
EUROGRAPHICS 2023/ V. Babaei and M. Skouras Short Paper

PointCloudSlicer: Gesture-based segmentation of point clouds

Hari Hara Gowtham1,2, Amal Dev Parakkat1, Marie-Paule Cani2

1 LTCI - Telecom Paris, 2 LIX - Ecole Polytechnique
Institut Polytechnquie de Paris, France

Abstract
Segmentation is a fundamental problem in point-cloud processing, addressing points classification into consistent regions, the
criteria for consistency being based on the application. In this paper, we introduce a simple, interactive framework enabling the
user to quickly segment a point cloud in a few cutting gestures in a perceptually consistent way. As the user perceives the limit of
a shape part, they draw a simple separation stroke over the current 2D view. The point cloud is then segmented without needing
any intermediate meshing step. Technically, we find an optimal, perceptually consistent cutting plane constrained by user stroke
and use it for segmentation while automatically restricting the extent of the cut to the closest shape part from the current
viewpoint. This enables users to effortlessly segment complex point clouds from an arbitrary viewpoint with the possibility of
handling self-occlusions.

CCS Concepts
• Human-centered computing → Interaction design; • Computing methodologies → Shape modeling;

1. Introduction and related work

The spread of 3D scanning devices such as LiDAR systems and re-
cent advances in machine/deep learning techniques that make their
direct manipulation possible [GWH∗20] increased the popularity
of point clouds, which are now used in many applications, from
cultural heritage to robotics and automatization. In this context,
segmenting the input points, i.e., partitioning them into distinct, se-
mantically meaningful regions or clusters, is a fundamental prob-
lem essential for scene understanding and editing, object detection,
and robot navigation.

Considering that the related mesh segmentation problem is a
well-explored area in Computer Graphics [Sha08], where the in-
put is a mesh rather than a point cloud, a trivial solution would
be to create a mesh from the point cloud and then reuse any mesh
segmentation algorithm. Mesh segmentation can be made simpler
and more accurate by incorporating user inputs (e.g. through a
simple sketching paradigm) that encode user perception and guide
segmentation [JLCW06]. Though sketches improve the quality of
mesh segmentation, creating a 3D mesh from point clouds is chal-
lenging, especially since the point clouds can have various artefacts
like incomplete data, outliers, and heavily varying density.

Many methods, therefore, addressed the direct segmentation of
point clouds. They can be broadly classified into two categories:
learning-based and non-learning-based methods. The learning-
based methods use machine/deep learning algorithms to learn pat-
terns and features from annotated point clouds and predict the clas-
sification (see [GWH∗20] for a survey). The works under this cate-
gory span from using traditional machine learning approaches such

as K-means and spectral clustering [ZCD20] to more sophisticated
methods using CNNs [QSMG17, WSL∗19], 2D convolution on
projected 3D data [LDT∗17], and creating unique structures like
Superpoint graph or GCNs [LS18, LHW21]. Non-learning-based
methods, on the other hand, such as region-based [VTHLB15] and
graph-based methods [NL13], do not require annotated data since
they rely on explicit hand-crafted features and algorithms to parti-
tion the point cloud. Unfortunately, the latter does not always meet
the user intent.

The main objective of this work is to allow interactive point-
cloud segmentation as in [SRS∗19], but based on simple, intuitive
slicing gestures defined over any 2D view of the point cloud. This
enables us to benefit from powerful user perception while allowing
the use of any segmentation criteria.

Our current preliminary solution is limited to straight slicing ges-
tures, depicted as line strokes. Each of them is interpreted in 3D as
a perceptual slicing plane, which is optimized to better match the
local arrangement of 3D points. This plane is then used to partition
the point cloud into two consistent sub-parts while robustly han-
dling the case of multiple self-occlusions of the point cloud from
the slicing viewpoint. To achieve this, we focus on two main chal-
lenges:

• How to adjust the cutting plane without worrying about aligning
the point cloud to make an optimal cut?

• How to stop the cutting process from blindly segmenting the
whole point cloud based only on the relative position and in-
stead intelligently segment only the intended region of the point
cloud?

© 2023 The Author(s)
Eurographics Proceedings © 2023 The Eurographics Association.
This is an open access article under the terms of the Creative Commons Attribution Li-
cense, which permits use, distribution and reproduction in any medium, provided the orig-
inal work is properly cited.



H.H. Gowtham, A.D. Parakkat, & M.P. Cani / PointCloudSlicer: Gesture-based segmentation of point clouds

The proposed method facilitates quick "drawing over point
clouds," allowing the user to define the segments wherever they
want without requiring additional information (such as normal or
texture) or complex and time-consuming mesh reconstruction.

