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1. Problem Definition

Shape characterization of a two dimensional (2D) point set is a
fundamental problem that has many applications in computer graph-
ics [SCT*14], computer vision [CCP97], and geographical informa-
tion science (GIS) [GDO06]. Technologies such as GPS and applica-
tions in GIS acquire discrete point-like objects in the form of dot
pattern in two or three dimensional space. Many GIS applications
use the “outline” of a group of objects, e.g..trees, buildings or a flock
of birds, or generally of any aggregation of discrete objects [GDO06].
In geometric modeling, boundary of the surface patch that satisfies
certain geometric constraints is computed in the 2D parametric space
of the surface [SCT*14]. When all the surface points that satisfy the
geometric constraints are computed and transformed into the (u,v)
space, this becomes a shape characterization problem. Shape recon-
struction techniques can also be employed to better approximate the
regions of interest in crash optimization problems [GRM15].

Inputs to the shape characterization problem is any finite set of
points in 2D and the outputs are either a graph or polygon(s) defining
the point set shape, see Figure 1. The input point sets are known
as either region samples [GDO06] or area samples [OPP*21] or dot
patterns [CCP97]. Shape characterization or region reconstruction
problem can be formally described as in Definition 1.

DEFINITION 1 Given a finite set of points, S C R? sampled from
a region or object, shape reconstruction deals with computing a
polygonal boundary that best characterizes the underlying shape of
S.

The ‘shape’ of a point set is a vague notion and can have multiple
interpretations, i.e., point set shapes are highly subjective in nature
and often depend on human cognition and visual perception. There-
fore, the shape (or outline) is not by any means uniquely determined.
To demonstrate this, observe that each of the illustrations in Figure
2 represents a possible outline for the same set of points; depending
on one’s purpose in requiring an outline, some may be “better” so-
lutions than others, but none is absolutely “correct” [GD06]. This
makes it almost impossible to formally define the shape formed by
a set of points. The rich variety of shapes available in the nature
and the heterogeneity of point sets further weaken a well-defined
formulation of the shape approximation problem [Ede98].

Galton et al. [GDO06] propose a set of general criteria that may
be considered while defining what constitutes an optimal shape of
a set of points for a particular application. Let S be a set of points
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Figure 1: (a) Dot pattern, (b) Reconstructed shape, Image courtesy:
[PM15a]
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Figure 2: (Possible outlines for the region occupied by (or shape of)
a set of points, Image courtesy: [GD06]

and R(S) be the region occupied by S. The list of criteria are listed
below.

e Should every member of S fall within R(S), as in Figure 3(a,c—g),
or are outliers permitted, as in Figure 3(b)?

e Should any points of S be allowed to fall on the boundary of R(S),
as in Figure 3(a-b,d-g), or must they all lie in its interior, as in
Figure 3(c)?

e Should R(S) be topologically regular, as in Figure 3(a—c, e-g), or
can it contain exposed point or line elements, as in Figure 3(d)?

e Should R(S) be connected, as in Figure 3(a—d,f,g), or can it have
more than one component, as in Figure 3(e)?

e Should R(S) be polygonal, as in Figure 3(a—e,g), or can its bound-
ary be curved, as in Figure 3(f)?

e Should R(S) be simple, i.e., its boundary is a Jordan curve, as
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Figure 3: Illustration of point set with different aggregation patterns,
Image courtesy: [GDO6]

in Figure 3(a—c,f), or can it have point connections as in Figure
3(g)?

Depending on the application, the designers have the flexibility to
impose the whole or a refined sub set of the above criteria to define
the region or shape.

2. Classification

Broadly, the shape characterization algorithms are grouped into
Delaunay based and non-Delaunay based algorithms.

2.1. Delaunay Filtration

InR?, a-shapes of a point set S is generated by connecting the points
p.q € S, which are touched by an empty disk of radius oo [EKS83].
However, a-shape construction is parameterized in terms of o and
there exists some point sets for which the o-shape family does
not contain elements representing appropriate shapes [MDOO]. To
overcome the limitations of o-shape, Melkemi has introduced A-
shapes which contains a-shape and crust as special cases [MDOO].
Given a finite set of points P, and an arbitrarily chosen set A, A-shape
of P is generated by first constructing the Voronoi diagram for AUP
and then joining together any pair of points p,g € P whose Voronoi
cells both border each other and border some common Voronoi cell
containing a point of A. However, determination of a proper A in
A-shape computation is controlled by two parameters, o, and ¢.

