spatial arrangement and web-searching for

the appropriate images). After each modeling session, we collected

feedback from the users about the overall modeling experience. The

feedback was overall positive, and the obtained fast prototyping

results illustrate the strength of our solution. Users mentioned

that "it is easy and enjoyable" to work with the system and that

"the entire process was a lot of fun". In several cases, especially

the inexperienced users were surprised that they "had complete

control" and "could do whatever I want".

We also asked the users to rate the interface based on the over-

all experience and the fun they had during the modeling process,

from Very bad to Excellent. All the users rated it as Very Good or

Excellent and unanimously gave positive feedback, such as: "the

entire process was a lot of fun, and we enjoyed it a lot".

In conclusion, our user studies indicate that SpineLoft provides

an intuitive framework for 3D modeling. The positive feedback

across all three studies suggests that our approach has the potential

to lower the entry barrier for 3D modeling, making it accessible

and enjoyable for novice users.

A. Thiault, T. Philippe, A.D. Parakkat, E. Eisemann, R. Muthuganapathy, T. Igarashi

Figure 20: Some imaginary characters modeled using our interface by novice users (without prior modeling or designing
experience) during the user study in less than 20 minutes (including the time for searching and finding appropriate images,
drawing sketches wherever required, modeling parts using our interface and assembling them together).

5.5 Future Work
We envision future work in two primary directions. The first fo-

cuses on improving the current user interface to provide an en-

riched set of modeling options - making SpineLoft more suitable

for intermediate/expert-level users. This includes implementing 3D

rotational interpolation for cross-sections, enabling the creation

of 3D cross-sections to model complex surfaces, and developing a

more sophisticated rib length optimization framework. In addition

to this, the ability to model hollow objects, such as the interior

of the mug shown in Figure 2, could be envisioned. As typically

done in Constructive Solid Geometry (CSG) modeling, this could be

easily done by adding a mesh difference operation, which subtracts

one solid from another.

The second direction involves extending the system into full 3D

space. This includes developing a system similar to Skippy [29]

to sketch 3D spines from a 2D view, facilitating the generation of

complex 3D shapes like helices. This extension to 3D interactions

would allow editing of spines, ribs, and cross-sections in 3D, making

it possible to create a variety of shapes, including those with non-

uniform scaling profiles.

Additionally, developing a plugin of SpineLoft for established

3D sculpting platforms like ZBrush or Blender would enable users

to leverage SpineLoft for rapid abstract shape creation, which can

then be refined using the advanced tools available in these sculpting

systems - enhancing productivity for artists and designers in various

fields.

6 Conclusion
We introduced a simple yet powerful, interactive spine-rib-based so-

lution, SpineLoft, allowing users to create 3D models from sketches

or images rapidly. The proposed method uses a novel 𝑑2 function

and a rib length optimization algorithm to create easily editable

ribs from a user-drawn approximate spine. The proposed method is

easy to use for novice users, as it does not require perfect precision.

It helps develop rapid prototypes and base meshes (which can be

refined further using specialized tools like Zbrush). The user study

confirms that the proposed method is accessible even for first-time

users and enables them to generate complex models (which pre-

viously they never knew they could) in a fun and playful manner.

Finally, our specialized distance function, which can be easily com-

puted in an explicit way, can open up avenues for applications

beyond shape modeling, such as vectorization and animation.

Acknowledgments
The authors would like to thank all the anonymous reviewers for

their constructive comments, all the participants of our study, and

Aurèle Boquet for his help with the derivation. The research is

partially funded by the ANR JCJC project SketchMAD (ANR-23-

CE33-0009), Immersive Tech Lab within Convergence AI at TU

Delft, JST AdCORP (JPMJKB2302) and generous support from

Adobe. The images used in this work were obtained from Pixabay

(http://pixabay.com), a platform providing royalty-free images avail-

able for download and use under their standard licensing terms.

References
[1] Alexis Andre and Suguru Saito. 2011. Single-View Sketch Based Modeling. In

Proceedings of the Eighth Eurographics Symposium on Sketch-Based Interfaces
and Modeling (Vancouver, British Columbia, Canada) (SBIM ’11). Association for

Computing Machinery, New York, NY, USA, 133–140.

[2] Adrien Bernhardt, Adeline Pihuit, Marie-Paule Cani, and Loic Barthe. 2008. Ma-

tisse: Painting 2D regions for Modeling Free-Form Shapes. In Eurographics Work-
shop on Sketch-Based Interfaces andModeling, Christine Alvarado andMarie-Paule

Cani (Eds.). The Eurographics Association.