2. Methodology

PointCloudSlicer works as follows: the user iteratively uses slicing
gestures over the point cloud to define the two end-points of a line
stroke (see Figure 2); for each such stroke, our algorithm starts by
creating a cutting plane, initialized from the viewing angle and the
line segment. Since no notion of intersection exists, this plane can
intersect with multiple regions of our input point cloud. To avoid
this, local clustering is applied on the points near the cutting plane
to identify the intended region. We further refine the latter using
an optimized, tilted plane to ignore the effect of viewpoint, which
directly impacts the cutting plane. Finally, we use local geometri-
cal cues from the optimized region to apply the relevant, localized
segmentation to the point cloud. Our technical contributions are,
therefore, two-fold:

• An optimization-based framework that uses a width measure de-
pending on the local point distribution to define the optimal cut-
ting plane.

• Using a local Delaunay-triangulation-based method as a geomet-
ric cue for identifying the point cluster that best matches user
perception.

Figure 1 compares the results of a
naive segmentation (based on the rela-
tive orientation of points w.r.to the initial
plane) with those of PointCloudSlicer,
given the simple slicing gesture in the
inset (the red line shows the user cut).
Note that the point cloud was arbitrarily
aligned, making the naive segmentation (based on the initial plane
parallel to the viewing direction) fail to segment the shape as in-
tended (into points belonging to the head and the body) by having
wrongly segmented points on the ears and making a titled cut on
the head. Thanks to the underlying intelligent optimization, Point-
CloudSlicer was able to capture the expected partition. The remain-
der of this section details the main steps of our method.

2.1. Intelligent clustering

Given the initial slicing plane defined to include the user line stroke
and the viewing direction, we first identify the region of the point
cloud where the segmentation takes place. Therefore, we define the
slice of interest as the set of the points that lie at a smaller distance
than a predefined threshold δ to the cutting plane.

Since there is no available connectivity information, this slice
blindly extends to the whole point cloud, in depth as well as side-
ways. To only select the perceptually relevant part, i.e. the closest
to the user’s stroke, we do a local reconstruction. Inspired by the
literature [OPP∗21], we start with computing the 3D Delaunay tri-
angulation (which is proven to be useful for curve/surface recon-
struction from point clouds since it can create non-overlapping tri-
angles that represent the underlying shape of the point set, while

Figure 1: Segmentation results from the user input. Left: based on a
naive cutting plane, Right: using PointCloudSlicer. Cutting planes
are shown in green, and points that participated in width measure
computation are shown in the inset (values of M are 16.3199 and
11.4438, respectively).

also minimizing distortions and other artefacts) of the points ly-
ing inside the slice, and do a simple pruning on its edges based on
their length (we remove all the edges longer than the average edge
length in the Delaunay triangulation). Please note that this simple
strategy could easily be replaced by any sophisticated algorithm,
such as in [OPP∗21]. The pruning process segments the graph of
connected points into different connected components or clusters,
enabling us to pick the closest cluster to the centre of the line stroke
to define the cut.

2.2. Cutting plane optimization

As shown in Figure 1, the cutting plane may need to be tilted to
better match the local geometry of the shape and get the expected
segmentation. To do this, we associate a width measure M to the
cutting plane CP, defined as follows:

M(CP) = ∑
i=1,...,k

d(pi,A)

Where p0, ..., pk are the points belonging to the selected cluster, A
is the average of the points in the cluster, and d() is the Euclidean
distance.

Intuitively, while still matching the user’s stroke, minimizing
the width measure helps us identify the region with minimal girth
(which acts as a good perceptual measure for segmentation). Satis-
fying the constraint that the plane passes through the user-defined
line segment, we minimize the width measure by tilting the cutting
plane. This effect is salient near the neck region in Figure 1. At the
end of this optimization, we get an "Optimal cluster", which can be
used to segment the point cloud. In this preliminary implementa-
tion, we use greedy optimization in a binary search fashion, where
the maximum and minimum possible tilt is set to ±15◦.

2.3. Segmenting the point cloud

The point cloud is finally segmented based on the optimal cutting
plane while restricting the process to the region corresponding to
the selected point cluster. Again, since there is no available struc-
ture other than plain coordinate information, direct segmentation
is non-trivial. Therefore, we rely on the minimal spanning tree to
achieve this segmentation.

We start by computing a minimal spanning tree (MST) of the
point cloud to create an initial structure (as a pre-processing step

© 2023 The Author(s)
Eurographics Proceedings © 2023 The Eurographics Association.