A related algorithm for characterizing a point set distribution is
characteristic shape (or -shape) [DKWGO08a]. y-shape algorithm re-
moves external edges of Delaunay triangulation until the largest edge
on the boundary is less than a threshold value. Termination and effi-
ciency of the algorithm and the boundary of -shape are dependent
on the threshold value. Further, it generates only simply connected
shapes (holes cannot be detected). Recently, variants of o-shapes
such as k-order o-hulls [KPV10] and LDA-0i-complex [CM11] have
been proposed for shape reconstruction. LDA-o-complex effectively
uses the local density variation found in the point sets for detecting
the hollow regions.

Peethambaran et al. [PM15a] focus on the non-parametric ap-
proach that captures the topological properties of objects having
directed boundary samples using Delaunay filtering. Methiruman-
galath et al. [MPM15] proposed a unified Delaunay-based frame-
work for the reconstruction of a planar point set that is capable of
detecting a wide variety of shapes having features such as sharp
corners, concavities, thin regions etc. Focusing on boundary samples
and dot patterns, Thayyil et al. [TPM20] proposed an input indepen-
dent single-pass algorithm that removes edges based on characteriz-
ing a triangle by the distance between its circumcenter and incenter.

Outer and inner boundaries of point sets are efficiently extracted
using a Delaunay triangulation-based strategy in [MKPM17] that is
capable of detecting sharp edges and holes.

2.2. Non-Delaunay based Methods
2.2.1. Region Approximation using Concave hulls

The work in this thesis can be related to the region approximations
using concave hulls in computational geometry. Even though con-
siderable amount of research has been done for reconstructing the
region occupied by a set of points in the plane, all of them lack a
concrete mathematical definition for concave hull and thus result
in ambiguous representations for concave hulls of planar point sets.
Junyi Xu et al. [XFZQ10] proposed ®-hull algorithm to compute
concave hull for scattered data based on Graham scan convex hull
algorithm. As the name suggests, the concave hull generated de-
pends on the value of two externally supplied parameters, ® and p.
A k-nearest neighbor algorithm for computing concave hull of point
sets can be found in [MSO07]. This is essentially a modified Gift
wrapping algorithm which produces an envelope for a set of points
where the shape of the envelope depends on the value of k. Galton
et al. presented a swinging arm algorithm for the computation of
region occupied by set of points in plane. The footprint obtained
by Swinging Arm algorithm depends on the value of swinging arm,
which is a line anchored to the last point added to the footprint
(similar to half line in gift wrapping algorithm [O’R98]).

2.2.2. Proximity Graphs for Shape Characterization

In general, proximity graphs such as Relative neighborhood graph
(RNG), Gabriel graph, Sphere-of-Influence graph [Tou88] and j3-
skeltons [KR85] play a vital role in defining the shape and structure
of planar point sets [JT92].

In RNG, two points p and g are connected if d(p,q) < d(p,x)
and d(p,q) < d(q,x) ¥V x€S where x # p or g [JT92]. Gabriel graph
of S contains all edges (p,q) where there exists an edge (p,q) if
the circle passing through p and g centered at the edge (p,q) is
empty [GS69].

Let S be a set of n points in the plane. For p € §, let rp be the
minimum distance from p to S — p, and let B, denote the open ball
of radius r, with center p, there exist an edge (p,g) in the sphere
of influence graph of S, iff d(p,q) < rp + rq [Tou88]. All these
definitions may result in a graph rather than a simple polygon and
hence may contain disconnected regions, isolated edges and junction
points.

In B-skeleton, two points p and g, are connected to each other if

there are two disks with radius B < @ passing through them and

is empty of other points of S [KR85]. In the y-neighborhood graph is
a generalization of B-skeleton in which there is no restriction on the
radius of disks [Vel94]. In both these cases, an external parameter
that must be fixed by a user to generate the graph. Moreover, if the
original shape is not sampled uniformly or the parameter is not set
appropriately, the algorithm may generate graphs with disconnected
components.
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2.2.3. Other Approaches

A related line of work is polygonal border extraction of dot patterns
which are mainly used in pattern recognition and digital image
processing [CCP97]. Chaudhuri et al. [CCP97] introduced two new
constructs called as s-shape and r-shape for border extraction. In
1999, Gautam et al. [GC99] proposed a split and merge procedure
for computing the polygonal border of a dot pattern. Their final
polygonal border depends on the choice of the number of sides of
final polygon(m) or the area of the polygonal border. Recently, a
polygonal border reconstruction algorithm (simple shape) has been
proposed by A.Gheibi et al. which works for both dot patterns and
boundary samples [GDJ* 11]. However, simple shape depends on
a thresh hold parameter and lacks the ability to detect holes in the
shapes.

