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ABSTRACT
Given a finite set of points P ⊆ R3, sampled from a surface S , surface
reconstruction problem computes a model of S from P , typically
in the form of a triangle mesh. The problem is ill-posed as various

models can be reconstructed from a given point set. In this paper,

curve reconstruction in R2, is initially looked at using the Delaunay
triangulation (DT ) of a point set. The key idea is that the edges in

the DT are prioritized and the interior or exterior edges of the DT

are removed as long as it has at least one adjacent triangle. Theo-

retically, it is shown that the reconstruction is homeomorphic to a

simple closed curve. Extending this to 3D, an approach based on

‘retaining solitary triangles’ and ‘removing triangles anywhere’ has

been proposed. An additional constraint based on the circumradius

of a triangle has been employed. Results on public and real-world

scanned data, and qualitative/quantitative comparisons with ex-

isting methods show that our approach handles diverse features,

outliers and noise better or comparable with other methods.

CCS CONCEPTS
• Computing methodologies→ Shape modeling;

KEYWORDS
Surface reconstruction, Point-set, Delaunay triangulation

ACM Reference format:
Subhasree Methirumangalath Shyam Sundar Kannan Amal

Dev Parakkat Ramanathan Muthuganapathy. 2017. Reconstruc-

tion using a simple triangle removal approach. In Proceedings of
Siggraph Asia 2017, Bangkok, Thailand, Nov. 2017 (SA ’17), 4 pages.
https://doi.org/10.1145/3145749.3145774

1 INTRODUCTION
Given a finite sampling P ⊆ R3 of an unknown surface S , surface
reconstruction problem computes a model of S from P , which is

expected to match S in terms of both geometrical and topologi-

cal properties [8]. The problem is an ill-posed one as there can be

numerous models reconstructed from the same point set. The chal-

lenges of the problem are sparsity, noisiness and outliers present in

the sampling. Reconstruction has applications in diverse fields such

as reverse engineering, product design, computer graphics, etc [3].
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1.1 Related Work
The reconstruction methods can be classified into two categories,

namely implicit and explicit methods, where the former use im-

plicit functions and the latter use triangulated mesh to represent

the surface, respectively.

Implicit methods: Implicit methods include Algebraic Point Set

Surfaces (APSS) [9], Robust Implicit Moving Least Squares (RIMLS)
[11], Screened Poisson (SP) [10] etc. The implicit methods are : (i)

generally faster but require normal information, a computationally

complex task. (ii) require multiple parameter tuning, a time con-

suming and tedious process. (iii) guarantee convergence to a local

minimum, however, it might be different from the original surface

and also may not pass through all the input points, leading to loss

of details.

Explicit methods: Explicit methods triangulate the points directly

and normal informations are not required. They can be divided into

two groups (i) Region growing (Ball Pivoting Algorithm (BPA) [4])
and (ii) Delaunay triangulation (DT)/Voronoi diagram (VD) meth-

ods (Power Crust (PC) [1], Robust Cocone (RC) [7], Singular Cocone
(SC) [6], Shape Hull (SH ) [12] etc.). The region growing methods

are faster, but they are not robust and not easy to generalize. They

degrade when two surfaces are close together or near sharp features

and multiple parameters tuning is needed, a tedious task. DT/VD

based algorithms do not require normal information but most re-

quire multiple parameter tuning and are slower. Only a few have

handled noisy point set and outliers. For a recent survey on surface

reconstruction, please refer [3].

In this paper, we present an algorithm for reconstruction based

on DT of the input point set. The key difference over the existing

approaches is that the removal of an edge for curve reconstruction

is based on adjacency of triangles associated with the edge. This

approach enables an edge to be removed from anywhere in the DT
as opposed to orderly removal in sculpting methods. The approach

has then been extended to surface reconstruction, where a triangle

is removed from anywhere using the idea of ‘solitary triangles’

and a single parameter based on circumradius of a triangle in a

tetrahedron. The output surface is called as Surface Reconstructed

from Solitary Triangles, SRST.

2 CURVE RECONSTRUCTION
Motivation: Consider a simple closed curve C (Figure 1a) and the

sampled points P (red in Figure 1b) from C. In most of the DT -
based curve reconstruction approaches, the exterior edges of the

DT (i.e., the edges that share only one triangle) are prioritized and

removed successively to obtain a resultant graph. Removing only

exterior edges might lead to the following scenario: even if there are

interior edges which are eligible to be removed, the exterior edges

cause blockages due to the edge removal rules[5]. For the DT in

Figure 1b, the graph obtained after removal of a few of the exterior

edges is shown in Figure 1c. Figure 1d shows an exterior edge e
which is not removed and causes blockage. The reconstructed shape
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is as shown in Figure 1e, where the concave portion of C is not

captured. This motivated us to look into removing the edges of DT
from anywhere, either it is an exterior or an interior edge (removal
anywhere strategy).