[3] Mikhail Bessmeltsev, Will Chang, Nicholas Vining, Alla Sheffer, and Karan Singh.

2015. Modeling Character Canvases from Cartoon Drawings. ACM Trans. Graph.
34, 5, Article 162 (nov 2015), 16 pages.

[4] Mikhail Bessmeltsev, Nicholas Vining, and Alla Sheffer. 2016. Gesture3D: Posing

3D Characters via Gesture Drawings. ACM Transactions on Graphics (Proceedings
of ACM SIGGRAPH Asia 2016) 35, 6 (2016).

[5] Sukanya Bhattacharjee and Parag Chaudhuri. 2020. A Survey on Sketch Based

Content Creation: from the Desktop to Virtual and Augmented Reality. Computer
Graphics Forum 39, 2 (2020), 757–780.

[6] Alexandra Bonnici, Alican Akman, Gabriel Calleja, Kenneth P. Camilleri,

Patrick Fehling, Alfredo Ferreira, Florian Hermuth, Johann Habakuk Israel, Tom

Landwehr, Juncheng Liu, and et al. 2019. Sketch-based interaction and modeling:

where do we stand? Artificial Intelligence for Engineering Design, Analysis and
Manufacturing 33, 4 (2019), 370–388.

[7] Péter Borosán, Ming Jin, Doug DeCarlo, YotamGingold, and AndrewNealen. 2012.

RigMesh: Automatic Rigging for Part-Based Shape Modeling and Deformation.

ACM Trans. Graph. 31, 6, Article 198 (nov 2012), 9 pages.
[8] Philip Buchanan, R. Mukundan, and Michael Doggett. 2013. Automatic Single-

View Character Model Reconstruction. In Proceedings of the International Sympo-
sium on Sketch-Based Interfaces and Modeling (Anaheim, California) (SBIM ’13).
Association for Computing Machinery, New York, NY, USA, 5–14.

[9] Renjie Chen, Ofir Weber, Daniel Keren, and Mirela Ben-Chen. 2013. Planar

Shape Interpolation with Bounded Distortion. ACM Trans. Graph. 32, 4 (jul 2013),
12 pages.

[10] Tao Chen, Zhe Zhu, Ariel Shamir, Shi-Min Hu, and Daniel Cohen-Or. 2013. 3-

Sweep: Extracting Editable Objects from a Single Photo. ACM Trans. Graph. 32,
6, Article 195 (nov 2013), 10 pages.

[11] Xuejin Chen, Boris Neubert, Ying-Qing Xu, Oliver Deussen, and Sing Bing Kang.

2008. Sketch-Based Tree Modeling Using Markov Random Field. In ACM SIG-
GRAPH Asia 2008 Papers (Singapore) (SIGGRAPH Asia ’08). Association for Com-

puting Machinery, New York, NY, USA, Article 109, 9 pages.

[12] Keenan Crane, Clarisse Weischedel, and Max Wardetzky. 2013. Geodesics in heat:

A new approach to computing distance based on heat flow. ACM Transactions on
Graphics (TOG) 32, 5 (2013), 1–11.

http://pixabay.com

SpineLoft: Interactive Spine-based 2D-to-3D Modeling

[13] JamesDavis,ManeeshAgrawala, Erika Chuang, Zoran Popović, andDavid Salesin.

2006. A sketching interface for articulated figure animation. In Acm siggraph
2006 courses. 15–es.

[14] Fernando De Goes and Doug L James. 2017. Regularized kelvinlets: sculpting

brushes based on fundamental solutions of elasticity. ACM Transactions on
Graphics (TOG) 36, 4 (2017), 1–11.

[15] Johanna Delanoy, Mathieu Aubry, Phillip Isola, Alexei A. Efros, and Adrien

Bousseau. 2018. 3D Sketching Using Multi-View Deep Volumetric Prediction.

Proc. ACM Comput. Graph. Interact. Tech. 1, 1, Article 21 (jul 2018), 22 pages.
[16] Marek Dvorožňák, Daniel Sýkora, Cassidy Curtis, Brian Curless, Olga Sorkine-

Hornung, and David Salesin. 2020. Monster Mash: A Single-View Approach to

Casual 3D Modeling and Animation. ACM Trans. Graph. 39, 6 (2020), 12 pages.
[17] Even Entem, Loic Barthe, Marie-Paule Cani, Frederic Cordier, and Michiel van

de Panne. 2015. Modeling 3D animals from a side-view sketch. Computers &
Graphics 46 (2015), 221–230. Shape Modeling International 2014.