3. Delaunay based Algorithms

In a survey on shape reconstruction, Edelsbrunner [Ede98] elab-
orates on how different shape reconstruction methods restrict the
Delaunay complex to arrive at their respective shapes. We discuss
some of the Dealaunay filtration algorithms for point set shape char-
acterization. We have included three prominent algorithms in this
field, i.e., a-shape and y-shape and a few recent ones along with a
few related sampling models commonly used for providing theoreti-
cal guarantees. Basic notations and symbols used for discussion are
summarized in Table 1.

3.1. Simplicial Complex

As the concept of simplicial complex is used in a few reconstruction
algorithms, we provide the basic definition of simplicial complex. A
k-simplex is the non-degenerate convex hull of £ 41 geometrically
distinct points, vg,vy,...,Vx € R? where k < d [CDS13] (Definition
2).

DEFINITION 2 k-simplex (cy):

It is the intersection of all convex sets containing (vo, vy, ..., Vg). i.€.,
or={x e RY | x =YK o' witho; > 0and Y5 o = 1}
According to the Definition 2, vertex is O-simplex, edge is 1-simplex,
triangle is 2-simplex and tetrahedron is 3-simplex. The convex hull
of any non-empty subset of the (k+ 1) points that defines a k-simplex
is referred to as a face of that simplex. Like simplices, vertex is a
0-face, edge is a 1-face and so on. A (k — 1)-faces of a k-simplex is
called as a facet.

DEFINITION 3 Simplicial complex [CDS13]:
A simplicial complex, K is a set containing finitely many simplices
that satisfies the following two restrictions:

e /C contains every face of every simplex in /C;
e For any two simplices, G, T € K, their intersection 6 N7 is either
empty or a common face of ¢ and 7.

Line segments which do not belong to any triangle in a 1C, are
either bridges, dangling edges or disconnected line segments (see
Figure 4(a)). In a simplicial 2-complex, if one or more triangles are
attached to any other k-simplex (where k = 1 or 2) through only one
of its vertices, then that vertex is termed as a junction point, i.e.,
the triangle(s) is(are) free to oscillate about its junction point (see
Figure 4(a)).
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Figure 4: Illustration of regular and non-regular simplicial com-
plexes. The constructs which violates the regularity of a graph are
shown in Figure 4(a).

DEFINITION 4 Regular simplicial 2-complex (RX;):
A simplicial 2-complex K, is said to be regular if it satisfies the
following conditions:

e All the points in K, are pairwise connected by a path on the
edges.
e It does not contain any junction points, dangling edges or bridges.

A detailed explanation on simplices and simplicial complexes
can be found in [CDS13]. An edge in RK; is a boundary edge (red
colored edges in Figure 4(b)) if it is incident to a single triangle.

DEFINITION 5 Boundary triangle:

A triangle in R/C, is a boundary triangle if it is incident to at least
one boundary edge. In Figure 4(b), all triangles having red edges
are boundary triangles.

o) o)
o o)
O/O o
(e} \O
o o
«a-exposed not a-exposed

Figure 5: lllustration of a-exposed simplices, Image courtesy: [Fis].

3.2. a-shape [EKS83,EM94, Fis]

Conceptually, oi-shape are presented as a generalization of the con-
vex hull of a point set. We reproduce the definition of a-shape
provided in [Fis].

DEFINITION 6 For 0 < A < oo, let an A-ball be an open ball with
radius A. Furthermore, a 0-ball is a point and an 1-ball is an open
half-space. Now, a certain A-ball b (at a given location) is called
empty if b S = ¢. With this, a k-simplex G, is said to be a-exposed
(see Figure 6) if there exists an empty o-ball with 6, = dbN S where
db is the surface of the circle (d = 2) bounding b, respectively.

With this preliminaries, let us present the definition of o-shape,
see Definition 7.
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] A shape d(u,v)  The euclidean distance between the points u&v.
S A finite set of points of O in R?. [|x]] The length of x.

DT (S) Delanauy triangulation of § [O’R94]. deg(v)  degree of vertex v.

V(S) Voronoi diagram of S [O’R94]. 20 Shape boundary.