(a) (b) (c) (d) (e)

Figure 1: (a) Curve C (b) DT of the sample points P (in red)
(c) After removing a few of the exterior edges (d) Edge e caus-
ing blockage (e) Boundary edges which does not capture the
concave portion of C.

Solitary edge: It can be observed that, based on its adjacency,

an edge ofDT can be categorized as: (i) it is part of only one triangle

(such as epq in Figure 2a) or (ii) it is shared by a maximum of two

triangles (eg: ei j in Figure 2a).

Definition 1. An edge is known as a solitary edge if it is not part
of any triangle.

(a) (b) (c) (d) (e)

Figure 2: (a) epq part of a triangle, ei j shared by two trian-
gles (b) △uvw (c) Solitary edge euv (not part of any triangle),
obtained after removing euw from △uvw of Figure 2b (d) Soli-
tary edges as boundary. (e) a singular edge ei .

Consider △uvw in a graph (Figure 2b). Figure 2c shows the graph

obtained after removing euw . It can be observed that euv is no more

part of a triangle (Note that the shaded area is not a triangle) and it

is an example of a solitary edge. All the other edges which are part

of at least one triangle (Figure 2c) are non-solitary edges.

Algorithm: A strategy for curve reconstruction has been pro-

posed which processes for solitary edges from DT , using adjacency
information of the edges. An edge ei j of a triangle can be retained in
DT only if ei j is a solitary edge. Similarly, an edge of a triangle can

be removed from DT , only if it is a non-solitary edge or a singular

edge (Refer Definition 2). The resultant reconstructed simple closed

curve is represented as G. An example of G is as shown in Figure

2d and one can observe that G has only solitary edges. To the best

of our knowledge, the approach of identifying solitary edges based

on adjacency is a novel one, not employed in any other DT -based
ones.

Assuming P is a sample obtained from an input curve under

ϵ-sampling (a sufficiently dense sampling), in DT (P), it has been
observed that the edges on the boundary of G (if any, in a triangle)

are shorter than the non-boundary edges. Hence, from DT (P), all
the edges are prioritized in the descending order of the length of

the edges. Based on the priority, the edges which are non-solitary

are removed either it is an interior or an exterior edge from DT (P),
retaining all solitary edges in G.

After retaining all the solitary edges, G may contain edges be-

tween non-adjacent points (edge ei in Figure 2e), which have to be

removed to obtain the best perceived shape.

Definition 2. A singular edge is a solitary edge between two
non-adjacent points (edge ei in Figure 2e).

From Figure 2e, it can be observed that all the points in G (recon-

structed shape from the points which are sampled from a simple

closed curve) have degree as two, except the end points of a singular

edge. It can also be noted that both the end points of a singular

edge have more than two as degree. In order to compute the final

reconstructed shape, singular edges are removed from G using

this graph theoretic property. Theoretical guarantee of the curve

reconstruction is given in the supplementary document.

3 SURFACE RECONSTRUCTION

(a) (b)

Figure 3: (a) Adjacent triangles - △i jk & △i jl in TETi jkl , △i jk
is one of the non-solitary triangles due to existence of its
adjacent triangles (b) Solitary triangle - △abc .

Definition 3. A solitary triangle (ST ) is a triangle if it is not part
of any tetrahedron.

In Figure 3a, △i jk is non-solitary as it is part ofTETi jkl whereas
in Figure 3b, △abc is a solitary triangle. Let △s denotes the triangle

with smallest circumradius (say, r0), on the convex hull of P .

Figure 4: (a) Single solitary triangle on a surface (b) A tetra-
hedron from which two solitary triangles are on a smooth
surface (yellow ones in (c).

Key observations for Surface Reconstruction: For a re-

constructed surface to be homeomorphic to a closed surface, all

the triangles have to be solitary. In Figure 4a, on a surface, only

one triangle from the tetrahedron has to be solitary (the smallest
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circumradii one). In Figure 4b, two of the triangles from a tetra-

hedron will be on the surface (shaded in yellow in Figure 4c) if

their circumradii are smaller than the other two. There can be three

triangles from a tetrahedron forming part of a surface. We conjec-

ture that ϵ-sampling can lead to such a point-set (similar to that

in 2D). However, in practise, a point-set need not confirm to such

a sampling, and hence we decided to introduce a parameter ϑ . If
circumradius of a triangle is within the range of (0,ϑ ∗ r0] (where
ϑ > 0), then that triangle has to be retained.