[18] Amelie Fondevilla, Damien Rohmer, Stefanie Hahmann, Adrien Bousseau, and

Marie-Paule Cani. 2021. Fashion Transfer: Dressing 3D Characters from Stylized

Fashion Sketches. Computer Graphics Forum 40, 6 (2021), 466–483.

[19] Yotam Gingold, Takeo Igarashi, and Denis Zorin. 2009. Structured Annotations

for 2D-to-3D Modeling. ACM Transactions on Graphics (TOG) 28, 5 (2009), 148.
[20] Martin Guay, Marie-Paule Cani, and Rémi Ronfard. 2013. The Line of Action:

An Intuitive Interface for Expressive Character Posing. ACM Trans. Graph. 32, 6,
Article 205 (nov 2013), 8 pages.

[21] Tao Hu, Liwei Wang, Xiaogang Xu, Shu Liu, and Jiaya Jia. 2021. Self-Supervised

3D Mesh Reconstruction From Single Images. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 6002–6011.

[22] Matis Hudon, Mairead Grogan, Rafael Pages, and Aljosa Smolic. 2018. Deep Nor-

mal Estimation for Automatic Shading of Hand-Drawn Characters. In Proceedings
of the European Conference on Computer Vision (ECCV) Workshops.

[23] Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka. 1999. Teddy: A Sketch-

ing Interface for 3D Freeform Design. In Proceedings of the 26th Annual Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH ’99). 8 pages.

[24] Alec Jacobson, Ilya Baran, Jovan Popović, and Olga Sorkine-Hornung. 2014.

Bounded Biharmonic Weights for Real-Time Deformation. Commun. ACM 57, 4

(apr 2014), 99–106.

[25] Rubaiat Habib Kazi, Tovi Grossman, Hyunmin Cheong, Ali Hashemi, and

George W Fitzmaurice. 2017. DreamSketch: Early Stage 3D Design Explorations

with Sketching and Generative Design.. In UIST, Vol. 14. 401–414.
[26] Yongkwan Kim, Sang-Gyun An, Joon Hyub Lee, and Seok-Hyung Bae. 2018. Agile

3D sketching with air scaffolding. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems. 1–12.

[27] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura

Gustafson, Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al.

2023. Segment anything. In Proceedings of the IEEE/CVF International Conference
on Computer Vision. 4015–4026.

[28] Vladislav Kraevoy, Alla Sheffer, and Michiel van de Panne. 2009. Modeling from

Contour Drawings. In Proceedings of the 6th Eurographics Symposium on Sketch-
Based Interfaces and Modeling (New Orleans, Louisiana) (SBIM ’09). Association
for Computing Machinery, New York, NY, USA, 37–44.

[29] Vojtěch Krs, Ersin Yumer, Nathan Carr, Bedrich Benes, and Radomír Měch. 2017.

Skippy: Single View 3D Curve Interactive Modeling. ACM Trans. Graph. 36, 4,
Article 128 (jul 2017), 12 pages.

[30] Mackenzie Leake, Gilbert Bernstein, and Maneesh Agrawala. 2022. Sketch-Based

Design of Foundation Paper Pieceable Quilts. In Proceedings of the 35th Annual
ACM Symposium on User Interface Software and Technology. 1–11.

[31] Thibault Lescoat, Maks Ovsjanikov, Pooran Memari, Jean-Marc Thiery, and Tamy

Boubekeur. 2018. A Survey on Data-driven Dictionary-based Methods for 3D

Modeling. Computer Graphics Forum 37, 2 (2018), 577–601.

[32] Changjian Li, Hao Pan, Yang Liu, Xin Tong, Alla Sheffer, and Wenping Wang.

2018. Robust Flow-Guided Neural Prediction for Sketch-Based Freeform Surface

Modeling. ACM Trans. Graph. 37, 6, Article 238 (dec 2018), 12 pages.
[33] Rui Li, Qiming Hou, and Kun Zhou. 2016. Efficient GPU path rendering using

scanline rasterization. ACM Transactions on Graphics (TOG) 35, 6 (2016), 1–12.
[34] Yuwei Li, Xi Luo, Youyi Zheng, Pengfei Xu, and Hongbo Fu. 2017. SweepCanvas:

Sketch-based 3D prototyping on an RGB-D image. In Proceedings of the 30th
Annual ACM Symposium on User Interface Software and Technology. 387–399.