B(r,x,y) Ball having radius r passing through two distinct points x,y ~ conv(.)  Convex hull.

Table 1: Notation and Symbols

08,

Figure 6: An example of alpha shape boundary, Image courtesy:
[Fis].

DEFINITION 7 The boundary dSq of the o.-shape of the point set
S consists of all k-simplices of S for 0 < k < d which are o-exposed,

dSo = {0 | k< d,(vp,v1,...,vx) C S and oy are o.— exposed }

Edelsbrunner et al. [EKS83] has shown that the boundary dS¢, of
the a-shape is a subset of the Delaunay triangulation of S for any
value 0 < o < oo. This relation has been utilized to design a linear
algorithm for extracting a-shape from DT (S).

3.3. A-shape [MD00]

Melkemi presented a general family of shapes that includes o-shapes
as a special case. A member in this family is identified with the help
of a second finite set A C R*> . The A-shape of S is generated
by drawing an edge connecting points p,q € S if there is a circle
that passes through p, g, and a point a € A, and all other points of
SJA lie strictly outside the circle. The a-shape is the special case
where A is the collection of points a on Voronoi edges that span
empty circles of radius o with points in S. Melkemi suggests a two-
parameter family of point sets, A = A(a., 7). The first parameter,
o > 0, controls the resolution and the second parameter, ¢ € [0, 1],
interpolates between the unweighted case and the case where points
are weighted by the local density.

3.4. x-shape [DKWGO8b]

The chi-algorithm possibly yields a non-convex, simple polygon
that characterizes the shape of a set of input points S in the plane.

Characteristic shapes are simple (Jordan) polygons,homeomorphic
to the closed unit disk. Thus, characteristic shapes are simply con-
nected (all of one piece containing no holes nor islands) and regular.
Characteristic shape is generated by repeatedly “removing” longest
exterior edges (longer than a threshold /) from DT (S) subjected
to the regularity constraints. The resultant graph is always regular
simplicial 2-simplex. Figure 7 shows a comparison between o.-shape
and y-shape.

Figure 7: Example differences between al pha-shape (solid hairline)
and chi-shape (thick dashed line), Image courtesy: [DKWGO8b]

The x-shape produced by the algorithm has the following proper-
ties.

e itis a simple polygon;

e it contains all the points of S; and

e it bounds an area contained within and possibly equal to the
convex hull of the points of S.

3.5. Divergent Concavity of Object Boundaries

We review “divergent concavity” before providing the next few
shape characterization algorithms. A closed planar curve that repre-
sents the boundary of an object is considered through out this section
for illustration. A simple closed curve ¥ bounds a region referred to
as interior of £ (I(X)), that lies to the left when travelled in counter
clockwise direction along X. Jordan curve theorem establishes that
a simple closed curve divides the plane into a well-defined interior
(I(X)) and exterior (I(T)).

Curve X is said to be convex, if the line segment between any
two points on the curve falls in the interior, /(X). Otherwise it is
concave. The curvature K at a point p of X is the rate of change of
direction of the tangent line at p with respect to arc length s. An

’
inflection point (IP) on the curve is a point where k = 0 but k # 0
(Figure 8). Since reconstruction in the presence of concave portions

© 2022 The Author(s)
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Figure 8: Inflection points (IP) and concave portions.

is extremely difficult, we restrict our attention to concave curves.
Concave portions of a curve is characterized by the sign of the local
curvature k. Concave portions exists between two inflection points
and has a negative local curvature sign (k < 0).

A bi-tangent (BT) to a curve X is a tangent line L that touches X
at two distinct points. The points where BT touches X is referred to
as bi-tangent points (BT P). We consider only the bi-tangents lying
completely in the exterior of the curve (I(Z)) for our discussion (i.e.
BT refers to exterior bi-tangent). With these basic terminology, we

introduce the definition of pseudo-concavity of X.

DEFINITION 8 Pseudo-concavity:

The portion of X lying between two bi-tangent points having at least
one sub-portion with K < 0 is called as pseudo-concave portion of
¥, denoted by C(X).

Extremal BT

“R(BT;)
S——— Bitangent, BT;
(a) (b)

Figure 9: lllustration of pseudo-concave region (CR(BT;), grey
color region in Figure 9(a)), pseudo-concave portion (C(BT;), red
color curve portion shown in Figure 9(a)), extremal bi-tangent (blue
color) and non-extremal bi-tangents (green color in Figure 9(b)).