Definition 4. A triangle is not-retainable, if it is non-solitary
and its circumradius does not lie in the range of (0,ϑ ∗ r0]. Hanging
triangle (akin to singular edge in 2D) is a triangle which has at least
one unshared edge.

Algorithm for Surface Reconstruction: From DT (P), the
triangles are processed in the descending order of the circumradius.

If it is a retainable triangle, it is added to SRST. On the other hand,

a triangle is removed from DT if it is not-retainable.

Algorithm 1 SURFACE_RECONSTRUCTION(P )

1: Input point set, P
2: Output surface, SRST
3: Construct 3D Delaunay triangulation DT
4: SRST= ϕ
5: Compute r0
6: Construct a priority queue PQ with triangular faces in descend-

ing order of the circumradius

7: while PQ , ϕ do
8: △i jk = POP(PQ)
9: if NOT_RETAINABLE(△i jk ,DT , r0) then
10: Remove △i jk from DT
11: else
12: if SRST

⋃
△i jk forms a tetrahedron TETi jkl then

13: Remove triangle with largest circumradius of

TETi jkl from SRST
14: SRST = SRST

⋃
△i jk

15: end if
16: end if
17: end while
18: Remove hanging triangles (using the adjacency information)

from SRST
19: return SRST

Algorithm 1 presents the pseudo code of the proposed surface re-

construction algorithm. The function NOT_RETAINABLE checks

whether △i jk is shared with any of its six (at most) adjacent tri-

angles of two (at most) neighbouring tetrahedra. and whether the

circumradius of △i jk is within the range of (0,ϑ ∗ r0].

4 RESULTS AND DISCUSSION
Figure 5 shows the results (implemented using CGAL 4.6) for pub-

licly available data and (Results for real-world scanned data and for

large data (close to five million) are shown in the supplementary

document). For each of the results, the number of points and ϑ are

shown in the bottom. Qualitatively (Figure 6), we compared our

approach with the following - APSS, RIMLS, SP, BPA, PC, RC, SC,

Figure 5: SRST for AIM@SHAPE data set with number of
points and ϑ . Detailed features, genus, sharp features and
concavities are captured.

and SH. The algorithm is able to capture sharp features and also

works for multiple genus objects, comparable or better than other

algorithms for outlier and down sampled ones. For noisy models

(created using ReMesh 2.1) extra triangles are present in our result

(overall, it has still captured the essence of the output models). For

a real data with noise, our algorithm has performed quite well. BPA,

RIMLS and APSS results have been obtained using Meshlab’s plugin

(with ‘Projection - Max iterations’ set to zero for RIMLS and APSS

for noise and outliers).

Quantitatively, the RMS error for Hausdorff distance computed

on reconstruction on input point sets, point sets with noise and

that with outliers shows that our simple approach shows a better

or equal performance (Figure 7). Table 1 shows that SRST has less

running time (for benchmark models [2]) than SH, PC, SC and RC.

Table 1: Running time with number of points

Models # Points

Running Time (seconds)

BPA SP RIMLS APSS SRST SH PC SC RC
Anchor 30644 0.77 1.52 3.74 2.7 2.97 6.98 12.17 15.5 17.7

Daratech 60319 0.79 2.82 4 4.5 6.76 8.63 18.3 23.24 39.6

Quasimoto 90716 0.99 2.87 8.71 8.89 10.62 14.24 34.5 46.91 61.61

Gargoyle 119746 3.72 4.3 15.82 19.14 14.49 16.46 42.75 63.01 78.19

Dancing

Children

241016 4.72 4.17 21.7 26.5 34.88 35.05 87.76 195.93 218.57

Conclusions: Based on the insight of the ‘solitary edge’ for curve
reconstruction, we proposed a ‘removal anywhere’ approach for

surface reconstruction using solitary triangles. The proposed ap-

proach is capable of detecting different features such as sharp cor-

ners, multiple genus and concavities, noise and outlier without

preprocessing. We performed an extensive comparative study us-

ing publicly available data and real scanned data, with the existing

methods and demonstrated that our approach performs in a com-

parable way in many aspects. The limitation of the algorithm is

that it is a parametric one, requiring a trial and error approach to

determine it.
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