[35] Yin Li, Jian Sun, Chi-Keung Tang, and Heung-Yeung Shum. 2004. Lazy snapping.

ACM Trans. Graph. 23, 3 (Aug. 2004), 303–308.
[36] Markus Lipp, Peter Wonka, and Pascal Müller. 2014. PushPull++. ACM Transac-

tions on Graphics (TOG) 33, 4 (2014), 1–9.
[37] Zhongjin Luo, Jie Zhou, Heming Zhu, Dong Du, Xiaoguang Han, and Hongbo

Fu. 2021. Simpmodeling: Sketching implicit field to guide mesh modeling for 3d

animalmorphic head design. In The 34th annual ACM symposium on user interface
software and technology. 854–863.

[38] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn East-

mond. 2010. The scratch programming language and environment. ACM Trans-
actions on Computing Education (TOCE) 10, 4 (2010), 1–15.

[39] Diego Nehab. 2020. Converting stroked primitives to filled primitives. ACM
Transactions on Graphics (TOG) 39, 4 (2020), 137–1.

[40] Luke Olsen, Faramarz Samavati, and Joaquim Jorge. 2011. NaturaSketch: Model-

ing from Images and Natural Sketches. IEEE Computer Graphics and Applications
31, 6 (2011), 24–34.

[41] Luke Olsen, Faramarz F. Samavati, Mario Costa Sousa, and Joaquim A. Jorge. 2009.

Sketch-based modeling: A survey. Computers & Graphics 33, 1 (2009), 85–103.
[42] Amal Dev Parakkat, Marie-Paule R. Cani, and Karan Singh. 2021. Color by Num-

bers: Interactive Structuring and Vectorization of Sketch Imagery. In Proceedings
of the 2021 CHI Conference on Human Factors in Computing Systems.

[43] Amal Dev Parakkat, Hair Hara Gowtham, Sarang Joshi, and Ramanathan

Muthuganapathy. 2020. A digital assistant for shading paper sketches. Visual
Computing for Industry, Biomedicine, and Art 3(15) (2020).

[44] Jianbo Peng, Daniel Kristjansson, and Denis Zorin. 2004. Interactive modeling of

topologically complex geometric detail. In ACM SIGGRAPH 2004 Papers. 635–643.
[45] Mengqi Peng, Li-yi Wei, Rubaiat Habib Kazi, and Vladimir G Kim. 2020. Auto-

complete animated sculpting. In Proceedings of the 33rd Annual ACM Symposium
on User Interface Software and Technology. 760–777.

[46] Sverker Rasmuson, Erik Sintorn, and Ulf Assarsson. 2020. User-guided 3D recon-

struction using multi-view stereo. In Symposium on Interactive 3D Graphics and
Games. 1–9.

[47] Mitchel Resnick, BradMyers, Kumiyo Nakakoji, Ben Shneiderman, Randy Pausch,

Ted Selker, and Mike Eisenberg. 2005. Design principles for tools to support

creative thinking. (2005).

[48] C. Robson, R. Maharik, A. Sheffer, and N. Carr. 2011. Context-Aware Garment

Modeling from Sketches. Computers and Graphics (2011), 604–613.
[49] Ryan Schmidt and Karan Singh. 2010. Meshmixer: An Interface for Rapid Mesh

Composition. InACM SIGGRAPH 2010 Talks (Los Angeles, California) (SIGGRAPH
’10). Association for Computing Machinery, Article 6, 1 pages.

[50] Andrei Sherstyuk. 1999. Kernel functions in convolution surfaces: a comparative

analysis. The Visual Computer 15, 4 (1999), 171–182.
[51] Alex Shtof, Alexander Agathos, Yotam Gingold, Ariel Shamir, and Daniel Cohen-

Or. 2013. Geosemantic Snapping for Sketch-Based Modeling. Computer Graphics
Forum 32, 2 (2013), 245–253.

[52] Maria Shugrina, Wenjia Zhang, Fanny Chevalier, Sanja Fidler, and Karan Singh.

2019. Color builder: A direct manipulation interface for versatile color theme

authoring. In Proceedings of the 2019 CHI conference on human factors in computing
systems. 1–12.