Red colored portion of the curve in Figure 9(a) is an example
of pseudo-concave portion. Here are some observations on pseudo-
concavity of a curve (Figure 9).

1. Multiple pseudo-concave portions are possible for X.

2. A pseudo-concave portion C(X) always contains portions with
k> 0.

3. Every BT induces a C(X). The region bounded by BT and the
corresponding C(X) constitutes the pseudo-concave region of BT,
denoted by CR(BT) (grey colored region in Figure 9(a)).

4. There may exist some BT; in CR(BTj). Here, BT; is referred to
as non-extremal BT (green color bi-tangents in Figure 9(b)).
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Medial axis of X is closure of the set of points in the plane which
have two or more closest points in £ [ABE98]. Medial axis also
contains the centers of all osculating disks (empty disks tangent
to X). A medial ball B(c,r), centered at ¢ € medial axis of ¥ with
radius r, is a maximal ball whose interior contains no points of X.
For any ¥, there exists inner and outer medial axis. We restrict our
attention to outer medial axis and the corresponding medial balls for
defining divergent pseudo-concavity.

(b)

Figure 10: Illustration of divergent and non-divergent pseudo-
concavities.

DEFINITION 9 Divergent pseudo-concavity:

A C(BT) of X is said to be divergent, if the radii of medial balls,
B(c,r), ri monotonically increases as it goes along the outer medial
axis of C(BT) from one end to the extremal BT end.

An example of divergent pseudo-concavity is illustrated in Figure
10(a). For C(BT) having non-extremal BTs, medial axis may have
branches that go separately to different C(B7)s of non-extremal
BTs. The Definition 10 is valid in this case as well as the medial
ball rolls only towards extremal BT end (Figure 10(a)).

DEFINITION 10 Divergent concave curve(Xp):
A simple, closed planar curve X is said be divergent concave if all
its pseudo-concave portions (C(B7)) are divergent.

Figures 10(a) & 10(b) illustrate examples of divergent and non-
divergent curves respectively. In Figure 10(b), radii of medial balls
continuously increase for some time, then decrease for a smaller
interval of time and then again start increasing as the it approaches
the corresponding extremal bi-tangent. There are other type of
non-divergent pseudo-concavity where the radii of medial balls
monotonously decreases as it approaches the extremal bi-tangent.

3.6. Relaxed Gabriel Graph [PM15a]

A relaxed Gabriel graph (RGG(S)), is a regular simplicial 2-complex
that consists of most of the Gabriel edges and a few non-Gabriel
edges inherited from the DT (). RGG(S) retains a non-Gabriel edge
(p,q) € DT (S) if it satisfies either of the following:

e Circumcenter of the Delaunay triangle A pgr for which (p,q) is
the characteristic edge, lies internal to JRGG(S).
e Removal of (p,q) violates regularity in RGG(S).

RGG algorithm filter the boundary triangles subjected to reg-
ularity and circumcircle constraints. While regularity constraints
ensure that the resultant graph is always a regular simplicial complex,



J. Peethambaran / Shape Reconstruction Tutorial

circumcenter constraint allows the removal of boundary triangles
whose circumcenter lies outside of the intermediate boundary of the
simplicial complex. Holes in the point sets are characterized using
structural patterns formed by fat and thin Delaunay triangles.

Next we present a sampling model used to provide the theoretical
guarantees on RGG algorithm. Let B is a set of points sampled
from 0O and Del(B) denotes its Delaunay Graph., an external
Delaunay triangle is a triangle, Ay € Del(B) which is partially or
fully exposed to the exterior of d0.i.e. {Ax}N{I(Z)} C{AJ\{},
where {} is the null set. External Delaunay triangles exist in the

pseudo-concave regions.

DEFINITION 11 Divergent boundary sample:
A point set B sampled from a divergent concave curve.

@ - . - ®)
Figure 11: Illustration of Observation 1.

OBSERVATION 1 Every external Delaunay triangle in a divergent
boundary sample is obtuse with its longest edge facing towards the
extremal bi-tangent of the corresponding pseudo-concavity.

(b). Point samples

(a). r-sampling

Figure 12: Illustration of a r-sampling using balls of radius r and
the resultant point set of an object

3.6.0.1. (r,1)-sample In Definition 11, we considered only the
boundary sample. Now we extend the definition to object samples
with some additional sampling criteria. Sampling such as €-sampling
[ABE98], defined in terms of the medial axis of the object, enables

providing theoretical guarantees for curve or surface reconstruction.

e-sampling to object samples seems to be inappropriate, as the points
are distributed all over the object. So, We adopt a model similar to
the one used in [Att98] with few additional constraints (Definition
12).

DEFINITION 12 (r,1)-sample:
A point set S sampled from a geometric object O is said to be
(r,1)-sample if it satisfies the following properties.

1. Object O possesses a divergent concave boundary.

2. Each pair of adjacent boundary samples, p,g€dS lies at a distance
of at most 2r. i.e d(p,q) < 2r.

3. Each pair of samples p,g where p€int(S) and g€S lies at a
minimum distance of 2r, i.e d(p,q) > 2r.

The radius of the sampling balls r, can be chosen so that the
balls fully cover the boundary of the object as shown in Figure
12. Interior of the object is sampled using the balls of same radius
but the locations of the balls are arbitrary. The author(s) [PM15a]
have provided theoretical analysis of RGG algorithm under (r,1)-
sampling model.

3.7. EC-shape [MPM15]

In [MPM15], a unified algorithm for the reconstruction from bound-
ary samples as well as dot patterns is proposed. The authors use
circle constraint and regularity constraint for the Delaunay triangle
filtration. Circle constraint is defined as follows.

G

S

(a) (b) ()

Figure 13: (a) Non-empty diametric circle C1 (b)Empty diametric
circle C2 and non-empty chord circle C3 (c)Empty diametric circle
C4 and non-empty midpoint circle C5 [MPM15]

DEFINITION 13 Circle Constraint - The exterior edge of a graph
is said to satisfy circle constraint if any one of the following condi-
tions is satisfied:

e Diametric circle (say, radius R) of the exterior edge of the graph
is non-empty (i.e., the circle contains at least one point of S ).

e Any chord circle with the same radius R for any of the adjacent
sides of the exterior triangle is non-empty ( a chord circle is
available when 2R > the length of the adjacent side).

e Any midpoint circle with the same radius R for any of the ad-
jacent sides of the exterior triangle is non-empty ( a midpoint
circle is available when chord circles are not available ie. when
2R <= length of the adjacent side).

Definition 13 utilizes three different types of circles namely di-
ametric circle, chord circle and midpoint circle, see Figure 13. A
Chord circle of an edge ¢;; is a circle with ¢;; as its chord, a midpoint
circle of an edge e;; is any circle whose centre is the mid point of
the edge, and a diametric circle of an edge ¢;; is a midpoint circle
with diameter ||p; — p/||. Please note that exterior edge and exterior
triangle have the same definition as boundary edge and boundary
triangle presented in Section 3.1.

EC-shape algorithm successively removes the boundary edges
subject to regularity and circle constraints to compute the resultant
boundary. Figure 14 illustrates the edge filtration of the EC-shape

© 2022 The Author(s)
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Figure 14: Different stages of ec-shape algorithm, Image courtesy:
[MPM15]

algorithm. Under »r—-sampling, Lemmas 4.1 and 4.2 of [MPM15]
together establish that EC-shape is homeomorphic to a simple closed
curve.

3.8. CT-shape [TPM20]

The CT-shape algorithm is an single-pass and input-independent
(unified) reconstruction algorithm. The algorithm is said to be single-
pass because it employs same strategy for capturing boundaries
irrespective of the number of holes/objects. The definition of CT-
shape utilizes different types of triangles, degree constraints, and
pseudo hole.

DEFINITION 14

e Neighboring Triangles: Two triangles are said to be neighboring
triangles if they share an edge (Figure 15(a)).

e Coordinated Triangles: Neighboring triangles are termed as co-
ordinated triangles if their circumcenters lie on the same side of
the shared edge (Figure 15(b)).

e Skinny Triangles: A skinny triangle is a thin non-obtuse triangle
whose base is smaller than the distance between the circumcenter
and the incenter of the triangle (Figure 15(c)).

Figure 15: Illustration of definitions [TPM20]

DEFINITION 15 Degree constraint:

When there are more than two edges at a vertex (point), “degree
constraint” implies that only two shorter edges are retained (and all
other edges are removed) from that vertex (point).

Given DT (S), CT-shape is constructed by marking all the shared
edges from the coordinated triangles, and the two longer edges from
the skinny triangles. Then create a new graph consisting of all the
unmarked edges and imposing the degree constraints. The authors
have provided topological correctness of CT-shape under r-sampling
model.
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3.9. Petal Ratio [TPM21]

A recent work [TPM21] in this direction attempts to discern the
input type (curve sample or dot pattern) based on the notion of Petal-
Ratio (PR) which is inspired by the flower structure mentioned
in [PMM18]. The authors define Petal-Ratio as follows (Definition
16).