[53] Sudipta N Sinha, Drew Steedly, Richard Szeliski, Maneesh Agrawala, and Marc

Pollefeys. 2008. Interactive 3D architectural modeling from unordered photo

collections. ACM Transactions on Graphics (TOG) 27, 5 (2008), 1–10.
[54] Lucian Stanculescu, Raphaëlle Chaine, Marie-Paule Cani, and Karan Singh. 2013.

Sculpting multi-dimensional nested structures. Computers & graphics 37, 6 (2013),
753–763.

[55] Daniel Sýkora, Ladislav Kavan, Martin Čadík, Ondřej Jamriška, Alec Jacobson,

Brian Whited, Maryann Simmons, and Olga Sorkine-Hornung. 2014. Ink-and-

Ray: Bas-Relief Meshes for Adding Global Illumination Effects to Hand-Drawn

Characters. ACM Trans. Graph. 33, 2, Article 16 (apr 2014), 15 pages.
[56] Wayne Tiller and Eric G Hanson. 1984. Offsets of two-dimensional profiles. IEEE

Computer Graphics and Applications 4, 9 (1984), 36–46.
[57] Anton Van Den Hengel, Anthony Dick, Thorsten Thormählen, Ben Ward, and

Philip HS Torr. 2007. Videotrace: rapid interactive scene modelling from video.

ACM Transactions on Graphics (ToG) 26, 3 (2007), 86–es.
[58] He Wang, Kirill A. Sidorov, Peter Sandilands, and Taku Komura. 2013. Harmonic

Parameterization by Electrostatics. ACM Trans. Graph. 32, 5, Article 155 (oct

2013), 12 pages.

[59] Kun Xu, Kang Chen, Hongbo Fu, Wei-Lun Sun, and Shi-Min Hu. 2013.

Sketch2Scene: Sketch-Based Co-Retrieval and Co-Placement of 3D Models. ACM
Trans. Graph. 32, 4, Article 123 (jul 2013), 15 pages.

[60] Mingliang Xu, Mingyuan Li, Weiwei Xu, Zhigang Deng, Yin Yang, and Kun

Zhou. 2016. Interactive mechanism modeling from multi-view images. ACM
Transactions on Graphics (TOG) 35, 6 (2016), 1–13.

[61] Congyi Zhang, Lei Yang, Nenglun Chen, Nicholas Vining, Alla Sheffer, Fran-

cis C.M. Lau, Guoping Wang, and Wenping Wang. 2022. CreatureShop: Interac-

tive 3D Character Modeling and Texturing from a Single Color Drawing. IEEE
Transactions on Visualization and Computer Graphics (2022), 1–18.

[62] Yue Zhong, Yulia Gryaditskaya, Honggang Zhang, and Yi-Zhe Song. 2020. Deep

Sketch-Based Modeling: Tips and Tricks. In 2020 International Conference on 3D
Vision (3DV). 543–552.

A. Thiault, T. Philippe, A.D. Parakkat, E. Eisemann, R. Muthuganapathy, T. Igarashi

A Detailed derivation of the 𝑑2 function
We define a natural generalized distance function between a point

𝑥 and a polygon 𝑃 , consisting of vertices 𝑃0 to 𝑃𝑘−1, with perimeter

𝐴 =
∑𝑘−1
𝑖=0 ∥𝑃𝑖+1 − 𝑃𝑖 ∥.

The distance function of degree𝑛 between 𝑥 and 𝑃 is then defined

as an integral on the contour of 𝑃 [44]:

𝑑𝑛 (𝑥, 𝑃) = 𝐴1/𝑛
(∫

𝑃

∥𝑥 − 𝑦∥−𝑛 𝑑𝑦
)−1/𝑛

.

When 𝑛 = 2, it is evaluated as:

𝑑2 (𝑥, 𝑃) =
√
𝐴

(∫
𝑃

∥𝑥 − 𝑦∥−2 𝑑𝑦
)−1/2

.

Calculating the integral directly would be costly. Having con-

centrated on one line segment of the polygon at a time, we can

rewrite ∫
𝑃

∥𝑥 − 𝑦∥−2 𝑑𝑦as
∫
[𝑝𝑖+1,𝑝𝑖]