DEFINITION 16 Petal-Ratio(PR) : Let ) & e; are two of the edges
incident with a vertex v € DT'(S) such that e; is longest edge and

— lledll

ey is the smallest edge. Petal-Ratio of a vertex v is, PR(v) = el

Based on the idea of Petal-Ratio (PR), an algorithm to extract the
polygonal boundary of dot pattern along with theoretical guarantees
under minimal reach sampling is provided.

3.9.1. Minimal Reach Sampling (MRS)

All the definitions are given under the assumption that the shape O
possesses a smooth boundary dO which is equivalent to a smooth,
possibly concave and closed curve. We utilize the notion of Pseudo
concavity (Definition 8)to define minimal reach sampling. Local
Feature size w.r.t exterior medial axis, | fs'(p), at a point p € ¥ is
the minimum Euclidean distance from the point p to a point m € M,
where M is the medial axis constituted by the union of outer medial
balls.

Points in ) can be ordered either in clockwise or anti-clockwise
direction. Based on one of these orderings, we say that a point p € ),
lies before or after another point ¢ € Y. Such an oredring of curve
points naturally leads to the concept of interval defined as follows.
The interval I(p) = [po, p1] is the set of curve points p € ¥ between
po and pi. Reach [Fed59] of a curve interval / can be defined as
follows.

DEFINITION 17 Reach [Fed59] The reach of interval I is
il’lfpe]lfs(p>

We slightly modify Definition 17 and adapt it to our setting. In
particular, we consider the local feature size of points with respect
to outer medial axes, not the inner medial axis. Hence reach of
an interval [ in this paper refers to inf,eslfs’(p). We consider the
extremal bi-tangent points of pseudo-concavities as the end samples
of different intervals. Essentially, each pseudo-concave portion is
considered as a separate interval, i.e., pseudo-concave interval. We
denote the set of reaches of all the pseudo-concave intervals of ),
by R and find the minimum reach of pseudo-concavities (refer to
Figure 17(a)), y of ¥, by taking the minimum value from the set
R (refer to Figure 17(b), R = {d;(pink),d(red),d3(blue)} and vy
of ¥ = min(R) = d3). Armed with these definitions, we formalize
minimum reach sampling in Definition 18.

DEFINITION 18 Minimal reach sampling: A sampling S of shape
O is said to be minimal reach sampling if the closest neighboring
points with respect to any point p € S lies at a distance of exactly 7.

Minimal reach sampling is a special case of dense r-sampling
[PM15b] where r =1.

LEMMA 3.1 Let S be the minimal reach sampling of a shape O and
e1,ey € DT (S) be the shortest edge and an edge lying in a pseudo-
concavity of dO from a boundary sample v € S respectively, then
[le2]] >0

fledll =
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Figure 16: A visual comparison of 0-shape [EKSS83], y-shape [DKWGO08a], Simple-shape [GDJ*11], RGG [PM15a], EC-shape [MPM15],

and the results of [TPM21], Image Courtesy: [TPM21]

Medial Ag)(is,,r Reach(G )

Reach(c, )
G Reach(C; )

\-=="pseudo-concavity, C; .
Minimum Reach =d= min(d,, ¢,, d;) Medial Axis

a b c

Figure 17: (a) Exemplification of minimal reach sampling (MRS)
(b) lllustration of pseudo-concave reaches of a smooth curve (c)
shows that Delaunay edges in the pseudo-concavities intersect the
corresponding exterior medial axis. The dotted purple color curve
indicates the exterior medial axis

Proof The minimal reach of 90, i.e., Y is the least external local
feature size, /fs(v)’ of a boundary point v where v belong to one of
the pseudo-concave portions of d0. In DT (S), an edge (e3) lying

in the pseudo-concavity has a length of at least 2y. This is due
to the fact that all the Delaunay edges in the pseudo-concavities
intersect the corresponding exterior medial axis (refer Figure 17(c)).
According to minimal reach sampling, a boundary edge or a shape
edge (both endpoints of an edge completely inside the boundary)
can have a length of Y. So the shortest edge (e1) from v has to be

leal] > 2Y
el =7 ==

either a boundary edge or a shape edge. So we get
(|

Lemma 3.1 indicates that only those edges incident with a vertex,
v € DT(S) having PR(v) < 2 are part of the shape O, where S
conforms to a minimum reach sampling of O. This immediately
gives us a simple algorithm to extract the polygonal border of dot
patterns.