∥𝑥 − 𝑦∥−2 𝑑𝑦

=

∫ ∥𝑝𝑖+1−𝑝𝑖 ∥

0

∥𝑥 −
(
𝑝𝑖 + 𝑡

𝑝𝑖+1 − 𝑝𝑖

∥𝑝𝑖+1 − 𝑝𝑖 ∥

)
∥−2 𝑑𝑡

Let 𝑇 = ∥𝑝𝑖+1 − 𝑝𝑖 ∥, 𝑞0 (𝑥) = 𝑥 − 𝑝𝑖 , and 𝑞1 =
𝑝𝑖+1−𝑝𝑖
∥𝑝𝑖+1−𝑝𝑖 ∥ . The

equation can be expressed as:∫ 𝑇

0

∥𝑞0 − 𝑡𝑞1∥−2 𝑑𝑡 =
∫ 𝑇

0

(
∥𝑞0 − 𝑡𝑞1∥2

)−1
𝑑𝑡

With 𝑎 = ∥𝑞1∥2, 𝑏 (𝑥) = −2(𝑞0 (𝑥) ·𝑞1), and 𝑐 (𝑥) = ∥𝑞0 (𝑥)∥2, the
equation can be rearranged as:∫ 𝑇

0

(𝑎𝑡2 + 𝑏 (𝑥) · 𝑡 + 𝑐 (𝑥))−1 𝑑𝑡 .

Note that the polynomial 𝑎𝑡2 + 𝑏𝑡 + 𝑐 is always greater than 0

and thus can be written as:

𝑎−1
∫ 𝑇

0

(
(𝑡 + 𝑢 (𝑥))2 + 𝑒2

)−1
𝑑𝑡

with 𝑢 (𝑥) = 𝑏 (𝑥)
2𝑎 and 𝑒2 (𝑥) = 𝑐 (𝑥)

𝑎 − 𝑢2 (𝑥). Finally,

𝑎−1
∫ 𝑇

0

(
(𝑡 + 𝑢 (𝑥))2 + 𝑒2 (𝑥)

)−1
𝑑𝑡

evaluates to:

[

−1
𝑎 (𝑡+𝑢 (𝑥))

]𝑇
0

= 1

𝑎·𝑢 (𝑥) −
1

𝑎 (𝑇+𝑢 (𝑥)) if 𝑒 (𝑥) = 0[
1

𝑎 ·𝑒 (𝑥) arctan
(
𝑡+𝑢 (𝑥)
𝑒 (𝑥)

)]𝑇
0

= 1

𝑎·𝑒 (𝑥)

(
arctan

(
𝑇+𝑢 (𝑥)
𝑒 (𝑥)

)
− arctan

(
𝑢 (𝑥)
𝑒 (𝑥)

))
if 𝑒 (𝑥) ≠ 0

It can be shown that (Pythagorean trigonometric identity)

𝑎2𝑒2 = ∥𝑞1∥2∥𝑞0∥2 − (𝑞0 · 𝑞1)2 = ∥𝑞1 × 𝑞0∥2

Since 𝑎 is supposed non zero (we exclude the case 𝑝𝑖 = 𝑝𝑖+1),

𝑒 (𝑥) = 0 is true if and only if ®𝑝0𝑝1 and ®𝑝0𝑥 are parallel, i.e. if 𝑥 lies

on the line formed by 𝑝𝑖 and 𝑝𝑖+1.

We then derive the gradient of this distance function, in respect

to x.

We define 𝐼 (𝑥, 𝑡):

𝐼 (𝑥, 𝑡) =

−1
𝑎 (𝑡+𝑢 (𝑥)) if 𝑣 (𝑥) = 0

1

𝑎·𝑒 (𝑥) arctan
(
𝑡+𝑢 (𝑥)
𝑒 (𝑥)

)
=

arctan(𝑤 (𝑥,𝑡))√
𝑎𝑣 (𝑥)

if 𝑣 (𝑥) ≠ 0

with 𝑣 (𝑥) = 𝑎 · 𝑒2 (𝑥) and𝑤 (𝑥, 𝑡) = 𝑎 (𝑡+𝑢 (𝑥))√
𝑎𝑣 (𝑥)

(𝑤 (𝑥) is only defined

for 𝑣 (𝑥) ≠ 0)

Hence, we have:

𝑑2 (𝑥) =
𝐴√︁

𝐼 (𝑥,𝑇) − 𝐼 (𝑥, 0)
,∇𝑑2 (𝑥) = −𝐴 ∇𝐼 (𝑥, dist) − ∇𝐼 (𝑥, 0)

2(𝐼 (𝑥, dist) − 𝐼 (𝑥, 0))3/2

Using the same notation, we can derive the gradients of the

variables we use as:

𝑞0 (𝑥) = 𝑥 − 𝑝𝑖 ,so ∇𝑞0 (𝑥) = 1

𝑏 (𝑥) = −2(𝑞0 (𝑥) · 𝑞1 ,so ∇𝑏 (𝑥) = −2(∇𝑞0 (𝑥) · 𝑞1) = −2𝑞1

𝑐 (𝑥) = 𝑞0 (𝑥) · 𝑞0 (𝑥) ,so ∇𝑐 (𝑥) = 2(𝑞0 (𝑥) · ∇𝑞0 (𝑥)) = 2𝑞0 (𝑥)

𝑢 (𝑥) = 𝑏 (𝑥)
2𝑎

,so ∇𝑢 (𝑥) = −𝑞1
𝑎

𝑣 (𝑥) = 𝑐 (𝑥) − 𝑎𝑢2 (𝑥), ,so ∇𝑣 (𝑥) = ∇𝑐 (𝑥) − 2𝑎𝑢 (𝑥)∇𝑢 (𝑥)
= 2𝑞0 (𝑥) + 2𝑞1𝑢 (𝑥)

𝑤 (𝑥, 𝑡) = 𝑎(𝑡 + 𝑢 (𝑥))√︁
𝑎𝑣 (𝑥)

,so ∇𝑤 (𝑥, 𝑡) = 𝑎∇𝑢 (𝑥)√︁
𝑎𝑣 (𝑥)

−
𝑎(𝑡 + 𝑢 (𝑥))∇(

√︁
𝑎𝑣 (𝑥))

𝑎𝑣 (𝑥)

Changing ∇𝑢 (𝑥) and ∇𝑣 (𝑥) by their expression, we get the fol-

lowing.

∇𝑤 (𝑥, 𝑡) = − 𝑞1√︁
𝑎𝑣 (𝑥)

+ 𝑤 (𝑥, 𝑡)∇𝑣 (𝑥)
2𝑣 (𝑥)

In these calculations, 𝑡 is the variable of the integrand and 𝑥 is

the position of the point on the image.

With this, we can finally derive the gradient of 𝐼 (𝑥, 𝑡). The case
𝑣 (𝑥) = 0 is quite easy, we find:

∇𝐼 (𝑥, 𝑡) = −𝑞1
(𝑎(𝑡 + 𝑢 (𝑥)))2

if 𝑣 (𝑥) = 0

We now calculate ∇𝐼 (𝑥, 𝑡) in the case 𝑣 (𝑥) ≠ 0.

Let us define 𝑃 and 𝑄 :

𝑃 (𝑥, 𝑡) = arctan(𝑤 (𝑥, 𝑡)) and 𝑄 (𝑥) = 1√︁
𝑎𝑣 (𝑥)

We have the following:

∇𝐼 (𝑥, 𝑡) = 𝑄 (𝑥)∇𝑃 (𝑥, 𝑡) + 𝑃 (𝑥, 𝑡)∇𝑄 (𝑥)
With:

∇𝑃 (𝑥, 𝑡) = ∇𝑤 (𝑥, 𝑡)
1 +𝑤2 (𝑥, 𝑡)

and ∇𝑄 (𝑥) = − 𝑎∇𝑣 (𝑥)
2(𝑎𝑣 (𝑥))3/2

SpineLoft: Interactive Spine-based 2D-to-3D Modeling

Figure 21: Comparison on a simple closed boundary (Top: Blobby shape) and a simple closed boundary with varying cross-
sections (Bottom: Banana) Left to Right: Input sketch, Outputs of Teddy [23], RigMesh [7], 3-Sweep [10], MonsterMash [16],
CreatureShop [61], 𝑑∞ function, Our Spine-Rib system and the resulting 3D model

Figure 22: Top to Bottom: Comparison on an occluded boundary (Cross shape), object withmissing boundaries (Plane), Noisy data
(Noisy Jar) and Image (Streetlight); Left to Right: Input sketch, Outputs of Teddy [23], RigMesh [7], 3-Sweep [10], MonsterMash
[16], CreatureShop [61], 𝑑2 function without rib length optimization, Our Spine-Rib system and the resulting 3D model

A. Thiault, T. Philippe, A.D. Parakkat, E. Eisemann, R. Muthuganapathy, T. Igarashi

∇𝐼 (𝑥, 𝑡) = 1√︁
𝑎𝑣 (𝑥)

∇𝑤 (𝑥, 𝑡)
1 +𝑤2 (𝑥, 𝑡)