© 2022 The Author(s)
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Figure 18: Shape characterizations by various algorithms for the map of the country, Paraguay, Image courtesy: [TPM21].
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Figure 19: Effectiveness of different algorithms for inputs with vary-
ing point density, Image courtesy: [TPM21].

4. Evaluation Practices and Tools
4.1. Evaluation Criteria

In general, experimental evaluation of shape characterization algo-
rithms are done using qualitative as well as quantitative analysis.
The results are experimentally evaluated against a known original
shape with respect to certain error parameters. Error is estimated
as the area of symmetric difference between the original shape and
the reconstructed result [DKWGO08a]. The evaluation of the results
are made extensive and authentic by carrying out experiments like
varying point density and homogeneity in point distribution.

Quantitative analysis is done based on the L? error norm estimated
as the area of symmetric difference between the original shape and
the reconstructed result [DKWGO08a]. Let Area(O) and Area(R(S))

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

denote the area of the original shape and the area of the reconstructed
shape respectively, then L? error norm is computed as in Equation 1.

Area((0 —R(S))U(R(S) — 0))
Area(O)

(€3]

2
L” error norm =

An L? error norm of zero implies that the two shapes are equal in
area and also their boundaries are structurally alike. The units of the
area in all the cases are square pixels.

Feature based Comparison. Typically, a visual comparison of var-
ious algorithmic results are performed for input shapes with different
features, point samplings and distributions. Feature based evalua-
tions include simple closed curves, multiple components, shapes
with holes, and non-diverging concavity and outliers as shown in
Figure 16.

Effects of Point Density. Another common experiment involves
measuring how well the reconstruction algorithm behaves for dif-
ferent sampling density. Typically, shapes with highly sinusoidal
boundary, e.g., country maps are selected for this experiment. points
are semi-randomly sampled over the object or region. Shape recon-
structions of objects with varying point densities (shown in Figure
18) are analyzed using the L? error norm.

Effects of Point Distribution. To demonstrate how well reconstruc-
tion algorithms perform with varying point distribution accompa-
nied by our shape reconstruction algorithm. Normally, four different
scenarios are considered for this comparison task, DBDI (dense
boundary dense internal), DBSI (dense boundary sparse internal),
SBDI (sparse boundary dense internal) and SBSI (sparse boundary
sparse internal), see Figure 19.
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Figure 20: Chi shape software interface.

4.2. Software Tools and Data

e chi-shape Software: chi-shap algorithm helps to generate non-

convex simple polygons for sets of points in the plane. The soft-
ware can be downloaded at http://duckham.org/matt/
characteristics-shapes/.
This software is available in two versions: a Java Web Start JWS)
version and a full Java jar file. The software has several sections
(see Figure 20) which help users to generate different shapes
and structures. Users can generate point sets of English alpha-
bets as well as the country maps. The statistics column of the
software maintains parameters such as L2 -Norm, error from area,
expected area, actual area, expected perimeter, and actual perime-
ter. The edge removal section focuses on generating customized
shapes based on normalized length or maximum edge of mini-
mum spanning tree or maximum of smallest triangle edge. Some
edge removal options help users to remove edges and show in-
ternal triangles thereby helping the user to customize shapes and
error elimination. Figure 21 illustrates some customized shapes
and representations.

Figure 21: Data generation and various visualization options avail-
able in Chi shape software (a) Random generated shape, (b) De-
launay triangulation, (c¢) Minimum spanning tree (d) Debug option
showing coordinates, (e¢) Convexhull (f) Generated final border.

e CGAL Library [CGA12]: An implementation of alpha shapes

is available in Computational Geometry Algorithms Li-
brary (CGAL) [CGAI12], see https://doc.cgal.org/
latest/Alpha_shapes_2/index.html. CGAL alpha
shapes are built on Delaunay triangulation. The implementation
allows the users to generate al pha-complex, i.e., a sub-complex
of DT (S) which contains al pha-exposed k-simplicies with k rang-
ing in the interval (0,d).

e Other Software: Open source implementations of a few other
algorithms are available, please see Table 2. Most algorithms
are implemented in C++ using geometric predicates available in
Computational Geometric Algorithms Library.
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