− 𝑎∇𝑣 (𝑥) arctan(𝑤 (𝑥, 𝑡))
(2(𝑎𝑣 (𝑥)))3/2

This gives us the final expression of ∇𝐼 (𝑥, 𝑡):

∇𝐼 (𝑥, 𝑡) =

−𝑞1
(𝑎 (𝑡+𝑢 (𝑥)))2 if 𝑣 (𝑥) = 0

1√
𝑎𝑣 (𝑥)

∇𝑤 (𝑥,𝑡)
1+𝑤2 (𝑥,𝑡) −

𝑎∇𝑣 (𝑥) arctan(𝑤 (𝑥,𝑡))
(2(𝑎𝑣 (𝑥)))3/2 if 𝑣 (𝑥) ≠ 0

As a reminder,

∇𝑑2 (𝑥) = −𝐴 ∇𝐼 (𝑥, dist) − ∇𝐼 (𝑥, 0)
2(𝐼 (𝑥, dist) − 𝐼 (𝑥, 0))3/2

B Comparison with other sketch-based
modeling systems

In this section, we compare our results with those generated by

five other methods (whose codes are available) and two variants of

SpineLoft (Case 1: with 𝑑∞ function and without rib-editing, Case 2:

with 𝑑2 function, without rib length optimization and without rib-

editing). It should be noted that only 3-sweep is designed to work

similarly to SpineLoft by taking images and user-drawn spine-like

structures as input. All other methods are sketch inflation-based

techniques that inflate a user-drawn closed boundary with little to

no control over the shape, as they are not designed to take editability

into account. To help readers understand how our methods differ

from other sketch-basedmodeling tools, we list the main differences

below.

• Teddy [23]: Teddy uses a simple inflation based on a con-

strained Delaunay triangulation. A drawback is the lack of

support for image-based content. Instead, one needs to man-

ually draw closed outlines. The results are typically blobby

shapes. Missing boundaries or noisy sketches are not sup-

ported.

• RigMesh [7]: Similar to Teddy, RigMesh also creates blobby

objects from user-drawn closed-curve sketches. It shares

the drawbacks of Teddy, and complex curves with multiple

branches do not lead to the desired result (compare plane

in Figure 22). The same holds for the skeleton, which might

differ from the expectations (noisy jar in Figure 22).

• 3-Sweep [10]: It uses a sweeping methodology and can han-

dle minimal inconsistencies on the input image/sketch. Yet,

it is difficult to control the sweep, especially when the pro-

file requires bending (banana in Figure 21), and shape edits

are locally not supported. Occlusion and missing edges also

pose challenges, and non-circular cross-sections often lead

to unwanted results (for a fair comparison, we used circular

profiles for most results). It should be noted that compared

to our solution, 3-Sweep can handle open boundaries in

sketches, as shown in Figure 18.

• MonsterMash [16]: This approach uses blobby inflation, re-

stricting the variety of possible results, but it does enable

local boundary edits. Further, additional strokes can influ-

ence the inflation process (e.g., noisy jar in Figure 22). Nev-

ertheless, it requires a closed boundary, making inputs, as in

Figure 18, unsuitable.

• CreatureShop [61]: Following upon Teddy and RigMesh, it

can actually handle images as inputs and relies on a Grabcut

algorithm while the user traces the required boundaries as

in Teddy/RigMesh. Arbitrary cross-sections or local editing

are not supported.

• Our Method (Case 1): Our 𝑑2 function results in smooth sur-

faces (especially when the spine is bent), while a𝑑∞ function,

which we implemented for comparison, does not result in a

suitable output. The blobby and banana examples in Figure

21 show the results generated using the 𝑑∞ function.

• Our Method (Case 2): Using 𝑑2, the importance of rib length

optimization can be shown. To be fair, no edits were applied

to the ribs. As can be seen in the cross, plane and noisy jar

examples, the resulting ribs without rib length optimization

extend to the region boundary (or hull in Figure 18), resulting

in distorted and unexpected shapes.

	Abstract
	1 Introduction
	2 Related Works
	3 Spine-rib based modeling
	3.1 Design Rationale
	3.2 Overview
	3.3 Technical details
	3.4 Lofting

	4 User Interaction
	5 Results and Discussion
	5.1 Comparison of Functionalities
	5.2 Comparison of Results
	5.3 Limitations
	5.4 Preliminary User Evaluation
	5.5 Future Work

	6 Conclusion
	Acknowledgments
	References
	A Detailed derivation of the d2 function
	B Comparison with other sketch-based modeling systems

